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Benford’s Law as an instrument for fraud detection in

surveys using the data of the Socio-Economic Panel (SOEP)∗

Jörg-Peter Schräpler †

Abstract

This paper focuses on fraud detection in surveys using Socio-Economic Panel (SOEP) data
as an example for testing newly methods proposed here. A statistical theorem referred to as
Benford’s Law states that in many sets of numerical data, the significant digits are not uni-
formly distributed, as one might expect, but rather adhere to a certain logarithmic probability
function. To detect fraud we derive several requirements that should, according to this law, be
fulfilled in the case of survey data. We show that in several SOEP subsamples, Benford’s Law
holds for the available continuous data. For this analysis, we have developed a measure that
reflects the plausibility of the digit distribution in interviewer clusters. We are able to demon-
strate that several interviews that were known to have been fabricated and therefore deleted in
the original user data set can be detected using this method. Furthermore, in one subsample,
we use this method to identify a case of an interviewer falsifying ten interviews who had not
been detected previously by the fieldwork organization. In the last section of our paper, we
try to explain the deviation from Benford’s distribution empirically, and show that several
factors can influence the test statistic used. To avoid misinterpretations and false conclusions,
it is important to take these factors into account when Benford’s Law is applied to survey data.
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1 Introduction

In any survey in which the data are collected by personal interviews, there is a risk that interviewers
may cheat, or that some may fabricate data. We can distinguish several forms of cheating.

Firstly, the most blatant form is when an interviewer fabricates all ’responses’ in an entire
questionnaire. The US Bureau of the Census refers to this practice as ’falsification’ or ’fabrication’.
Sometimes this practice is also unofficially called ’curbstoning’, thus named because a census taker
”stands at the curb” and guesses the number of residents in a building or house without ever
entering. Interviewers who do this are called curbstoners1 (Moore and Marquis 1996).

Secondly, a more subtle form is when an interviewer asks some questions in an interview and
fabricates the responses to others.

A third form of cheating is when an interviewer knowingly deviates from prescribed interviewing
procedures, such as conducting an interview with someone who is easily reachable and willing to
participate in the place of the appropriate person.

Falsification might also include the acceptance of proxy information when self-response is re-
quired and the unauthorized use of the telephone when a personal visit is required.

In this paper we deal only with the first form of cheating: the fabrication of an entire inter-
view. We focus on fabricated data in the German Socio-Economic Panel (SOEP) and apply an
unconventional benchmark by the name of Benford’s Law, which has already been used by several
accountants to uncover fraud. Benford’s Law is now also being used by several researchers in the
social sciences to detect fabricated survey data (Diekmann 2002; Swanson et al. 2003; Schräpler
2004; Schräpler and Wagner 2005; Schäfer et al. 2005; Bredl et al. 2008) and frauds in regression
coefficients in economics and the social sciences (Tödter 2009; Diekmann 2007). In our paper we
try to give some explanatory notes for this logistic distribution and explore the effectiveness of this
procedure in the case of survey data.

2 Previous results on cheating behavior

In comparison with other methodological topics, the literature contains only a few studies dealing
with cheating by interviewers. Crespi (1945) described several factors that may contribute to cheat-
ing behavior. He distinguished between factors relating to questionnaire characteristics (design and
length, difficult and antagonistic questions), administrative demoralizers (inadequate interviewer
remuneration and training), as well as external factors (bad weather, bad neighborhoods, etc.).
He proposed a dual strategy of eliminating demoralizers and using a verification method to deter
cheating. Some more recent studies have referred to these verification methods and dealt with
optimal designs of quality control samples to detect interviewer cheating (Biemer and Stokes 1989)
and the evaluation of quality control procedures for interviewers (Stokes and Jones 1989).

Because of the lack of factual information concerning the nature of interviewer falsification, in
1982 the US Census Bureau implemented an ”Interviewer Falsification Study” (Schreiner, Pennie,
and Newbrough 1988). In this study data were compiled from fifteen surveys conducted by twelve
US Census Bureau regional offices over a five-year period. They found 205 cases of confirmed
falsification. Most of these (74%) were detected through re-interviews, and the majority (79%) were
determined to have been fabricated interviews. Their results provide evidence that the shorter the
length of service, the more likely an interviewer is to falsify data (Schreiner, Pennie, and Newbrough
1988). Furthermore, when new interviewers falsify data, they usually do so for a relatively high
proportion of their assignments, and they tend to fabricate entire interviews. Interviewers with
five or more years of experience usually falsify a smaller proportion of their assignments and tend
to classify eligible units as ineligible (Hood and Bushery 1997).

1Curbstoning is a term that originated with 18th-century census-taking. This term was coined when it was
discovered that some interviewers simply filled out interview forms without even contacting a respondent.
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Other studies have dealt with the ’quality’ of faked interviews and the impact of fabricated
data on substantive analysis. Reuband (1990) showed that students are able to reproduce data in
fictive interviews using available demographic variables on real respondents.

Schnell (1991) performed a study in which he substituted 220 real interviews from the German
General Social Survey (ALLBUS 1988, N = 3,052) with fictive interviews fabricated by sociology
students and their fellow students at the same university. He analyzed the quality of the fabri-
cated data and the robustness of substantive empirical results by comparing the German General
Social Survey with the substituted false data. His main result was that univariate statistics like
proportions, means, and variances are relatively robust against typical amounts of fabricated data
in surveys (less than 5%). Nevertheless, he also found some minor effects on multivariate statistics
such as multiple regressions. Moreover, using simulations, he showed that higher proportions of
fabricated data in surveys have a serious impact on multivariate statistics and data quality.

In the ALLBUS 1994, the ADM design was replaced with a new sampling design that offers
the opportunity to systematically check that the interviews (N = 3,505) were performed correctly.
The interviewers were given the names and address of the respondents directly. In six percent of
the cases, irregularities were detected; half of them were falsified by the interviewers (Koch 1995).
These fabricated data (n = 45) were found after the routine monitoring by the data collection
institute via the postcard method, which detected fifteen falsified interviews in this survey. Another
finding was that interviewers who cheat are mainly younger people with higher levels of education
(Abitur) and with a relatively high workload (number of interviews). The SOEP is aware of the
interviewer characteristics of those who cheat and was therefore able to compare them with the
characteristics found in the ALLBUS (see Schräpler/Wagner 2005).

A rare debacle caused by falsified interviews is referred to by Diekmann (2002). In the German
city of Rostock, a traffic study about drivers was carried out by means of 600 face-to-face interviews.
Eighty cases were later re-contacted for another study, which showed that sixteen of the former
interviews were completely or partly fabricated by the interviewer. If we extrapolate this to the
whole sample, that amounts to a share of 20% fakes.

3 Benford’s Law

Besides the ’conventional’ tests for stability and consistency, an unconventional benchmark by the
name of Benford’s Law has recently been used by several accountants to detect frauds. Social
researchers have also proposed using this method for survey data (Diekmann, 2002). In this and
the following chapter, we will test whether Benford’s Law can be used as an instrument for quality
control and fraud detection in surveys.

Benford’s Law is an empirical ’law’ which states that in many tables of numerical data, the
significant digits are not uniformly distributed, as one might expect, but rather adhere to a certain
logarithmic probability distribution (Hill 1996b). According to Hill (1999), in 1881, the astronomer
Newcomb (Newcomb 1881) explained that his discovery of the significant digit law was sparked
by an observation that the pages of a book of logarithms were dirtiest in the beginning and
progressively cleaner throughout. Nevertheless, the law is named after Dr. Frank Benford, a
physicist who had made the same observation in 1938, when he embarked on a mathematical
analysis of 20,229 sets of numbers, including such wildly disparate categories as the areas of rivers,
baseball statistics, numbers in magazine articles and street addresses (see table 1, Benford 1938).

He found that all these seemingly unrelated sets of numbers followed the same first-digit prob-
ability pattern.2 In most cases the number 1 turned up as the first digit about 30 percent of the

2Nevertheless Benford made no attempt to assess how good the fit was. On closer inspection of table 1, we can
see that for some of these data sets, the digit frequency is not even a monotonically decreasing function of digit
magnitude for higher valued digits. Using χ2-tests Scott/Fasli (2001, p.5) show that only three of these data sets
(D,F and R) have remarkably close fits, eight (A,G,I,M,O,P,Q and T) satisfy the standard 5% significant criterion,
the remaining nine sets of data cannot be regarded as conforming to Benford’s Law.
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Table 1: The distribution of leading digits in Benford’s data sets in percentages (Benford 1938)
Group Title 1 2 3 4 5 6 7 8 9 Count

A Rivers, Area 31.0 16.4 10.7 11.3 7.2 8.6 5.5 4.2 5.1 335
B Population 33.9 20.4 14.2 8.1 7.2 6.2 4.1 3.7 2.2 3,259
C Constants 41.3 14.4 4.8 8.6 10.6 5.8 1.0 2.9 10.6 104
D Newspapers 30.0 18.0 12.0 10.0 8.0 6.0 6.0 5.0 5.0 100
E Spec. Heat 24.0 18.4 16.2 14.6 10.6 4.1 3.2 4.8 4.1 1,389
F Pressure 29.6 18.3 12.8 9.8 8.3 6.4 5.7 4.4 4.7 703
G H.P.Lost 30.0 18.4 11.9 10.8 8.1 7.0 5.1 5.1 3.6 690
H Mol. Weight 27.7 25.3 15.4 10.8 6.7 5.1 4.1 2.8 3.2 1,800
I Drainage 27.1 23.9 13.8 12.6 8.2 5.0 5.0 2.5 1.9 159
J Atomic Wgt. 47.2 18.7 5.5 4.4 6.6 4.4 3.3 4.4 5.5 91
K n−1,

√
n,. . . 25.7 20.3 9.7 6.8 6.6 6.8 7.2 8.0 8.9 5,000

L Design 26.8 14.8 14.3 7.5 8.3 8.4 7.0 7.3 5.6 560
M Gigest 33.4 18.5 12.4 7.5 7.1 6.5 5.5 4.9 4.2 308
N Cost Data 32.4 18.8 10.1 10.1 9.8 5.5 4.7 5.5 3.1 741
O X-Ray Volts 27.9 17.5 14.4 9.0 8.1 7.4 5.1 5.8 4.8 707
P Am. League 32.7 17.6 12.6 9.8 7.4 6.4 4.9 5.6 3.0 1,458
Q Black Body 31.0 17.3 14.1 8.7 6.6 7.0 5.2 4.7 5.4 1,165
R Addresses 28.9 19.2 12.6 8.8 8.5 6.4 5.6 5.0 5.0 342
S n1, n2, . . . , n! 25.3 16.0 12.0 10.0 8.5 8.8 6.8 7.1 5.5 900
T Death Rate 27.0 18.6 15.7 9.4 6.7 6.5 7.2 4.8 4.1 418

Average 30.6 18.5 12.4 9.4 8.0 6.4 5.1 4.9 4.7 1,011
Predicted 30.1 17.6 12.5 9.7 7.9 6.7 5.8 5.1 4.6

time, more often than any other. Benford derived a formula to predict the frequency of numbers
found in many categories of statistics. The leading significant (non-zero) digit obeys the law

Prob(first significant digit = d) = log10

(
1 +

1
d

)
, d = 1, 2, . . . , 9

Hence, a number chosen at random has leading significant digit d = 1 with probability 0.301,
a leading digit d = 2 with probability 0.176 and so on monotonically down to probability 0.046
for leading digit d = 9. The general law for second and higher significant digits and their joint
distribution is (Hill 1996a, 1999):

Prob(D1 = d1, . . . , Dk = dk) = log10

1 +

(
k∑
i=1

di × 10k−i
)−1

 (1)

where d1 ∈ {1, 2, . . . , 9} and dj ∈ {0, 1, 2, . . . , 9}, j = 2, . . . , k. Therefore the joint probability
Prob(D1 = 1, D2 = 5, D3 = 2) = log10(1 + (152)−1) ≈ 0.0028.

From equation 1 follows that the significant digits are dependent and not independent. In the
appendix, table 16 shows the joint distribution for the first two digits. It can easily be seen that
the joint probability that the second digit is 3, given that the first digit is 1, is P (D1 = 1, D2 =
3) ≈ 0.0322, but P (D1 = 1) · P (D2 = 3) ≈ 0.0314.

This interdependence among significant digits decreases rapidly as the distances between the
digits increases. The table below table 16 shows the distribution of the first to the fourth significant
digits. We can recognize that the distribution of the nth significant digit approaches the uniform
distribution on 0, 1, . . . , 9 exponentially fast as n→∞ (c.f. Hill 1995, p.355).

For many years, this law was considered little more than a numerical curiosity, but practical
implications began to emerge in the 1960s (Scott/Fasli 2001). It was recognized that the suggestion
that almost 1/3 of the numbers processed began with the digit ’1’ could have implications for the
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design of efficient computers (Hamming 1970; Knuth 1981). In recent years Benford’s Law has
been used successfully to detect fraudulent financial data (Nigrini 1999).

Despite this rather slender empirical support (Scott/Fasli 2001), there is disagreement about
whether this law is a necessary mathematical truth or a contingent property of nature.

3.1 Explanations of Benford’s Law

3.1.1 Scale invariant Theorem

The literature contains several theoretical papers that have attempted to explain why Benford’s
Law is true. The first step towards explaining this relationship was taken in 1961 by the math-
ematician Roger Pinkham (Pinkham 1961). He argued that if there is a law of digit frequencies,
it should be universal and ’scale-invariant.’ This means that if we multiply all our numbers by
an arbitrary constant, then the distribution of first-digit frequencies should remain unchanged.
Pinkham provided the proof that if a law of digit frequencies is invariant under changes of scale
(e.g., dollars to euros) then it has to be Benford’s Law. Furthermore, Hill (1995) was able to show
that scale invariance implies base invariance, but not conversely.3 Nevertheless, this explanation
makes no contribution to answering the question as to whether real data should conform to the
logarithmic law.

