Hermann Held

Potsdam Institute for Climate Impact Research (PIK)

Email: held@pik-potsdam.de http://www.pik-potsdam.de

Table of Contents

- Summary of Workshop on Tipping Points
 @ British Embassy Oct 2005
- Detection of Tipping Points
- Consequences for Earth System Management

(to be implemented after publication)

(after Schellnhuber & Held 2001; Held et al. in prep.)

Joint Characteristics of Tipping Points

- "Abrupt" future effects,
- predominantly enforced by Climatic Change rather than natural variability
 - $\Rightarrow e.g.$
 - flips in ENSO-statistics
 - NOT: triggering of individual ENSO events
- Switches of at least subcontinental scale.

Tipping Point Properties

- S = state variable (= sub-continental scale)
- F = forcing (linked to climate change)
- F* = critical forcing strength
- For an "imagined slow" forcing, F(t):

Incorporates:

- Reaching bifurcation in a bi-stable system
- Non-linear change of a single equilibrium
- Lags in real system due to rapid forcing

(after H Held)

Tipping Point Properties (cont.)

 Dynamical switch (time-series property)

- |dS/dt| (today) << |dS/dt| (S**)
- For very slow forcing, $S^{**}=S(F^*)$

Examples in Earth History

Abrupt Temperature Changes @ Greenland

Mid-Holocene Saharan Desertification

- Non-linear change in a single equilibrium
- Followed by the rise of "hydraulic societies" in Egypt, Mesopotamia...
- A tipping point in human systems linked to a tipping point in vegetationclimate?

De Menocal, P. J. et al. (2000). Quaternary Science Reviews 19: 347-361.

West Antarctic Ice Sheet

- Triggered @ 2-4°C
- 4-6m Sea level rise
- Over 1000 yrs

(to be implemented after publication)

(after Schellnhuber & Held 2001; Held et al. in prep.)

Melting of Ice over Greenland

Greenland ice sheet melt area increased on average by 16% from 1979 to 2002. The smallest melt extent was observed after the Mt. Pinatubo eruption in 1992

Greenland melt and sea level change

gr_con = control gr_low = 2xCO₂ gr_mid = 4xCO₂ gr_high = 8xCO₂

Huybrechts, P. and J. De Wolde (1999). Journal of Climate 12: 2169-2188.

Past Sea Level vs. Temperature

Past Sea Level vs. Temperature

- ⇒ Potential of runaway effects
- Nonlinear & much faster decay
- "We need full stress-tensor-based ice models!"
- (R Alley @ EGU 2006, Vienna)

(to be implemented after publication)

(after Schellnhuber & Held 2001; Held et al. in prep.)

Atmosphere-Land Surface Interactions

(to be implemented after publication)

(after Schellnhuber & Held 2001; Held et al. in prep.)

Amazon Forest Dieback

- Many models show it, some don't so it is a suspect but not convicted!
- If climate becomes more "El Nino-like" (or more generally, a certain pattern of tropical SSTs) then possibility of Amazon die-back
- Chain of drivers: CO₂ pattern of temp precip veg
- Threshold: In GCMs happens at global warming of about 3-4 K
- Also consider human activity deforestation, forest fragmentation as forcing and as an influence on sensitivity, and also as a feedback (response of human systems to drying climate)
- Crossing threshold of deforestation first increasing precip then decreasing once past a certain fraction

Permafrost Melt

 Threshold – annual mean temp of 5 or 7
 °C but also depends on hydrology (autumn snow keeps warm)

(to be implemented after publication)

(after Schellnhuber & Held 2001; Held et al. in prep.)

Indian Summer Monsoon

- Land cover change or aerosol forcing could trigger switch to arid regime
- CO₂ forcing would encourage return
- Potential "roller coaster" with huge social impacts

(to be implemented after publication)

(after Schellnhuber & Held 2001; Held et al. in prep.)

CC-induced European Ozone Hole

- Global warming
- ⇒ stratospheric cooling
- ⇒ more stratospheric ice crystals
- ⇒ ozone depletion

(Austin et al., 2003)

Known Temperature Threshold Intervals

(to be implemented after publication)

(to be implemented after publication)

(after Schellnhuber & Held 2001; Held et al. in prep.)

 How to measure the potential's curvature?

How to determine Curvature of Potential?

Theorie of Brownian Motion: Unified theorie of deterministic & stochastic forces (Einstein, 1905)

Responses to stochastic forces

Responses to deterministic forces

..are rooted in the same laws of mechanics

Application for Shutdown of North Atlantic Thermohaline Circulation in CLIMBER-2

After
Held &
Kleinen,
GRL,
2004

No early warning

(to be implemented after publication)

Central Management Question

 Impacts of TPs on Adaptation/Mitigation strategy

Key Factor Climate Sensitivity

Key Factor Climate Sensitivity

Climate Sensitivity ® Impacts

(to be implemented after publication)

CS: 5...95% Quantiles

CS: 5...95% Quantiles

Summary

- A dozen Tipping Points identified
- Underrepresented in IPCC TAR
- Under several decision strategies:
 - Press for Mitigation& enhanced Adaptation costs