3.1.2 Multiplying a lot of numbers together

Another approach is based on the notion of producing a number by multiplying a lot of numbers
together.4 Boyle (1994) showed that the logarithmic distribution is the limiting distribution of
leading digits when random variables are repeatedly multiplied, divided, or raised to integers
powers. Scott/Falsi (2001) were able to show in their simulations that there is indeed convergence
towards the logarithmic distribution in all checked cases, and that for some distributions this
convergence is rapid.5

3.1.3 The random-samples-from-random-distribution theorem by Hill (1995)

A plausible theoretical explanation for the appearance of this logarithmic distribution is the
random-samples-from-random-distribution theorem by the mathematician Hill (1995). He showed
”that if probability distributions are selected at random, and random samples are then taken from
each of these distributions in any way so that the overall process is scale (or base) neutral, then the
significant digit frequency of the combined sample will converge to the logarithmic distribution.”
(Hill 1995, p. 360). If Hill’s theorem is correct, this means that the digits derived from a random
mix of different sources, from census data to stock market prices, should follow Benford’s Law.
The mixture of data may be the key.6 It is not a requirement that the individual realizations of
a random variable have to be scale- or base-invariant. However, it is necessary that the sampling
process on average does not favor one scale over another (Hill 1995, p.361). This theorem may be
important in helping us to answer the question as to whether Benford’s Law is feasible for survey
data as survey data contain different variables with different distributions.

3However Lolbert (2008) attempted to show that there exists no probability measure that would obey Benford’s
law for any base, but if the set of possible bases does not exceed a given upper limit, most real-life distributions
obey, or can be transformed to obey Benford’s law.

4This approach is appealing because of its similarity to the Central Limit Theorem. The notion that Benford’s
Law might embody a similar general rule for the production of a number of random variables is very pleasing
(Scott/Falsi 2001, p.4).

5They showed that two factors influence the rate of convergence: the variance of the mantissa of the random
variate and the deviation of the random variate’s distribution from Benford’s Law.

6In table 1 Benford computed the average values for each of the digit frequencies. They look very close to the
predicted values. However, it seems that he simply computed the average percentages for each digit and taken no
account of the different sample sizes of the data sets.
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3.2 Empirical evidence

There is evidence that many classes of true data sets follow Benford’s Law. It has been found
to apply to many sets of financial data, including income tax and stock exchange data, corporate
disbursements and sales figures, demographic and scientific data (e.g., Nigrini 1999), as well as
numbers gleaned from newspaper articles (Benford 1938; Hill 1999). In the case of non-random
sequences Luque/Lacasa (2009) showed that Benford’s Law describes with astonishing precision
the statistical distribution of leading digits in the prime number sequence. Stock prices may seem
to be a single distribution but their value actually stems from many measurements (salaries, the
cost of raw material and labor) and so it is expected that they will follow Benford’s Law in the
long run. A recent study about whether tax returns in Germany follow Benford’s Law showed that
not all but the majority do conform to the logarithmic distribution7 (Posch 2003).

In the case of stock market companies, which represent all stages of growth, Nigrini gave an
additional intuitive explanation. We can consider a growing company with a market value of 100
million euros. For the value to reach 200 million euros, the company must double its value. For
it to increase from 200 million euros to 300 million euros it must increase only 50%, and for it to
increase from 900 million euros to 1000 million euros it must increase by just 11%. Moreover, for it
to increase from 1,000 million euros to 2,000 million euros it must again double. Hence a growing
company spends longer with a ’1’ as the first digit of its market capitalization than it does with
any other number. The persistence of a 1 as a first digit will occur with any phenomenon that has
a constant or erratic growth rate (Nigrini 1999).

On the other hand, truly random numbers do not confirm to Benford’s Law because the pro-
portion of leading digits in such numbers are, by definition, equal. Those data sets most likely
to follow Benford’s Law have numbers that do not contain a built-in maximum and describe the
sizes of similar phenomena (Nigrini 1999). Assigned numbers, such as social security numbers or
bank accounts, will not conform to it. Furthermore, deviations from the law’s prediction can be
caused by merely rounding numbers up and down. Moreover, the sample of numbers should be
large enough to give the predicted proportions a chance to assert themselves (Pinkham 1961), and
the sets of numbers should essentially be subsets of a larger series and not just huge chunks of that
series.

Recently Benford’s Law has been used to determine the normal level of number duplication
in data sets, which in turn makes it possible to identify abnormal digit and number occurrence.
Accountants and auditors have begun to apply Benford’s law to corporate accounting to discover
number pattern anomalies and frauds. Nigrini found that true tax data have a close fit to Benford,
and there is substantial evidence that in most fabricated tax data the significant digits are not close
to Benford. Usually the falsified data reveal conspicuous patterns and do not follow the expected
distribution. Nigrini used a goodness-of-fit-to-Benford test and successfully identified fraudulent
financial data.

3.3 Recent empirical explanations

The simulation results of Scott/Fasli (2001) Scott and Fasli (2001) pointed out that ”the
situation is thus such that, if it should turn out to be the case that Benford’s Law is valid, then
there are several alternative mathematical explanations of why this should be so. On the other
hand, none of them imply that the logarithmic law is necessary true.” (Scott/Fasli 2001, p.4).
In their experimental study, they first tried to find ’natural data sets’ that conform to Benford’s
Law. They investigated 230 data sets, all of which can be accessed on the web. In total, over a
half a million numbers were examined. They found that only 12.6% (29 of 230) satisfied the 5%
significance criterion for conformity to Benford’s Law. However, they found a significant number

7Posch (2003) investigated a data base with tax returns (N = 21 mill. records) from the year 2001 from a finance
office in NRW. His results show that foreign earnings, earnings from independent personal services, from leasing,
and from capital assets closely adhere to Benford’s Law. Gross earnings do not follow the logarithmic distribution.
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of real data sets that definitely do not conform to the law but have leading digit distributions that
are broadly similar. In particular, leading digit frequency proved to be a monotonically decreasing
function of digit value.

In mathematically generated data sets they investigated, in a second step, recurrent products
and products of random variates.8 The main results are (Scott/Fasli 2001):

• Multiplying the current number by a constant: in the majority of cases the resulting distri-
bution is very close to Benford’s Law. The exceptions arise when the multiplier is an exact
integral power or root of 10 because multiplying by 10 does not change the leading digit.

• Multiplying the current number by a uniformly distributed random variate: such sequences
also converge to the logarithmic distribution except in those cases where the mean is an
integral power or root of 10 and the standard deviation is small.

• Each number in the data set is the product of several random variables: the results show
convergence toward the logarithmic distribution in all cases. Two factors influence the rate
of convergence: the variance of the mantissa of the random variate and the deviation of the
random variate’s distribution form Benford’s Law.

Benford’s Law and the lognormal distribution These results support the theoretical models
that are based on recurrent multiplication and on the assumption that each item is the product
of several random variates. The latter is the equivalent to adding their logarithms. Because
the sum of independent random variates tends to a normal distribution as the number increases
(central limit theorem), the logarithm of the product of random variates should also tend to a
normal distribution. Therefore, there is a connection between Benford’s Law and the lognormal
distribution. Scott/Falsi showed that conformity to Benford’s Law is a function of the shape
parameter σ and independent of scale parameter (median) because Benford’s Law is scale-invariant
(Hill 1996a). Very good fits appear if the shape parameters of the lognormal distributions exceed
the value 1.2. Scott/Falsi concluded from this finding that data, the distribution of which conforms
to a lognormal distribution and the shape of which exceeds 1.2, should give rise to leading digit
distributions satisfying the logarithmic law. This is the case if:

1. the data set has only positive values

2. the data set has a unimodal distribution whose modal is not zero

3. the data set has a positive skewed distribution in which the median is no more than half of
the mean.

The latter ensures that the shape parameter of the lognormal distribution will exceed 1.2. From
their empirical results Scott/Falsi drew their fundamental conclusion that ”Benford’s Law is not a
necessary mathematical truth or a deep mystical property of our universe. It is a straightforward
consequence of the way in which we quantify our observations of that universe. Measurements that
cannot meaningfully take values less than zero give rise to Benford’s Law. Not all of them do. If
the range of measurement is such that zero falls well outside the range of practical consideration,
then the leading digits will not conform to the law. But many of the quantities that we measure
are necessarily positive and have ranges that include significant numbers of items close to zero.
According to our explanation, it is these that give rise to Benford’s Law.” (Scott/Falsi 2001, p.17).

Therefore Scott/Fasli concluded, on the basis of their simulation results, that many real data
sets conform to Benford’s Law because their distribution follows a lognormal distribution with a

8There have been several other simulation studies. Engel/Leuenberger (2003) showed in their study that exponen-
tially distributed random numbers obey Benford’s law approximatively, i.e., within bounds of 0.03. Miller/Nigrini
(2008) explained why so many data sets follow Benford’s Law (or at least a close approximation to it). They showed
that if we can consider the observed values of a system to be the product of many independent processes with
reasonable densities, then the distribution of the digits of the resulting product will come close to Benford’s Law.
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shape greater than 1.2. They stated that a large number of naturally occurring quantities have
these characteristics.

4 Using Benford’s Law on survey data?

An interesting point for survey researchers is whether this logarithmic distribution, Benford’s Law,
can also be used to identify fabricated data in surveys. Hence, the main question is whether
survey data follow Benford’s Law. Unlike financial data, many variables in these databases are
dichotomous or categorical (like gender, marital status, and occupation) or are assigned numbers
like household numbers. In this case, these data certainly do not conform to Benford’s Law.
However there are often also variables which refer to other monetary or continuous values.

4.1 SOEP data and their confirmation to Benford’s Law

For our analysis we use the Socio-Economic Panel Study (SOEP). The SOEP is a longitudinal
representative survey containing socioeconomic information on private households in the Federal
Republic of Germany (Wagner et al. 2007). It is similar to the US Panel Study of Income Dynam-
ics (PSID). DIW Berlin (German Institute for Economic Research) manages the SOEP study. The
first wave of data, collected in 1984 in the old Federal Republic of Germany, contains 5,921 house-
holds. The original sample was supplemented by a sample of East German residents (sample C)
in 1990 (2,179 households) and a sample of immigrants in 1994-1995 (sample D, 522 households).
Additional refreshment samples were added in 1998 (sample E, 1,056 households), 2000 (sample F,
6,052 households), and 2006 (sample H, 1,506 households).9 All household members aged 16 and
older are interviewed. For our analysis we use the first waves of the samples A/B, C, E, and F.

4.1.1 Requirements

The literature shows that the validity of Benford’s Law depends on certain conditions. We try to
summarize all necessary requirements that have to be fulfilled in order to detect fraudulent data in
surveys with Benford. Some of these requirements are derived from simulation results (Scott/Fasli
2001), others are findings from practical applications (Nigrini 1999) or theoretical analyses (Hill
1995).

• The data set should not contain a built-in maximum because the frequency of these values
will occur more often in the digit analysis and will cause biased results (Nigrini 1999).

• The data set should not contain assigned numbers such as social security numbers or bank
accounts (Nigrini 1999).

• The data set should only have positive values with a unimodal distribution whose modal is
not zero (Scott/Fasli 2001).

• The data set should have a positive skewed distribution in which the median is lower than
the mean. Hence, the data set should contain more smaller than larger values.

• The data set should not emanate from statistical procedures like calculated means or vari-
ances that emanate from other data (Mochty 2002).

• The usefulness for survey data depends on the existence of continuous variables in the data
set. Survey data that only contains categorical data does not meet the aforementioned
conditions.

9SOEP also provides data about interviewer characteristics (see Schräpler and Wagner 2001).
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A further requirement is a large enough sample size of the data set. The larger the sample size,
the better the fit to Benford’s distribution should be, as long as all of the above requirements are
satisfied.

4.1.2 Description of the data used for Benford’s Law

In the first step, we give a short description of the data we use. The selected data are restricted to
variables with monetary values. Apart from monthly gross and net income, the data sets contain
variables like gross amount of Christmas or vacation bonus, gross amount of monthly unemployment
benefits or monthly subsistence allowance, gross amount of early retirement benefits, amount of
taxes, as well as many other monetary variables. The amount of monetary variables increases over
the waves. The first two waves in the years 1984 and 1985 contain about twenty variables and
this increases to over thirty in subsequent waves. Sample C starts in 1990 with over 40 monetary
variables and samples E and F contain about 60 variables in the year 2000.10

The monetary values are pooled over all variables for each selected wave. The distribution of
these data sets is shown by a kernel density estimation method with an Epanechnikov function11.
Other kernel functions like Gaussian or Parzen will result in quite similar distributions.

The figures 1, 2, and 3 show the estimated distributions for the waves used from samples A/B,
C, E, and F. They contain the number of variables in the data set, the number of values (N), the
mean and the standard deviation, as well as the median.

We can see that - except for figure 2 - all distributions tend to have a similar shape: the
distributions are unimodal and the medians are always lower than the means and yield positive-
skewed distributions. A unimodal positive-skewed distribution is one important requirement for
the use of Benford’s Law (Scott/Falsi 2001). The monetary data sets of sample C in figure 2 are
unimodal but quite symmetric and not positive-skewed, the values for median and mean are quite
close.

4.1.3 Wave-specific fit to Benford for several subsamples in SOEP

In the next step, we examine the overall goodness of fit for these datasets. The following figures 4
to 11 show the first digit and the first two digit distributions of the selected data in the first eight
waves of samples A and B. The 95% confidence interval for the first digit distribution is calculated
with (Nigrini 2000, p.43):

Upper = hbd + 1.96 ·
√
hbd ·

(1− hbd)
n

+
1

2n
(2)

Down = hbd − 1.96 ·
√
hbd ·

(1− hbd)
n

− 1
2n

(3)

where hbd is the expected proportion according to the logarithmic distribution and n indicates
the sample size of all analyzed numbers. Unfortunately, the usefulness of these intervals is limited.
Due to the fact that the sample size of the digits is larger than 20,000 in all waves, we get very
close confidence intervals. Hence, even very small deviations from Benford’s distribution are always
statistically significant.

To examine the overall fit to Benford, the chi-square value has the disadvantage that it depends
strongly on the sample size. One alternative is to use a measurement which relates to the worst
possible fit. This is the case if all digits in one cluster have the most unlikely value, the digit 9.
We define this goodness of fit (GFI) measurement with

10The labels of the variables used can be found in the appendix.
11Epanechnikov Kernel: the Epanechnikov kernel is this function: (3/4)(1 − u2) for −1 < u < 1 and zero for u

outside that range. Here u = (x−xi)/h, where h is the window width and xi are the values of the independent vari-
able in the data, and x is the value of the scalar independent variable for which one seeks an estimate (Epanechnikov
1969). The window width used is calculated automatically using the statistics program STATA.
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Figure 1: Kernel density estimation for the distribution of the selected monetary data sets of
sample A/B wave 1-6 in the SOEP (normal density function is dashed)

GFI = 1− χ2
i

χ2
0

where i = 1, . . . , n (4)

the index i indicates the interviewer cluster and χ2
0 is the chi-square value for the distribution

with the worst fit to Benford’s Law. The range is from 0 to 1, where the value 1 indicates an exact
Benford distribution and values over 0.99 indicate a very close fit.12

12This measurement GFI is built in analogy to the well-known goodness of fit measurement GFI for LISREL
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Figure 2: Kernel density estimation for the distribution of the selected monetary data sets of
sample C wave 1-3 in the SOEP (normal density function is dashed)

Overall fit to Benford - the first eight waves of samples A/B If we take a look at the first
four waves of samples A and B (figures 4-7), we find very similar distributions. At a first glance,
we can see that the shape of the distributions are quite close to Benford. Nevertheless, on closer
inspection, we can see that, in fact, the proportion of the first digit ’1’ is in line with Benford, but
the proportions for the first digits ’2’ and ’3’ are significantly higher and for digits > 3 slightly
lower than in the logarithmic distribution. However, the overall fit to Benford, measured with the
GFI index seems to be very good: the values are close to 0.998 for waves 1-4. The next figures
8-11 show the first digit distributions for the following waves 5-8. The order of the frequencies of
the first digits ’1’, ’2’, and ’3’ are still sustained but we can see that the proportion for digit ’1’
is distinctly lower than predicted and the proportion for the digits ’2’ and ’3’ increases over time.
The GFI declines to a value of 0.996 and 0.995. One reason for the shift from the first digit ’1’ to
higher digits might be the development of the monthly income. From waves 1 to 8 the average net
income increases from DM 1,745 to DM 2,188 and the gross income from DM 2,552 to DM 3,199
in samples A and B. Many other monetary variables that are included in our descriptive analysis
are related to this income variable.

The distributions for the first two digits in figures 4-11 show significantly higher proportions
for numbers like 10, 20, 30, . . . , 90. We will see later that this finding is a result of the respon-
dent’s rounding behavior. Unlike many other collected data sets such as data from stock markets
which contain relatively precise continuous monetary values, interview data are often rounded (cf.

models. However, there the fit value of an actual model refers to a value of the fit function for a model containing
only a constant.
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Figure 3: Kernel density estimation for the distribution of the selected monetary data sets of
sample E wave 1-3 and sample F wave 1-3 in the SOEP (normal density function is dashed)

Schräpler 1999). The respondents often have cognitive problems recalling their exact gross income
or other income-related variables. Therefore, the given values in surveys are more or less rough
estimates and rounded after the first or second significant digit. The distributions of the first two
digits give some information about this rounding behavior. We can see that the digit ’30’ has the
highest peak, followed by the digits ’20’ and ’10’ in the first eight waves of the SOEP. Besides this
rounding behavior, the figures show that the shape of these distributions have one characteristic in
common with Benford’s distribution: the proportion of smaller digits is higher than the proportion
of larger digits.
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Overall fit to Benford - the first three waves of sample C Figures 12-14 show the distri-
bution in waves 1, 2, and 3 for the East German sample C (7, 8, and 9 for the SOEP). Obviously,
we can recognize different patterns. The data were collected in the years 1990, 1991, and 1992,
directly after German unification. In the years 1990 (wave 1), 1991 (wave 2), and 1992 (wave 3),
the average gross income of East German residents increases from DM 811 to DM 1,555 and DM
2,089 and the net income from DM 667 to DM 1,172 and DM 1,508. We find too many monetary
values with a first digit ’1’ in the data sets for waves 1 and 2, and in wave 1 also higher proportions
than predicted for the digits ’7’, ’8’, and ’9’. In figure 2 on page 11 we can see that the distributions
in these data sets are symmetric, not positive-skewed, and that the variances are very small. In
the years 1990 and 1991 the standard deviations are lower than the mean that result in variation
coefficients (std./mean) lower than one. All other data sets analyzed have variation coefficients
higher than one. The majority of the monetary values lie between DM 500 and 2,000 in the year
1990 and between DM 1,000 and 2,000 in the year 1991. Overall, this entails larger deviations
from the logarithmic distribution. In the year 1992 (wave 3) we can observe a strong increase in
monthly income and other monetary variables caused by the transformation and harmonization
process. Therefore, the proportion of higher first digits like ’2’ to ’5’ increases, and the first digit
distribution adheres more closely to Benford’s distribution.

Overall fit to Benford - the first three waves in sample E Figures 15-17 show the digit
distribution in wave 1 to 3 in sample E. The sample sizes are smaller than in samples A/B and
sample C, which results in wider confidence intervalls. Although the overall shape is very similar to
the logarithmic distribution, we find partly significant deviations from Benford. The proportions
for the first digits ’1’, ’7’-’9’ are slightly lower and for the digits ’2’-’6’ slightly higher than the pre-
dicted proportions. Again, the first two digit distributions show the aforementioned characteristic
rounding behavior.

Overall fit to Benford - the first three waves in sample F Figures 18-20 show the digit
distribution in waves 1 to 3, sample F. The overall shape is quite similar to the logarithmic
distribution in all three waves. Because of very high sample sizes (N > 30, 000) we get close
confidence intervals and significant differences from the predicted distribution for all digits.

Summary In this section, we have examined whether Benford’s Law holds in the selected data
sets to be sure that we can use the logarithmic distribution for detecting suspicious interviewer
clusters. We expect that if the overall digit distribution in each wave does not closely adhere
to Benford’s distribution, we cannot continue to be sure that this will be the case in specific
interviewer clusters.

The data sets used contain only continuous variables. Overall, our results show rather good
fits to Benford’s Law in the first waves of the subsamples A/B, E, and F of the SOEP. All these
data sets are positive-skewed with the exception of subsample C, which shows a symmetric shape
and large differences in respect to the anticipated logarithmic distribution. We therefore cannot
expect that the use of Benford’s Law will lead to satisfying results for sample C.
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Figure 12: First wave in sample C, χ2 = 3, 626, GFI = 0.989 for first digit distribution, N =
15, 769, only values with min. 2 digits

Figure 13: Second wave in sample C, χ2 = 1941, GFI = 0.987 for first digit distribution,
N = 7, 126

Figure 14: Third wave in sample C, χ2 = 1861.3, GFI = 0.994 for first digit distribution,
N = 16, 101
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Figure 15: Sample E, wave 1, χ2 = 272, GFI = 0.9979 for first digit distribution, N = 6, 212,
only values with min. 2 digits

Figure 16: Sample E, wave 2, χ2 = 246, GFI = 0.998 for first digit distribution, N = 5, 568, only
values with min. 2 digits

Figure 17: Sample E, wave 3, χ2 = 246, GFI = 0.998 for first digit distribution, N = 5, 173, only
values with min. 2 digits
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Figure 18: Sample F, wave 1, χ2 = 1, 550, GFI = 0.998 for first digit distribution, N = 37, 656,
only values with min. 2 digits

Figure 19: Sample F, wave 2, χ2 = 1, 320, GFI = 0.998 for first digit distribution, N = 31, 910,
only values with min. 2 digits

Figure 20: Sample F, wave 3, χ2 = 1, 830, GFI = 0.998 for first digit distribution, N = 47, 140,
only values with min. 2 digits
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5 Identifying interviewer clusters with unusual patterns in
relation to Benford’s Law

In contrast to cross-sectional surveys, falsification is extremely difficult in complex long-term panel
studies like the SOEP because the respondent is mainly interviewed face to face every year, and
regular consistency checks between waves show irregularities in the data immediately. Hence, we
can assume that fabricated data would generally be a problem only in the first wave and would be
detected quite quickly after conducting the second wave. We therefore focus our analysis on the
first, second, and third waves of several SOEP subsamples.

For testing the Benford Law procedures, we obtained (true) falsified records from the fieldwork
organization that were previously detected using several conventional verification methods and
statistical tests of stability and consistence (see Schräpler/Wagner 2005). Fabricated data are rare
in the SOEP and have always been found in the first wave of each sample (with the exception
of the East German sample C and the small sample D, which are considered as ’clean’). Only
one interviewer was able to fabricate data for the first two waves without raising suspicion until
wave 3 (sample E). The first wave of samples A and B only contains 0.6 and 1.5% fabricated data,
respectively, and the first wave of sample E contains about 2% falsified household interviews. In
the second wave approximately 1% of fabricated data was identified in sample E. In the first wave
of sample F only 0.1% of the interviews were detected as fabricated. Schräpler and Wagner (2005)
have shown that the interviewers who fabricate data usually fabricate a large proportion of their
assignment. It therefore gives more statistical power if we analyze whole clusters of interviews
per interviewer rather than individual questionnaires. If real survey data follow the logarithmic
distribution and fabricated survey data do not, we should be able to identify these clusters of
fabricated interviews and test them for significance.

Hence, we now inspect the fit in all interviewer clusters to detect clusters with ’unusual pat-
terns’. We count the first digits to get the digit distribution in each interviewer cluster. If the
data from each field representative is viewed as arising from a random sample, we again use the
Pearson’s chi-square test statistic as a starting point in determining whether an interviewer has
collected data following Benford’s Law:

χ2
i = ni

9∑
d=1

(hdi − hbd)2

hbd
(5)

where ni is the number of first digits in the interviewer cluster i, hdi is the observed proportion
of digit d = 1, . . . , 9 in interviewer cluster i and hbd is the proportion of digit d under Benford’s
distribution.

As already mentioned above, the usage of Pearson’s chi-square statistic has the disadvantage
that the values depend partly on the number of observations. We will, hence, get higher chi-square
values for the same deviations if some interviewer clusters have more digits than others. This makes
a comparison of clusters complicated. The other measurement used, GFI, in the section before,
was not a good alternative either because the values obtained were, in all cases, quite close to one.
It is therefore necessary to develop a better test technique to ensure that all interviewer clusters
can be compared. A better solution could be the calculation of probabilities for the chi-square
values based on a resampling method like a bootstrap.

5.1 Plausibility values using a resampling method

The bootstrap is a computer-based method for assigning measures of accuracy to statistical es-
timates. Bootstrap samples are generated by resampling with replacement B times from the
original data set. For instance, with n = 6 we might obtain x∗ = (x5,x3,x5,x4,x6,x1). The
bootstrap algorithm begins by generating from a large number B of independent bootstrap sam-
ples x∗1, x∗2, . . . , x∗B , each of size n.
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Then we get bootstrap replicates by calculating the value of the statistic θ̂∗(b) on each bootstrap
sample x∗b. If θ̂ is the sample chi-square value to Benford, for instance, then θ̂∗(b) is the chi-square
value to Benford of the bootstrap sample b. More formally, the algorithm for the non-parametric
bootstrap is as follows:

1. Sample n observations randomly with replacement from xobs to obtain a bootstrap data set,
denoted X∗.

2. Calculate the bootstrap version of the statistic of interest, θ̂∗ = θ̂(X∗)

3. Repeat steps 1 and 2 a large number of times, say B, to obtain an estimate of the bootstrap
distribution.

In our specific case, the statistic of interest is the chi-square value of an interviewer cluster with
size n. We intend to find the probability for the realized or more extreme chi-square value of an
interviewer cluster with a certain size of n digits.

A key question is how large B should be. Whereas for standard errors B = 50 is often enough to
give a good estimate of se(θ̂) much bigger values of B are required for bootstrap confidence intervals
(Efron/Tibshirani 1993, p.52). For 90-95 percent confidence intervals Efron and Tibshirani (1993,
p.162) suggest that B should be 1,000 or more. As we intend to estimate probabilities, we choose
for B at least 2,000.

Probability based on standard normal theory Suppose we obtain our data by random
sampling from an unknown distribution F ,F → x = (x1, x2, . . . , xn). Let θ̂∗ be the estimate of a
parameter of interest θ = t(F ), and let ŝe be a reasonable estimate of standard error for θ̂, based
on bootstrap computations. Under most circumstances, we find that, as the sample size n grows
larger, the distribution of θ̂ becomes more and more normal, with mean near θ and variance near
ŝe2, such that we can assume that asymptotically

θ̂ − θ
ŝe
∼ N(0, 1) (6)

and from there we can calculate an approximation for the observed significance level of an
estimator, respectively the probability of obtaining a value of test statistic (here the chi-square
value of an interviewer cluster) more extreme than that actually observed Prob(θ > θ̂)

P (norm) = Prob(θ > θ̂) = 1− Φ(
θ̂ − θ
ŝe

) (7)

Of course equation 7 is only an approximation and works well if the bootstrap distribution of
θ̂∗ is roughly normal.

Percentile interval method The central limit theorem tells us that as n→∞, the bootstrap
histogram will become normal shaped, but for small samples it may look very abnormal. In
this case there is good reason to choose the percentile interval method. This method uses the
percentiles of the bootstrap histogram to define confidence limits and significance tests. Again we
generate B independent bootstrap data sets x∗1, x∗1, . . . , x∗B for each interviewer cluster with size
n (number of digits in the cluster) and compute (for the chi-square statistic) bootstrap replications
θ̂∗(b), b = 1, 2, . . . , B. Let θ̂∗(α)

B be the 100 · αth empirical percentile of θ̂(b) values, that is the
B · αth value in the ordered list of the B replication of θ̂∗. If B = 1, 000 and α = .05, θ̂∗(α)

B is the
50th ordered value of the replications. Analogue θ̂∗(1−α)

B is the 100 · (1− α)th empirical percentile
(cf. Efron/Tibshirani (1993, p.170)).
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Besides percentile intervals, an approximation of the probability of obtaining a value of test
statistic (chi-square values) more extreme than that actually observed Prob(θ > θ̂) can be obtained
directly from the proportion of bootstrap replications higher than the original estimate θ̂

P (perc) = Prob(θ > θ̂) = 1− (
#θ̂∗(b) < θ̂

B
) (8)

So, with both methods, we can achieve the normal standard and the percentile interval method
probability values for the original chi-square values of the interviewer clusters that are independent
of the size of the interviewer clusters. These probabilities reflect the plausibility of the fit to Benford,
independent of the number of digits in the cluster.

Our hypothesis is that cheating interviewers will have very low probabilities. Hence, it might
be useful to construct interviewer rankings by plausibility values.

Interviewer ranking by plausibility We now have to decide which method of probability
calculation will be the best for our problem. To find an answer it might be useful to look at the
distribution of the bootstrap statistic. As an example, figure 21 shows the distribution of the
bootstrap chi-square values calculated on the basis of 42 digits and 1,000 replications for sample
E, wave 1. Although we use B = 1, 000 the shape of the graph is left-skewed and does not really
look normal.
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Figure 21: Bootstrap chi-square values (normal density dotted line)

The mean of the bootstrap chi-square distribution is 18.612 and the standard deviation 7.29.
The realized chi-square value for the interviewer is 11.186 in our example and lower than the mean.
The probability of obtaining a chi-square value more extreme than Prob(θ > θ̂ = 11.186) based on
normal theory is, according to equation 7

P (norm) = Prob(θ > 11.186) = 1− Φ(
11.186− 18.612

7.29
) = 0.8458

and analogous to the probability based on the percentile interval method using equation 8

P (perc) = Prob(θ > 11.186) = 1− (
125
1000

) = 0.875

where 125 realized values of the 1,000 bootstrap replications are lower than the value 11.186.
We can see that the probability value of the percentile interval method is higher than the value that
is obtained by normal theory because the first takes account of the fact that the median is lower
than the average mean of the bootstrap chi-square distribution. It therefore seems to be reasonable
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to use the percentile interval method to calculate probabilities for each interviewer cluster in our
application.13

5.2 Fit in interviewer clusters of sample A/B

The scatterplots in figures 22-27 show the fit to Benford for the first digit and first two digit
distribution in each interviewer cluster in samples A/B.14 The chi-square values of the clusters
with detected fabricated interviews are marked with black circles. We can see that one of the four
fabricated clusters has the worst fit to Benford and appears as an outlier in the case of the first
digit distribution. In the first two digit distribution, three of the marked clusters have very high
fit values.

Figures 28 and 29 on page 24 show the density distribution15 of the probability P (perc) in
samples A/B, wave 1 for the first digit and first two digit distribution (normal density dotted line).
If all interviewers are free from suspicion, P (perc) would only have values above 0.5 and the density
function would ideally have a peak near P (perc) = 1.0. In our case, the highest density occurs
at P (perc) = 0.94. Furthermore we can also see in the low probability region at P (perc) = 0.1 a
local maximum. This means that there are a number of clusters with very low plausible fit values.
One reason might be that these interviewers work in quite homogeneous sample points and/or that
some of these interviewers fabricate their assignment and fail Benford’s Law.

Table 2 on page 24 shows the interviewer-ranking by the probability P (perc) of each cluster for
wave 1 to 3, sample A/B. We can see that the fabricated cluster of interviewer already identified,
No. xx827x with 122 digits, has the lowest probability P (perc) = 0.002 of all interviewers in
wave 1. Overall we find six additional interviewers who have probabilities below the 5% level. Of
course, this is not a sure indication that these clusters are fabricated but low plausibilities for the
realized chi-square values could be a result of cheating and the fieldwork organization can use this
information to recontact households in suspicious interviewer clusters.

Unfortunately the two other fakes evident in wave 1 could not be identified with the first digit
distribution. The cheating interviewer No. xx800x has rank 61 (P(perc) = 0.265) and interviewer
No. xx937x even has a really high plausibility of 0.958 and rank 420 (not shown in the table).
Nevertheless, if we use the first two digit Benford distribution, we will find three of four cheating
interviewers in the top 12 of the ranking list, shown in table 20 on page 55 in the appendix. This
indicates that, in some cases, the first two digit distribution is more successful.

13The probability calculations are done with the GAUSS Programming Language (Aptech Systems, Inc.)
14All scatterplots in this paper are done with the software program TDA (Rohwer/Pötter 2005).
15We again use a kernel density estimation with an Epanechnikov kernel.
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Figure 22: First digit distribution: Chi-
Square values for interviewer cluster in wave 1,
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Figure 23: First two digit distribution: Chi-
Square values for interviewer cluster in wave 1,
sample A/B
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Figure 24: First digit distribution: Chi-
Square values for interviewer cluster in wave 2,
sample A/B
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Figure 25: First two digit distribution: Chi-
Square values for interviewer cluster in wave 2,
sample A/B

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

variables in interviewercluster

CHI SQUARE VALUES IN SAMPLE A/B 1986

first digit of 35 monetary variables/questionnaire

Figure 26: First digit distribution: Chi-
Square values for interviewer cluster in wave 3,
sample A/B

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

variables in interviewercluster

CHI SQUARE VALUES IN SAMPLE A/B 1986

first and second digit of 35 monetary variables/questionnaire

Figure 27: First two digit distribution: Chi-
Square values for interviewer cluster in wave 3,
sample A/B
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Figure 28: Distribution of the probability
P (perc), sample A/B, wave 1, first digits
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Figure 29: Distribution of the probability
P (perc), sample A/B, wave 1, first two-digits

Table 2: Interviewer-ranking by the probability of the results of each interviewer cluster in wave
1-3, sample A/B (faking interviewer bold), B = 2, 000

wave 1 wave 2 wave 3
Rank Intnr digits chi-sq. P(perc) Rank Intnr digits chi-sq. P(perc) Rank Intnr digits chi-sq. P(perc)

1 xx827x 122 52.30 0.0020 1 xx520x 20 61.39 0.0000 1 xx202x 89 50.61 0.0010

2 xx147x 94 46.88 0.0040 2 xx145x 45 56.37 0.0000 2 xx082x 163 57.72 0.0010
3 xx785x 28 28.48 0.0060 3 xx415x 94 85.91 0.0000 3 xx167x 88 49.10 0.0020
4 xx650x 32 23.95 0.0180 4 xx871x 26 47.92 0.0000 4 xx035x 10 30.56 0.0050
5 xx887x 29 21.56 0.0410 5 xx730x 46 51.29 0.0000 5 xx766x 162 49.47 0.0000
6 xx320x 16 28.01 0.0450 6 xx287x 38 43.28 0.0000 6 xx150x 59 35.65 0.0080
7 xx800x 45 25.50 0.0470 7 xx305x 43 43.56 0.0000 7 xx650x 169 51.99 0.0070
8 xx363x 46 25.37 0.0510 8 xx404x 48 49.47 0.0000 8 xx501x 44 33.54 0.0140
9 xx609x 25 22.51 0.0630 9 xx466x 20 43.82 0.0000 9 xx951x 33 24.89 0.0160

10 xx687x 27 19.34 0.0680 10 xx187x 46 45.31 0.0000 10 xx801x 28 22.19 0.0300
11 xx342x 94 26.19 0.0800 11 xx785x 56 48.50 0.0000 11 xx494x 33 20.72 0.0470
12 xx583x 20 21.22 0.0890 12 xx647x 95 60.93 0.0000 12 xx046x 31 19.80 0.0500
13 xx156x 33 19.18 0.0930 13 xx574x 58 45.45 0.0000 13 xx895x 183 45.73 0.0590
14 xx756x 58 31.81 0.0970 14 xx156x 31 38.30 0.0010 14 xx694x 25 22.34 0.0570
15 xx401x 26 19.35 0.1000 15 xx544x 8 42.32 0.0010 15 xx211x 31 19.30 0.0580
16 xx353x 4 18.24 0.1000 16 xx584x 44 38.60 0.0010 16 xx785x 48 29.81 0.0810
17 xx752x 24 20.69 0.1020 17 xx263x 62 48.88 0.0010 17 xx263x 40 23.35 0.0880
18 xx208x 33 18.62 0.1040 18 xx207x 67 46.57 0.0010 18 xx988x 31 17.54 0.0870
19 xx654x 226 41.93 0.1040 19 xx047x 67 43.73 0.0010 19 xx445x 64 26.43 0.0980
20 xx263x 36 19.09 0.1080 20 xx851x 31 32.34 0.0020 20 xx743x 112 29.95 0.1360
21 xx846x 33 18.43 0.1090 21 xx772x 39 35.72 0.0020 21 xx277x 30 17.47 0.1110
22 xx187x 33 18.09 0.1190 22 xx237x 129 82.65 0.0020 22 xx570x 34 18.14 0.1260
23 xx084x 11 23.76 0.1200 23 xx570x 52 42.15 0.0020 23 xx588x 21 22.00 0.1290
24 xx508x 37 20.14 0.1220 24 xx518x 22 31.72 0.0040 24 xx985x 16 25.11 0.1280
25 xx676x 170 42.35 0.1260 25 xx948x 78 49.77 0.0040 25 xx163x 136 33.36 0.1520
26 xx136x 45 21.13 0.1340 26 xx543x 15 41.89 0.0060 26 xx382x 76 23.45 0.1630
27 xx106x 7 22.00 0.1380 27 xx807x 38 30.94 0.0060 27 xx624x 87 25.92 0.1450
28 xx200x 37 19.50 0.1430 28 xx018x 4 28.02 0.0060 28 xx156x 35 19.41 0.1590
29 xx665x 29 17.15 0.1440 29 xx810x 90 49.10 0.0070 29 xx901x 69 23.15 0.1650
30 xx305x 24 18.81 0.1540 30 xx674x 35 30.78 0.0080 30 xx268x 28 16.20 0.1650
31 xx866x 61 24.91 0.1570 31 xx709x 74 47.34 0.0080 31 xx340x 21 20.56 0.1750
32 xx544x 76 28.40 0.1660 32 xx766x 67 40.64 0.0090 32 xx514x 75 23.14 0.1670
33 xx519x 93 21.89 0.1740 33 xx343x 84 47.67 0.0130 33 xx450x 169 32.42 0.1950
34 xx216x 45 19.50 0.1810 34 xx167x 97 48.90 0.0130 34 xx237x 128 27.51 0.2160
35 xx766x 37 18.11 0.1820 35 xx446x 65 38.70 0.0140 35 xx827x 91 25.73 0.2370
36 xx020x 7 17.68 0.1850 36 xx150x 59 39.60 0.0150 36 xx851x 44 19.59 0.2230
37 xx167x 90 22.30 0.1910 37 xx593x 30 25.00 0.0170 37 xx174x 163 28.80 0.2440
38 xx118x 50 19.68 0.1920 38 xx282x 45 30.36 0.0190 38 xx674x 33 14.43 0.2280
39 xx778x 137 28.20 0.1960 39 xx568x 58 36.73 0.0200 39 xx910x 57 18.92 0.2460
40 xx884x 7 15.79 0.1990 40 xx716x 45 30.16 0.0210 40 xx419x 42 19.88 0.2620

.

.

.

.

.

.

.

.

.

61 xx800x 91 20.14 0.2650 61 xx582x 103 47.25 0.0410 61 xx373x 120 23.53 0.3930

.

.

.

.

.

.

.

.

.
636 xx745x 676 13.37 1.0000 463 xx895x 252 25.02 1.0000 407 xx377x 3 7.31 1.0000

Source SOEP, individual questionnaire, only monetary variables, 1984 - 1986 (own calculation)
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5.3 Fit in interviewer clusters of sample C

We have shown in section 4.1.3 on page 15 that Benford’s Law doesn’t hold in wave 1 and 2 in
the East German sample C. We have found a strong disproportion of the lower digits, probably
caused by homogeneous cluster with quite low monetary values. The homogeneity in the data is
attributed to the living conditions in East Germany in the year 1989.

If the overall fit in the sample is worst, we can reasonably assume that the fit for most clusters
will be worst too. Leading from this, we find in figure 30 rather high chi-square values for clusters
in wave 1 of sample C (max. chi-sq. = 112.8; digits = 99). In spite of all this, the fieldwork
organization could not identify cheating interviewers in this sample.

Figures 36 and 37 on page 27 show the density distribution of the probability P (perc) in
sample C, wave 1 (normal density dotted line) for the first digit and first two digit distribution.
The shape of the first digit density function is totally different from figure 28 on page 24. We
find the highest density near 0.1 and a local maximum at 0.65. A naive interpretation would be
that almost all interviewers are suspect. However, this density shape is, of course, caused by the
homogeneity of the interviewer clusters in sample C in the first years after German unification. The
distribution of P (perc) for the first digit fit statistic shows that the success of Benford’s approach
is highly dependent on the requirement that Benford’s Law holds for the whole sample.16 The
density distribution for the first two digit fit statistic in figure 37 seems to be more suitable. The
shape shows a local maximum near 0.1 and a maximum near 0.98. Table 3 on page 27 shows the
interviewer-ranking based on the plausibility of the fit for the first digit distribution for sample
C.17 We can see that in wave 1 approx. 80 interviewers have a value of P (perc) < 0.05.

5.4 Fit in interviewer clusters of sample E

The overall fit to Benford in sample E is shown in the figures 15-17 on page 17. Only small
variances from the predicted distribution can be observed. We can, therefore, reasonably assume
that we can use the logarithmic distribution to detect fabrications. The figures 38-43 on page 28
show the scatterplots of the chi-square values for each interviewer cluster. The marked falsified
clusters are obviously outliers in the first digit distribution.

Figure 44 on page 29 shows the density distribution of the probability P (perc) in sample E, wave
1 (normal density dotted line). Because sample E contains only 1,957 respondents (including fakes)
we are able to use a good deal more bootstrap replications with B = 10, 000 than in sample A/B
(B = 2, 000) without encountering computational problems. The shape of the density distribution
is very similar to the distribution of sample A/B (figure 28 on page 24). We find the highest density
near value 0.95 and a local maximum at value 0.15. Most clusters therefore have very plausible fits
to the logarithmic distribution. The shape seems suitable for detecting fraudulent interviewers.

Table 4 on page 29 shows the interviewer ranking for sample E. Fraudulent interviewers are
framed and marked in bold. We find three of five cheating interviewers within the top 7. Further-
more, the interviewer who faked two waves is at the top of the list in wave 2. The two undetected
cheating interviewers have only one (fabricated) personal interview each. We can assume that this
cluster size is too small for our detection procedure. Their positions in the ranking list are therefore
118 and 69, respectively. However, overall our empirical results show that Benford’s approach is
remarkably successful in the case of sample E.

16In section 5.7 on page 33 we introduce an alternative, more general procedure, that doesn’t assume that Benford’s
Law holds exactly for a particular data set. The only assumption is that the vast majority of interviewers are honest.
This alternative should perform better in the case of sample C.

17The ranking for the first two digit distribution is shown in the appendix in table 21 on page 55.
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Figure 30: First digit distribution: Chi-
Square values for interviewer cluster in sample
C wave 1
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Figure 31: First-two digit distribution: Chi-
Square values for interviewer cluster in sample
C wave 1
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Figure 32: First digit distribution: Chi-
Square values for interviewer cluster in sample
C wave 2
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Figure 33: First-two digit distribution: Chi-
Square values for interviewer cluster in sample
C wave 2
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Figure 34: First digit distribution: Chi-
Square values for interviewer cluster in sample
C wave 3
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Figure 36: Distribution of the probability
P (perc), sample C, wave 1, first digits
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Figure 37: Distribution of the probability
P (perc), sample C, wave 1, first two-digits

Table 3: Interviewer ranking by the plausibility of the Interviewer clusters in wave 1-3, sample
C, (B = 10, 000)

wave 1 wave 2 wave 3
Rank Intnr digits chi-sq. P(perc) Rank Intnr digits chi-sq. P(perc) Rank Intnr digits chi-sq. P(perc)

1 xx246x 58 79.81 0 1 xx246x 10 47.71 0 1 xx177x 147 58.24 0
2 xx530x 88 72.97 0 2 xx327x 62 65.23 0 2 xx264x 4 83.42 0
3 xx611x 99 112.79 0 3 xx303x 31 52.89 0 3 xx929x 313 99.12 0
4 xx645x 67 70.60 0 4 xx960x 5 18.46 0 4 xx664x 173 63.67 0.0001
5 xx840x 87 89.84 0 5 xx323x 85 65.46 0.0005 5 xx452x 93 37.38 0.0002
6 xx056x 67 62.62 0 6 xx754x 17 29.13 0.0010 6 xx323x 202 60.71 0.0005
7 xx338x 97 107.67 0 7 xx326x 25 33.17 0.0010 7 xx377x 104 40.05 0.0005
8 xx750x 75 72.99 0 8 xx213x 33 32.73 0.0011 8 xx248x 142 40.87 0.0014
9 xx553x 70 75.77 0 9 xx783x 20 25.95 0.0016 9 xx410x 187 51.86 0.0015

10 xx670x 57 55.83 0.0001 10 xx331x 30 32.60 0.0020 10 xx611x 184 54.17 0.0016
11 xx053x 115 91.40 0.0002 11 xx803x 42 36.58 0.0027 11 xx254x 49 46.53 0.0023
12 xx111x 51 46.56 0.0002 12 xx172x 26 32.86 0.0029 12 xx114x 83 32.46 0.0023
13 xx884x 74 55.31 0.0003 13 xx010x 26 31.66 0.0036 13 xx771x 82 30.41 0.0025
14 xx800x 130 82.58 0.0004 14 xx354x 29 30.92 0.0045 14 xx932x 98 34.36 0.0028
15 xx706x 88 60.21 0.0007 15 xx721x 51 36.38 0.0047 15 xx800x 104 30.15 0.0037
16 xx811x 92 56.25 0.0009 16 xx451x 31 30.72 0.005 16 xx606x 117 33.27 0.0039
17 xx393x 80 48.56 0.0011 17 xx550x 16 22.57 0.0053 17 xx196x 135 34.77 0.0051
18 xx264x 91 56.86 0.0012 18 xx800x 51 35.24 0.0066 18 xx371x 110 28.49 0.0054
19 xx050x 58 49.60 0.0012 19 xx460x 42 33.21 0.0073 19 xx427x 82 27.97 0.0058
20 xx211x 91 56.90 0.0012 20 xx766x 24 28.11 0.0080 20 xx102x 82 27.78 0.0062
21 xx303x 98 61.05 0.0012 21 xx452x 25 26.52 0.0082 21 xx706x 57 36.89 0.0063
22 xx261x 89 55.58 0.0014 22 xx932x 40 29.75 0.0090 22 xx238x 18 26.61 0.0067
23 xx118x 79 48.60 0.0016 23 xx498x 33 24.11 0.0157 23 xx796x 92 27.15 0.0068
24 xx561x 81 51.72 0.0016 24 xx125x 26 25.98 0.0159 24 xx164x 150 36.83 0.0074
25 xx076x 80 46.26 0.0018 25 xx421x 33 23.92 0.0171 25 xx326x 73 31.55 0.0080
26 xx170x 103 53.70 0.0021 26 xx822x 29 26.71 0.0178 26 xx921x 114 29.84 0.0087
27 xx164x 108 57.83 0.0023 27 xx121x 15 20.34 0.0213 27 xx498x 80 25.76 0.0104
28 xx248x 95 54.03 0.0024 28 xx962x 15 20.33 0.0219 28 xx617x 72 30.81 0.0106
29 xx220x 52 40.73 0.0027 29 xx750x 19 18.82 0.0234 29 xx961x 156 38.12 0.0107
30 xx571x 88 52.56 0.0029 30 xx480x 28 25.37 0.0247 30 xx770x 86 27.72 0.0112
31 xx622x 94 54.72 0.0030 31 xx584x 49 30.15 0.0279 31 xx131x 129 31.10 0.0115
32 xx737x 81 46.48 0.0037 32 xx828x 35 24.13 0.0279 32 xx326x 96 24.87 0.0158
33 xx261x 129 67.64 0.0038 33 xx751x 45 29.22 0.0297 33 xx806x 78 23.72 0.0245
34 xx452x 69 47.25 0.0041 34 xx024x 52 26.16 0.0324 34 xx931x 99 24.06 0.0270
35 xx121x 82 51.59 0.0042 35 xx664x 63 32.74 0.0326 35 xx665x 156 34.16 0.0285
36 xx070x 116 58.42 0.0052 36 xx126x 40 25.17 0.0332 36 xx256x 99 23.80 0.0290
37 xx766x 80 42.01 0.0053 37 xx780x 36 23.72 0.0343 37 xx125x 54 29.17 0.0300
38 xx109x 86 50.88 0.0056 38 xx528x 27 23.97 0.04 38 xx070x 81 22.14 0.0377
39 xx151x 48 39.22 0.0062 39 xx335x 19 16.79 0.0407 39 xx338x 72 25.91 0.0384
40 xx617x 76 40.37 0.0071 40 xx611x 33 20.86 0.0409 40 xx941x 98 22.92 0.0396

.

.

.

.

.

.

.

.

.
214 xx091x 20 10.31 1.0000 264 xx508x 3 4.99 1.0000 278 xx983x 8 4.71 1.0000

Source SOEP, individual questionnaire, only monetary variables, 1989 - 1991 (own calculation)
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Figure 38: First digit distribution: Chi-
Square values for interviewer cluster in wave 1,
sample E
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Figure 39: First two digit distribution: Chi-
Square values for interviewer cluster in wave 1,
sample E
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Figure 40: First digit distribution: Chi-
Square values for interviewer cluster in wave 2,
sample E
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Figure 41: First two digit distribution: Chi-
Square values for interviewer cluster in wave 2,
sample E
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Figure 42: First digit distribution: Chi-
Square values for interviewer cluster in wave 3,
sample E
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Figure 43: First two digit distribution: Chi-
Square values for interviewer cluster in wave 3,
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Figure 44: Distribution of the probability
P (perc), sample E, wave 1, first digits
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Figure 45: Distribution of the probability
P (perc), sample E, wave 1, first two-digits

Table 4: Interviewer ranking by plausibility of Interviewer clusters in wave 1-3, sample E, (B =
10, 000)

wave 1 wave 2 wave 3
Rank Intnr digits chi-sq. P(perc) Rank Intnr digits chi-sq. P(perc) Rank Intnr digits chi-sq. P(perc)

1 xx683x 221 49.07 0.0016 1 xx928x 71 61.88 0 1 xx679x 130 98.24 0

2 xx232x 61 42.58 0.0126 2 xx671x 68 40.92 0.0046 2 xx589x 56 58.79 0
3 xx066x 40 40.08 0.0169 3 xx868x 53 42.94 0.0071 3 xx022x 56 49.83 0.0005

4 xx928x 158 52.16 0.0221 4 xx690x 17 31.55 0.0087 4 xx724x 69 49.35 0.0007

5 xx679x 177 43.48 0.0427 5 xx242x 121 42.11 0.0097 5 xx202x 54 37.05 0.0039
6 xx690x 27 32.22 0.1028 6 xx679x 113 43.75 0.0114 6 xx232x 33 31.62 0.0097

7 xx928x 7 28.15 0.1126 7 xx801x 72 33.86 0.0178 7 xx226x 42 39.98 0.0128

8 xx469x 173 35.62 0.1591 8 xx282x 12 32.99 0.0179 8 xx446x 33 27.26 0.0236
9 xx674x 85 30.14 0.1662 9 xx792x 36 29.70 0.0210 9 xx278x 35 25.41 0.0354

10 xx905x 18 23.60 0.1746 10 xx827x 47 29.92 0.0255 10 xx868x 50 29.61 0.0477
11 xx708x 136 37.32 0.1843 11 xx761x 75 30.93 0.0288 11 xx389x 32 24.04 0.0524
12 xx370x 271 33.66 0.2140 12 xx923x 38 28.75 0.0289 12 xx681x 33 22.62 0.0593
13 xx761x 143 34.36 0.2237 13 xx933x 20 23.33 0.0304 13 xx433x 36 23.17 0.0598
14 xx318x 71 30.04 0.2402 14 xx963x 11 30.13 0.0308 14 xx858x 33 21.84 0.0680
15 xx690x 137 34.49 0.2466 15 xx527x 28 25.06 0.0311 15 xx134x 47 30.75 0.0741
16 xx933x 41 22.28 0.2759 16 xx232x 35 28.46 0.0326 16 xx761x 72 32.66 0.0764
17 xx037x 89 25.23 0.2870 17 xx759x 27 26.07 0.0341 17 xx107x 54 23.09 0.0803
18 xx589x 109 31.60 0.2934 18 xx589x 63 34.65 0.0348 18 xx923x 24 29.74 0.0841
19 xx693x 9 23.92 0.3316 19 xx674x 22 21.42 0.0400 19 xx651x 58 28.14 0.0919
20 xx660x 258 25.33 0.3350 20 xx234x 56 39.03 0.0412 20 xx293x 14 45.86 0.0942
21 xx242x 13 19.27 0.3639 21 xx833x 43 31.37 0.0449 21 xx489x 29 22.78 0.0953
22 xx544x 83 24.78 0.4486 22 xx251x 30 24.05 0.0454 22 xx568x 29 22.59 0.0992
23 xx076x 178 25.93 0.4665 23 xx350x 31 26.04 0.0471 23 xx690x 91 43.31 0.1032
24 xx553x 105 26.91 0.4704 24 xx127x 14 27.21 0.0534 24 xx686x 16 37.20 0.1205
25 xx268x 81 25.95 0.4830 25 xx207x 42 31.83 0.0557 25 xx568x 17 34.75 0.1247
26 xx881x 90 21.15 0.5027 26 xx638x 25 21.98 0.0648 26 xx469x 60 26.85 0.1258
27 xx739x 84 22.87 0.5099 27 xx878x 21 18.56 0.0703 27 xx691x 32 18.19 0.1615
28 xx990x 103 26.05 0.5166 28 xx668x 56 34.83 0.0759 28 xx530x 27 21.34 0.1745
29 xx811x 159 26.91 0.5281 29 xx202x 69 25.54 0.0840 29 xx150x 24 22.58 0.2163
30 xx278x 111 24.20 0.5459 30 xx895x 52 28.49 0.0858 30 xx066x 51 20.33 0.2190
31 xx317x 95 23.25 0.5573 31 xx686x 11 23.05 0.0951 31 xx690x 15 31.95 0.2395
32 xx020x 67 19.50 0.5907 32 xx649x 48 25.89 0.0984 32 xx980x 69 17.71 0.2764
33 xx607x 27 19.59 0.5963 33 xx450x 26 19.96 0.1085 33 xx450x 24 20.38 0.2801
34 xx069x 43 14.99 0.5967 34 xx336x 26 19.38 0.1237 34 xx370x 28 16.80 0.2841
35 xx488x 33 18.23 0.5976 35 xx550x 10 22.76 0.1239 35 xx843x 57 18.32 0.2866
36 xx386x 272 23.00 0.6019 36 xx022x 62 27.03 0.1266 36 xx895x 51 18.34 0.2990
37 xx690x 12 16.42 0.6311 37 xx469x 69 23.20 0.1283 37 xx160x 54 16.35 0.3006
38 xx827x 74 21.55 0.6376 38 xx389x 22 16.38 0.1310 38 xx282x 4 24.17 0.3165
39 xx256x 18 14.67 0.6456 39 xx054x 51 23.56 0.1344 39 xx386x 71 19.81 0.3187
40 xx348x 36 20.27 0.6736 40 xx414x 36 21.02 0.1348 40 xx984x 64 19.39 0.3291

.

.

.

.

.

.

.

.

.
150 xx239x 6 5.68 1.0000 125 xx607x 4 2.83 1.0000 129 xx972x 12 5.35 1.0000

Source SOEP, sample E, individual questionnaire, only monetary variables, 1998 - 2001 (own calculation)
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5.5 Fit in interviewer clusters of sample F

The figures 18 and 19 on page 18 suggest that Benford’s Law holds for the first waves of sample F.
The empirical distributions show quite a close fit (except wave 3 in figure 20, where the digit 5 has
a higher proportion than predicted). The falsified cluster that has already been detected by the
fieldwork organization is marked in black in the scatterplots in figures 46 and 47 on page 31. The
number of different continuous and monetary variables in each data set is, at approximately 60,
quite high. Again, the marked faked cluster seems to be an outlier in the first digit distribution.

Because sample F contains 10,481 respondents (with falsifications) and more than triple the
number of interviewer clusters (536) as in sample E, we have to reduce the bootstrap replications
to B = 2, 000 to avoid computation problems. The density distribution of the probability P (perc)
in wave 1 is shown in figure 52 on page 32. The shape of this distribution is quite similar to the
shape for samples A/B and E. The highest density is, again, close to the value 0.95 and we find a
local maximum in the range of 0.15 to 0.4.

Table 5 on page 32 shows the interviewer ranking for the plausibility of the first digit fit
statistic values in sample F. The cheating interviewer, who had already been detected, is framed
and marked in bold. He is listed within the top ten in the wave 1 list.18 This indicates that our
detection procedure is also successful for sample F.

5.6 Predictive power of Benford - a new falsifier is detected

The aim of the study is not only to show that the Benford distribution allows us to identify
falsifications that have already been detected. We also intend to detect fabrications that have not
yet been found with the conventional quality control methods. We, therefore, now attempt to
identify additional fabrications in the survey.

To test the predictive power of Benford’s Law, we have consulted the fieldwork organization,
Infratest, to check our interviewer ranking lists and match them with their own information.
Because the data collections in samples A/B, C, and E were made more than six years ago, we
concentrate our inquiry on the newest, subsample F. The first wave of sample F started in the year
2000.

An investigation by Infratest produced an astonishing result: in our list, Interviewer no. xx713x,
who had been fired because of unreliability, is ranked above no. xx085x, who had been fired
after wave 1 because of falsifying interviews. The results of our Benford analysis suggested that
interviewer no. xx713x fabricated his interviews as well. A close inspection conducted thereafter
by Infratest showed that only two of his ten declared respondents really exist and are reachable.
Infratest and DIW Berlin have now labeled this interviewer to be a falsifier, as detected by our
method. The data of this interviewer are deleted from the SOEP.

The success of our Benford analysis strongly suggests that this approach is also useful for other
survey data.

18The ranking for the second digit distribution is shown in the appendix in table 22 on page 56. The falsified
interviewer cluster is only ranked in position 58 here.
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Figure 46: First digit distribution: Chi-
Square values for interviewer cluster in wave 1,
sample F
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Figure 47: First two digit distribution: Chi-
Square values for interviewer cluster in wave 1,
sample F
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Figure 48: First digit distribution: Chi-
Square values for interviewer cluster in wave 2,
sample F
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Figure 49: First two digit distribution: Chi-
Square values for interviewer cluster in wave 2,
sample F
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Figure 50: First digit distribution: Chi-
Square values for interviewer cluster in wave 3,
sample F
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Figure 53: Distribution of the probability
P (perc), sample F, wave 1, first two-digits

Table 5: Interviewer-ranking by plausibility of Interviewer clusters in wave 1-3, sample F, (B =
2000)

wave 1 wave 2 wave 3
Rank Intnr digits chi-sq. P(perc) Rank Intnr digits chi-sq. P(perc) Rank Intnr digits chi-sq. P(perc)

1 xx199x 3 55.23 0.0000 1 xx199x 3 55.23 0.0000 1 xx336x 253 64.239959 0
2 xx984x 9 74.85 0.0000 2 xx087x 39 49.17 0.0010 2 xx104x 314 97.889067 0
3 xx079x 136 77.41 0.0000 3 xx325x 51 85.38 0.0000 3 xx150x 211 71.466719 0
4 xx127x 124 73.43 0.0005 4 xx905x 37 46.70 0.0000 4 xx242x 275 89.652128 0
5 xx690x 124 59.11 0.0010 5 xx573x 267 78.39 0.0000 5 xx278x 136 110.74833 0
6 xx866x 101 44.66 0.0055 6 xx752x 44 43.49 0.0000 6 xx994x 411 130.98658 0
7 xx450x 231 80.53 0.0075 7 xx659x 20 44.03 0.0000 7 xx459x 211 67.486643 0
8 xx502x 116 48.25 0.0075 8 xx066x 30 40.16 0.0020 8 xx800x 258 77.954474 0
9 xx713x 32 46.09 0.0090 9 xx226x 102 77.87 0.0010 9 xx029x 413 108.8269 0

10 xx085x 43 60.28 0.0120 10 xx239x 42 33.33 0.0060 10 xx668x 206 74.326605 0

11 xx042x 124 45.39 0.0130 11 xx984x 5 29.70 0.0000 11 xx078x 219 94.223993 0
12 xx325x 60 45.49 0.0140 12 xx913x 20 35.78 0.0090 12 xx224x 100 81.085684 0
13 xx305x 128 44.89 0.0150 13 xx188x 7 25.17 0.0030 13 xx247x 66 84.643992 0
14 xx013x 108 44.65 0.0155 14 xx127x 3 21.89 0.0000 14 xx557x 6 29.953708 0
15 xx496x 48 54.40 0.0160 15 xx739x 86 58.56 0.0050 15 xx966x 177 101.03357 0
16 xx800x 183 65.23 0.0200 16 xx491x 45 35.24 0.0090 16 xx995x 212 85.439827 0
17 xx796x 102 43.54 0.0225 17 xx874x 210 60.60 0.0090 17 xx053x 486 113.5926 0
18 xx027x 24 43.41 0.0245 18 xx072x 13 24.95 0.0130 18 xx072x 26 136.96027 0
19 xx404x 20 32.25 0.0275 19 xx751x 30 30.69 0.0110 19 xx573x 464 251.24401 0
20 xx115x 92 42.01 0.0290 20 xx024x 21 32.75 0.0170 20 xx720x 370 93.718735 0
21 xx456x 19 33.32 0.0305 21 xx792x 11 30.27 0.0080 21 xx127x 215 65.142029 0.001
22 xx831x 74 50.87 0.0335 22 xx589x 11 30.03 0.0080 22 xx079x 180 63.390459 0.002
23 xx273x 22 40.29 0.0345 23 xx589x 61 51.01 0.0080 23 xx502x 189 60.928209 0.002
24 xx700x 23 39.38 0.0360 24 xx305x 9 27.33 0.0080 24 xx552x 203 60.096966 0.002
25 xx802x 31 33.10 0.0445 25 xx221x 7 22.68 0.0250 25 xx926x 156 72.969193 0.002
26 xx679x 23 34.65 0.0515 26 xx271x 14 28.48 0.0110 26 xx261x 444 84.122567 0.003
27 xx336x 138 48.98 0.0540 27 xx718x 5 24.14 0.0000 27 xx013x 163 69.12528 0.003
28 xx135x 87 37.71 0.0545 28 xx013x 90 58.99 0.0170 28 xx136x 122 64.968663 0.004
29 xx232x 138 48.28 0.0625 29 xx977x 44 30.91 0.0250 29 xx574x 280 61.966744 0.005
30 xx261x 108 37.03 0.0695 30 xx079x 24 26.13 0.0220 30 xx387x 11 30.136284 0.006
31 xx491x 78 44.07 0.0725 31 xx815x 49 43.29 0.0280 31 xx505x 196 54.849115 0.007
32 xx316x 18 28.16 0.0735 32 xx306x 27 25.27 0.0330 32 xx129x 193 53.902532 0.009
33 xx276x 27 33.88 0.0780 33 xx968x 15 24.13 0.0330 33 xx568x 177 64.057069 0.010
34 xx920x 107 35.43 0.0830 34 xx281x 53 43.47 0.0310 34 xx751x 215 53.604411 0.010
35 xx708x 106 35.58 0.0850 35 xx290x 32 25.20 0.0400 35 xx146x 126 60.060397 0.011
36 xx617x 53 36.45 0.0850 36 xx053x 6 21.49 0.0210 36 xx389x 124 61.575022 0.011
37 xx752x 48 41.87 0.0945 37 xx902x 4 17.25 0.0580 37 xx115x 191 53.746823 0.012
38 xx226x 116 33.77 0.0945 38 xx756x 13 20.49 0.0510 38 xx372x 111 63.806544 0.014
39 xx413x 62 31.04 0.1005 39 xx461x 53 42.30 0.0370 39 xx504x 251 50.254442 0.014
40 xx751x 93 33.58 0.1020 40 xx502x 84 45.22 0.0430 40 xx581x 191 51.574477 0.017

.
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.
536 xx105x 4 12.51 1.0000 473 xx454x 114 5.72 1.0000 461 xx862x 54 13.928842 1.0000

Source SOEP, sample F, individual questionnaire, only monetary variables, 2000 - 2002 (own calculation)
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5.7 Detecting unusual data rather than data not in conformity with
Benford

In the previous sections we have assumed that Benford’s Law holds completely for all our data
sets. We have used Pearson’s chi-square test statistic to determine whether an interviewer’s data
follow Benford’s Law:

χ2
i = ni

9∑
d=1

(hdi − hbd)2

hbd

where ni is the number of first digits in the interviewer cluster i, hdi is the observed proportion
of digit d = 1, . . . , 9 in interviewer cluster i and hbd is the proportion of digit d under Benford’s
distribution (log10(d+1

d )).
It may sometimes be useful to bear in mind the fact that Benford’s Law may not hold completely

for a particular data set. However, we can assume that the vast majority of interviewers are
honest, meaning that the estimated value of hbd using the complete universe of data collected by
all interviewers is close to the true value of hbd (cf. Swanson/Cho/Eltinge 2003). An alternative
test statistic is therefore a chi-square statistic where we use instead of hbd the proportion of all
numbers collected in survey whose leading digit is d, that is

∑k
i=1

ndi∑9

d=1
ndi

, hence we get the

formula:

χ2
i = ni

9∑
d=1

(hdi −
∑k
i=1

ndi∑9

d=1
ndi

)2∑k
i=1

ndi∑9

d=1
ndi

(9)

ni is the number of first digits in the interviewer cluster i = 1, . . . , k, hdi is the observed
proportion of digit d = 1, . . . , 9 in interviewer cluster i and ndi is the number of digit d in cluster
i.

Table 6 on page 34 shows the interviewer ranking by the plausibility of the obtained chi-square
value based on equation 9. Again, the known fabricated clusters are framed and marked. We can
see that for sample A/B, the first cheating interviewer is ranked at position 16 followed by the
second at position 20. If we compare this ranking with the list in table 2 on page 24, which is
based on the assumption that the data set used follows Benford exactly, we find no evidence that
the modified test statistic yields better results. The first cheating interviewer is ranked at position
1 in the Benford ranking list and the next falsifier later on at rank 61. For sample E, the Benford
assumption yields clearly better results. Table 4 on page 29 shows that three falsifiers can be found
among the top seven, whereas in the list based on the modified test statistic in table 6 only two
cheating interviewers are in the top ten. The unusual pattern method ranks the detected fake at
position no. 7 instead of no. 10 in the case of Benford in sample F. However, the new falsifier
detected by Benford in sample F could not be identified with the unusual pattern method (no.
52).

Our results suggest that the calculation of both test statistics could be useful. If we assume that
the first twenty interviewers in the ranking list can be classified as suspect, we get quite similar
suspicious interviewer clusters. Furthermore, under this criterion we find two falsifiers in sample
A/B with the modified test statistic as opposed to only one with Benford.

However, if we use two different test statistics and get two ranking lists, the question arises
as to whether we have the same suspect interviewers at the top of our lists. We would expect
a positive correlation of both rankings. The figures 54-56 on pages 35 and 36 show Spearman’s
correlation coefficient for the rankings based on Benford and the modified test statistic by the size
of the sorted list. We can assume that the correlation differs depending on whether we use only the
top twenty or the whole list. We sort both combined ranking lists by Benford and by the ranks of
the unusual data statistic. The graphs show particularly high correlations for interviewers at the

33



top. For the top ten we have values of 0.7 (sample A) and nearly 1.0 (sample E). The correlation
swings into a value of 0.5 if we enlarge the number of clusters included, and then increases slightly
with the number of clusters. This finding suggests in particular that the clusters with the worst
plausibility in both lists are highly positively correlated. Both statistics therefore tend to classify
the same interviewer as suspect.

6 Explaining the deviation from Benford’s distribution

Thus far we have used Benford’s Law to help to identify sources of unusual data. We have recog-
nized the data from each interviewer as arising from a simple random sample and used Pearson’s
chi-square test statistic to determine whether the field representative’s data follow Benford’s Law.
At this point, the question arises as to why, in several cases, non-faked clusters do not conform to
Benford’s Law. In the following section, we will try to develop and test hypotheses about factors
that may affect our test statistic and use a regression framework to give an empirical explanation.

Table 6: Detecting unusual data in interviewer clusters in sample A/B, sample E, and sample F,
wave 1 - ranking by plausibility

sample A/B, wave 1 sample E, wave 1 sample F, wave 1
Rank Intnr digits chi-sq. P(perc) Rank Intnr digits chi-sq. P(perc) Rank Intnr digits chi-sq. P(perc)

1 xx654x 226 61.51 0.0000 1 xx492x 4 29.26 0.0000 1 xx491x 78 66.19 0.0000

2 xx111x 713 67.39 0.0000 2 xx928x 7 52.06 0.0016 2 xx199x 3 77.37 0.0000

3 xx147x 94 58.81 0.0000 3 xx550x 27 41.56 0.0023 3 xx057x 75 68.51 0.0000
4 xx552x 3 36.34 0.0000 4 xx553x 105 38.77 0.0648 4 xx305x 128 49.85 0.0000
5 xx687x 27 31.70 0.0010 5 xx232x 61 40.90 0.0661 5 xx079x 136 51.65 0.0000
6 xx756x 58 37.06 0.0020 6 xx066x 40 35.85 0.0727 6 xx127x 124 47.34 0.0010

7 xx106x 7 35.87 0.0040 7 xx843x 95 36.69 0.0907 7 xx085x 43 98.28 0.0010

8 xx320x 16 32.25 0.0050 8 xx928x 158 33.67 0.1271 8 xx690x 124 39.71 0.0020

9 xx512x 90 30.31 0.0050 9 xx708x 136 31.26 0.1313 9 xx013x 108 40.16 0.0020
10 xx887x 29 28.09 0.0090 10 xx690x 27 22.33 0.1851 10 xx325x 60 65.60 0.0030
11 xx003x 32 22.20 0.0100 11 xx029x 14 20.37 0.2133 11 xx505x 157 51.77 0.0050
12 xx401x 26 25.28 0.0170 12 xx905x 18 19.45 0.2523 12 xx502x 116 36.50 0.0070
13 xx583x 20 30.28 0.0190 13 xx160x 127 28.74 0.2735 13 xx857x 114 33.64 0.0100
14 xx778x 137 28.26 0.0210 14 xx469x 173 28.34 0.3046 14 xx984x 9 57.91 0.0110
15 xx752x 24 25.62 0.0230 15 xx693x 9 21.94 0.3106 15 xx302x 106 37.49 0.0150

16 xx800x 91 21.72 0.0240 16 xx500x 27 18.86 0.3331 16 xx116x 62 44.91 0.0160

17 xx544x 76 25.18 0.0240 17 xx668x 123 26.43 0.3429 17 xx708x 106 33.90 0.0190
18 xx342x 94 24.61 0.0250 18 xx690x 137 22.54 0.3980 18 xx062x 122 29.54 0.0230

19 xx676x 170 28.89 0.0300 19 xx683x 221 27.46 0.4322 19 xx336x 138 37.83 0.0280

20 xx827x 122 29.11 0.0310 20 xx234x 95 21.70 0.4435 20 xx871x 43 61.78 0.0280

21 xx192x 32 18.56 0.0320 21 xx990x 103 23.07 0.4639 21 xx450x 231 41.20 0.0290
22 xx998x 73 24.30 0.0370 22 xx761x 143 20.56 0.4646 22 xx438x 106 30.91 0.0290
23 xx650x 32 17.41 0.0460 23 xx242x 13 16.17 0.4825 23 xx700x 23 71.79 0.0290
24 xx353x 4 24.19 0.0470 24 xx607x 27 16.13 0.4934 24 xx404x 20 40.60 0.0340
25 xx950x 27 20.45 0.0470 25 xx530x 33 15.94 0.5080 25 xx027x 24 56.28 0.0370
26 xx785x 28 19.90 0.0480 26 xx278x 111 20.68 0.5201 26 xx042x 124 27.91 0.0370
27 xx020x 7 25.00 0.0520 27 xx020x 67 21.00 0.5235 27 xx154x 57 41.74 0.0380
28 xx234x 89 19.76 0.0540 28 xx674x 85 18.40 0.5317 28 xx720x 97 31.58 0.0390
29 xx277x 23 20.45 0.0610 29 xx262x 24 18.27 0.5485 29 xx372x 61 40.59 0.0390
30 xx884x 7 23.14 0.0610 30 xx037x 89 17.78 0.5580 30 xx800x 183 38.98 0.0410
31 xx216x 45 21.35 0.0620 31 xx716x 76 20.77 0.5606 31 xx731x 89 33.62 0.0440
32 xx365x 32 16.75 0.0640 32 xx641x 94 18.89 0.5756 32 xx192x 128 27.05 0.0450
33 xx582x 170 25.37 0.0650 33 xx336x 32 13.70 0.5901 33 xx866x 101 26.81 0.0490
34 xx866x 61 23.14 0.0680 34 xx589x 109 19.51 0.6076 34 xx245x 74 42.25 0.0490
35 xx440x 21 19.82 0.0700 35 xx134x 103 19.66 0.6203 35 xx956x 96 29.53 0.0540
36 xx167x 90 17.64 0.0750 36 xx686x 21 13.94 0.6351 36 xx864x 10 34.99 0.0540
37 xx508x 37 21.16 0.0760 37 xx256x 18 12.63 0.6370 37 xx476x 91 30.24 0.0580
38 xx395x 18 21.58 0.0780 38 xx069x 43 12.73 0.6379 38 xx203x 55 39.59 0.0590
39 xx275x 25 20.32 0.0810 39 xx051x 107 18.90 0.6400 39 xx047x 104 27.57 0.0660
40 xx352x 44 21.92 0.0890 40 xx683x 75 19.06 0.6679 40 xx787x 131 25.60 0.0690
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.
636 xx169x 18 2.74 1.0000 150 xx239x 6 11.60 1.0000 536 xx163x 79 6.16 1.0000

Source SOEP, sample A/B, sample E and sample F, individual questionnaire, only continuous variables (own calculation)
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Figure 54: Spearman’s correlation for the Benford and the ’unusual pattern’ ranking (sample
A/B, wave 1)

Figure 55: Spearman’s correlation for the Benford and the ’unusual pattern’ ranking (sample E,
wave 1)
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Figure 56: Spearman’s correlation for the Benford and the ’unusual pattern’ ranking (sample F,
wave 1)

6.1 Hypotheses

6.1.1 Homogeneity

We can assume that homogeneity is one important reason why Benford’s Law does not hold in
particular clusters.

Homogeneity in data can be due to two reasons: 1. The interviewer has fabricated the values
and has used quite similar values. 2. The interviewer works in a very homogeneous area. It may
be that the distribution of the continuous values in an interviewer cluster are quite similar because
the field representative works in an area where respondents tend to have similar living conditions
and incomes. If the first digit distribution for each respondent always deviates in the same way
from the logarithmic distribution within a particular cluster, we can expect an accumulation and
a higher disproportion of certain digits. The test statistics, therefore, show higher values for these
homogeneous clusters.

Unfortunately, in the SOEP, the interviewers are not randomly assigned to areas like most
other big household surveys19. We cannot, therefore, distinguish between these two reasons.

We can assume that in the case of a homogeneous area, the respondents tend to have close
gross income values, or that the standard deviation of the gross income variable is lower than in
heterogeneous areas. If we consider the chi-square values for sample E, 1998, in scatterplot figure
57 (left-hand side) on page 37 we can observe, very close to the two faked clusters, an (assumed)
valid cluster (circled) with a chi-square value of 43.47 in the case of n = 177 digits. The distribution
of the standard deviations by the mean of income is shown on the right-hand side of figure 57.20

19An exception is the experimental subsample in the BHPS, wave 2. Nevertheless, this experiment was conducted
for only a quarter of the full sample in sample 2.

20We calculate the standard deviation of the mean values only for clusters with at least three gross income values.
Three small falsified clusters have only two gross income values and they were excluded from the scatterplot.
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We can see that in comparison with the other clusters, the circled cluster has a very low standard
deviation and that this cluster seems to be rather homogeneous.
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Figure 57: Chi-square values (first digit distr.) and standard deviation of gross-income in sample
E, individual questionnaire, 1998

To compare interviewer clusters, in our analysis, we will use the variation coefficient vcj of the
gross income xij (see equation 10). This can be calculated as the ratio of the standard deviation
and the mean of the gross income x̄j in each cluster j.

vcj =

√
1
n (xij − x̄j)2

x̄j
(10)

The lower the values of vcj , the lower the standard deviation of the gross-income compared
to the mean in each cluster. Table 7 shows some statistics of the variation coefficient for each
subsample. We can see that in sample C (East German sample) the average mean of the variation
in each cluster is lowest and in sample F highest in the first three waves.

6.1.2 Rounding

Rounding behavior is not unusual in surveys. Normally a respondent is not able to recall the exact
value of his monthly income without looking at his wage slip. Based on this, some slight rounding
behavior would be acceptable in an interview situation, but strong rounding could cause a loss of
information and may even lead to incorrect conclusions of empirical analyses. Empirical studies
show that rounding income values depends on interviewer and respondent characteristics, as well
as on the data collection method used. Schräpler (1999) showed a decrease in rounding depending
on the age of the interviewer and the duration of the interview. Furthermore, rounding is lower
in self- completed questionnaires as compared to face-to-face interviews and increases with income
level in the SOEP.

It is reasonable to assume that rounding of monetary values causes bad fits in the case of the first
two digit distribution. We have seen in section 4.1.3 of this chapter that values like 10, 20, 30, . . . , 90
have higher proportions than predicted in the case of the first two digit distributions. We can
therefore expect that interviewer clusters with many rounded values will have an inferior Benford
fit for the first two digit distribution as compared to clusters with fewer rounded values.

In order to check the impact of rounding it is necessary to specify a meaningful statistic. We
can assume that the higher the proportion of zeros on all significant digits of a monetary value,
the stronger the rounding behavior (without decimal places).21 Following this idea, in equation
11, we use a rounding coefficient rdj that is the average proportion of the number of zeros n0i on

21For example the value ’3,000’ has a proportion of 3/4 and the value ’3,200’ only 2/4.
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Table 7: Gross income homogeneity measured by variation coefficient in each subsample
Obs. Mean Std. Dev. Min Max

Sample A/B
wave 1 557 0.513 0.220 0.000 1.350
wave 2 401 0.504 0.223 0.000 1.754
wave 3 351 0.515 0.208 0.023 1.557

Sample C
wave 1 209 0.365 0.149 0.076 1.139
wave 2 237 0.393 0.161 0.000 0.922
wave 3 223 0.393 0.177 0.012 1.110

Sample E
wave 1 108 0.518 0.226 0.025 1.277
wave 2 96 0.553 0.252 0.017 1.463
wave 3 103 0.577 0.259 0.018 1.098

Sample F
wave 1 467 0.581 0.242 0.000 1.437
wave 2 404 0.596 0.240 0.000 1.426
wave 3 384 0.613 0.255 0.015 1.663

Source: SOEP samples A/B, C, E, and F, individual questionnaires
(own calculation)

the number of all digits of an entire value ndi, calculated for values i = 1, . . . , nj in an interviewer
cluster j. The higher the value of this coefficient, the stronger the rounding behavior in the cluster
is.

rdj =
1
nj

nj∑
i=1

n0i

ndi
(11)

Table 8 shows the mean and standard deviation as well as the minimum and maximum values
in the first three waves of each subsample analyzed. Samples A/B and E have quite similar mean
values whereas the means in sample C are slightly lower and in sample F, slightly higher.

Table 8: Descriptive statistics of the rounding coefficient
Obs Mean Std. Dev. Min Max

Sample A/B
wave 1 636 0.465 0.118 0.000 0.800
wave 2 463 0.284 0.086 0.000 0.569
wave 3 410 0.469 0.092 0.000 0.722

Sample C
wave 1 214 0.365 0.063 0.000 0.546
wave 2 264 0.376 0.110 0.000 0.750
wave 3 278 0.442 0.087 0.184 0.750

Sample E
wave 1 150 0.471 0.110 0.000 0.767
wave 2 125 0.453 0.083 0.167 0.667
wave 3 129 0.469 0.083 0.149 0.722

Sample F
wave 1 536 0.480 0.081 0.000 0.667
wave 2 473 0.480 0.082 0.000 0.775
wave 3 461 0.483 0.076 0.167 0.692

Source: SOEP samples A/B, C, E, and F, individual questionnaires
(own calculation)
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6.1.3 Data collection methods

Data collection methods may have an impact on a respondent’s as well as on an interviewer’s
behavior. The SOEP is a multimethod survey. Table 9 shows the average proportion of the
interview modes used in the clusters of the analyzed subsamples for the first three waves. Sample
A/B contains West German respondents (sample A) and foreigner respondents who live in West
Germany (sample B). Sample A is mainly administered by face-to-face (face) and partly by self-
completed interviews (in the presence of the interviewer). In a small number of interviews, a mixed
mode (mix) is used. In foreigner sample B, we distinguish between interviews with (mdolm) and
without (odolm) an additional interpreter. A small proportion is carried out by telephone or mail
if an interview would, otherwise, not be possible (not shown in the table). Note that we do not
analyze these interviews because they are not conducted by particular interviewers.

Sample C contains only East German respondents. In wave 1 all interviews were carried out by
interviewers and personal interviewing, but there is no information about the method used. Waves
2 and 3 were conducted mainly face-to-face. Like the other subsamples, the extension samples
E and F were carried out using face-to-face and self-completion modes as well as using CAPI
(computer assisted personal interviewing).

Apart from the CAPI interviews in sample E, wave 1, which are part of an experimental setting
in the SOEP, the decision about the data collection mode used is not predetermined by the fieldwork
organization. The decision is reached based on the interaction between the interviewer and the
respondent in the interview situation. Past experiences show that, in some interview situations,
the self-completed mode in the presence of the interviewer might be more practical than the face-
to-face mode. There is also some empirical evidence that the self-completion mode results in more
accurate answers than orally given answers in the SOEP (Schräpler 1999).

Table 9: Average proportion of data collection methods in the clusters (in percent)
face self mix dolm odolm n

Sample A/B
wave 1 49.65 21.60 8.14 4.47 16.06 100 631
wave 2 47.75 18.67 11.18 4.36 18.04 100 461
wave 3 48.90 20.60 8.82 3.98 17.70 100 408

Sample C
wave 1 n.k. n.k. n.k. - - - 214
wave 2 56.29 21.27 22.43 - - 100 264
wave 3 54.56 25.83 19.60 - - 100 277

Sample E capi
wave 1 45.16 10.60 10.25 33.99 100 150
wave 2 37.13 18.36 4.89 39.56 100 125
wave 3 18.58 17.22 5.90 57.44 100 129

Sample F
wave 1 40.36 21.53 8.64 29.48 100 536
wave 2 34.76 24.71 6.49 34.02 100 473
wave 3 33.40 25.52 7.51 34.48 100 461

Source: SOEP sample A/B, C, E, and F, individual questionnaires
(own calculation)

6.2 Modeling the fit to Benford

Next we model the fit to Benford by using a linear regression framework with the chi-square values
of the first and first two digit distribution as the continuous dependent variable. Because of the
skewness of the chi-square distributions we transform the original values yit to normality using a
Box-Cox transformation

y∗it =

{
yλit−1
λ , if λ 6= 0

log(yit), if λ = 0
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where λ could be found by maximum likelihood. Figure 58 shows the distribution of the original
and transformed chi-square values for the waves 1, 2, and 3 of sample A/B and the normal density
distribution (dashed line). We can see the positive skew of the original distribution. After the
Box-Cox transformation using λ = −0.133 we get nearly a normality distribution with a skewness
of < 0.001. Table 10 shows for all chi-square distributions the estimated values of parameter λ and
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Figure 58: Distribution of the original (chi) and transformed chi-square values for the waves 1,2
and 3 of sample A/B (dashed line indicates normal density)

the remaining skewness.22 We use the transformation log(yit) for sample C and sample F (here
only for the first digit chi-square distribution) because the estimated values of parameter λ are in
these cases almost 0.

Table 10: Box-Cox transformation parameter λ for all chi-square distributions

first digit first two digits
λ skewness λ skewness

Sample A/B -0.1328 -0.0001 -0.1290 -0.0001
Sample C -0.0038 0.0000 0.0386 0.0003
Sample E 0.1258 0.0000 0.3214 -0.0002
Sample F -0.0010 0.0000 -0.2731 -0.0008

Then we can write the following equation

y∗it = α+ x
′

itβ + εit (12)

where i = 1, . . . , n, t = 1, . . . , T . α is a scalar, β is a vector K× 1 and xit is the ith observation
on k explanatory variables.

To control for individual-specific effects we use panel data models, either a fixed effects or a
random effects model. To do so, we have to specify a complex error component:

wit = ui + eit

where ui are cross-section specific components and εit are remainder effects. The following
passage gives a short description of these panel data models; more details can be found in Green
(2003) and Hsiao (1986).

22The estimation is done with STATA and the procedure bcskew0.
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6.2.1 Fixed effects model

If the cross-section-specific components ui are thought of as fixed parameters, we have to estimate
αi i = 2, . . . , N individual effects, that are specific for each respondent but constant over time.
The model lets us use the changes in the variables over time to estimate effects of the independent
variables on our dependent variable.

y∗it = α+ x
′

itβ +
n∑
i=2

αiDi + εit (13)

where Di is a dummy variable for the ith individual. Using OLS on equation 13 leads to
the least squares dummy variable (LSDV) estimator. If equation 13 is the true model, LSDV is
BLUE (best linear unbiased estimator) as long as εit is the standard i.i.d. (independent identically
distributed) disturbance with mean 0 and variance matrix σ2

ε InT .

6.2.2 Random effects model

The fixed effects model is appropriate when differences between individual agents (here the in-
terviewer) may reasonably be viewed simply as parametric shifts in the regression itself. The
disadvantage of the fixed effect model is that there may be many parameters. The loss of free-
dom can be avoided if the term ui can be assumed as random. Assume ui ∼ i.i.d (0, σ2

u) and
εit ∼ i.i.d (0, σ2

ε ), and the ui are independent of εit. In addition, the explanatory variables Xit are
independent of the ui and εit for all i and t. The specification of random effect models implies a
homoskedastic variance V ar(wit) = σ2

u + σ2
ε for all i and t, and serial correlation over time only

between the disturbances of the same individual.

Cov(wit, wjs) = σ2
u + σ2

ε for i = j, t = s (14)
= σ2

u for i = j, t 6= s (15)

and zero otherwise. This also means that the correlation coefficient between wit and wjs is

ρ = Cov(wit, wjs) = 1 for i = j, t = s (16)
= σ2

u/(σ
2
u + σ2

ε ) for i = j, t 6= s (17)

and zero otherwise. Under the random effects model, GLS based on the true variance component
is BLUE, and the feasible GLS estimator are asymptotically efficient as either n or T →∞.

Testing for random effects Heteroskedasticity occurs when the assumption that residual vari-
ance is constant across all observations in the data set is violated. The OLS estimates of coefficients
remains unbiased but it can be shown that the OLS estimates of the standard errors (and hence t
and F tests) are biased. If heteroskedasticity is present, we should use a more efficient method such
as GLS instead of OLS. Breusch and Pagan (1979) derived a Lagrange multiplier (LM) test for the
random effects model based on the OLS residuals. The specific hypothesis under investigation is
the following:

H0 : σ2
u = 0 (or Corr(wit, wjs) = 0 for i = j (18)

HA : σ2
u 6= 0 (19)

If H0 is rejected, we have to assume that heteroskedasticity is present. The Breusch-Pagan test
statistic implemented in STATA (StataCorp LP 2003) is as follows:

LM =
nT

2(T − 1)

[∑n
i=1(

∑
t = 1T eit)2∑n

i=1

∑T
t=1 e

2
it

− 1

]
∼ χ2

1
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6.2.3 Hausman Test for Fixed or Random Effects

The generally accepted way of choosing between fixed and random effects is by running a Hausman
test. Hausman (1978) derived a test based on the idea that according to the hypothesis of no
correlation, both OLS in the LSDV model and GLS are consistent, but OLS is inefficient. The
Hausman test checks a more efficient model against a less efficient but consistent model to make
sure that the more efficient model also gives consistent results.

According to the alternative, OLS is consistent, but GLS is not. According to the null hypoth-
esis, therefore, the two estimates should not differ systematically, and a test can be based on the
difference. To test the difference, we need the covariance matrix of the difference vector (b − β̂),
where b is the OLS in LSDV, and β̂ is GLS.

V ar(b− β̂) = V ar(b) + V ar(β̂)− Cov(b, β̂)− Cov(b, β̂)
′

Hausman’s key result is that the covariance of an efficient estimator with its difference from an
efficient estimator is zero, which implies that

Cov[(b− β̂), β̂] = Cov(b, β̂)− V ar(β̂) = 0

or

Cov(b, β̂) = V ar(β̂)

Denote

V ar(b− β̂) = V ar(b)− V ar(β̂) = Σ

The chi-squared test is based on the Wald criterion:

W = χ2
k = (b− β̂)

′
Σ̂−1(b− β̂)

For Σ̂−1, we use the estimated covariance matrices of the slope estimator in the LSDV model
and the estimated covariance matrix in the random effects model, excluding the constant term.

Hence, the Hausman method tests the null hypothesis that the coefficients estimated by the
efficient random effects estimator are the same as the ones estimated by the consistent fixed effects
estimator. If Prob > χ2

k is larger than .05 then it is assumed that it is safe to use random effects.
In the case of a significant P-value, we should use fixed effects.

6.3 Estimates

The tables 11, 12, 13, and 14 show the estimates of the linear panel models for the subsamples
A/B, C, E, and F of the SOEP. We use the first three waves and estimate two models for each
subsample.23 In the first model we specify as the dependent variable the transformed chi-square
value of the first digit distribution and in the second model the transformed chi-square value of
the first two digit distribution. In all cases we perform a Breusch-Pagan test to check whether
unobserved heterogeneity is present. The results show (test section at the bottom of the tables)
that we have to take unobserved heterogeneity into account. The probability Prob > χ2

1 is, in all
cases, lower than 0.05 and H0 (homoskedasticity) has to be rejected. In addition we use a Hausman
test (Hausman 1978) to examine if a fixed effects model or a random effects model is appropriate.
The results suggest in five cases that a random effects model (Prob > χ2

k is higher 0.05) and in
three cases a fixed effects model.

The largest subsample, A/B, shown in table 11 contains a total of N = 1, 291 observations from
579 interviewer clusters. Subsample F (table 14) has 1, 254 observations from 523 interviewers;

23The estimation is done with Stata 8.0 (StataCorp LP 2003).
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Table 11: Regression models for the transformed chi-square values of clusters in sample A/B,
waves 1-3

first digit first two digit
Random Effects Model Fixed Effects Model

variable Coef. z P > z Coef. z P > z

intercept 2.026 20.01 0.000 3.333 44.26 0.000
w2 0.503 11.70 0.000 0.413 14.57 0.000
w3 0.056 1.72 0.086 0.032 1.66 0.097
workload 0.009 17.49 0.000 0.008 15.26 0.000
face 0.000 0.28 0.782 -0.001 -1.89 0.059
mbgl 0.001 0.88 0.379 0.001 0.96 0.336
vc -0.147 -2.96 0.003 0.006 0.16 0.872
round -0.244 -1.53 0.125 0.432 3.67 0.000
refuse -0.011 -1.55 0.121 0.000 0.02 0.981
HH-contacts -0.013 -1.18 0.238 -0.014 -1.87 0.063

σu 0.146 0.147
σe 0.342 0.150
ρ 0.153 0.000
R2 0.455 0.488
N 1291 1291
interviewer 579 579
Box-Cox λ -0.133 -0.129
Breusch/Pagan
χ2

1 14.20 (p = 0.000) 38.47 (p = 0.000)
Hausman
χ2

9 13.09 (p = 0.159) 17.48 (p = 0.042)
Source: SOEP, sample A/B, wave 1-3 (own calculation)

subsamples C and E are distinctly smaller. The overall fit of the linear models is indicated by the
explained variance R2. The explained variance ranges from 0.09 to 0.61 and is always higher for
the first two digit regression.

The estimates in all subsamples indicate for the first and the first two digit distributions sig-
nificant increasing chi-squared values caused by increasing workloads. This was to be expected
because higher workloads indicate more digits in the clusters.

However, we are more interested in the effects of homogeneity, rounding, and data collection
methods. Homogeneity is measured by the variation coefficient vc. We assume that, with higher
values of vc, the fit to Benford’s Law will be enhanced. The estimates show in all subsamples
(except in sample E) significant negative coefficients for the first digit distribution. This supports
our first hypothesis and means that the lower the variability of income in the clusters, the higher the
chi-square values. In spite of this, in the case of the first two digit distribution, we find inconsistent
results for samples E and F. They suggest a positive relationship.

In our second hypothesis, we state that rounding of continuous values will cause bad fits for the
first two digit distribution. The estimates confirm this assumption: rounding is significant in all
samples and by far the highest positive coefficient. For the first two digit distribution, an increase
of round causes a strong increase in the transformed chi-square values. The coefficient of round is
highest in subsample E and lowest in subsample A/B.

An interesting question is whether we can find a data collection effect. We can assume that the
data collection method has an effect on a respondent’s and an interviewer’s behavior and on the
way in which a respondent’s answers are stored. However, we only find significant negative effects
in sample E for the CAPI mode.

In addition, we control for the average number of refusals and unusable values as well as for the
average number of necessary household contacts in the cluster. Descriptive statistics of refusals
and HH contacts can be found in table 18 and 17 in the appendix.

We have shown in Schräpler (2004) that in sample A/B, wave 1, cheating interviewers under-
estimate the number of refusals (or don’t knows) of the respondents in their questionnaires. If the
assumption holds that suspicious interviewers have lower missing value rates and worse fit values,
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we would expect negative coefficients in our models. We can see that the estimated coefficients are
in most cases negative but not significant. Hence, the results do not support our assumption.

The variable ’household contacts’ (HH-contact) measures the influence of an increase in the
average number of necessary contacts, to achieve the interviews, on the transformed chi-square
values.24 We find significant negative coefficients for samples A/B and F and positive coefficients
in sample E. These results are therefore ambiguous and hard to interpret. On the one hand, it
may be that suspicious interviewers need fewer contacts because they never enter the household
and give only estimated values. On the other hand, interviewers with a higher workload may
perform better, act more professionally, and need fewer contacts than interviewers with only a few
interviews.

Table 12: Regression models for the transformed chi-square values of clusters in sample C, wave
1-3

first digit first two digit
Fixed Effects Model Random Effects Model

variable Coef. z P > z Coef. z P > z

intercept 3.494 18.40 0.000 4.801 65.81 0.000
w2 -0.780 -15.00 0.000 -0.773 -29.24 0.000
w3 -0.585 -10.42 0.000 -0.314 -11.21 0.000
workload 0.035 7.71 0.000 0.016 14.94 0.000
vc -1.072 -6.24 0.000 -0.123 -1.77 0.077
round -0.666 -1.64 0.102 0.896 5.66 0.000
refuse -0.005 -0.38 0.701 -0.013 -2.32 0.020
unusable -0.283 -1.54 0.124 -0.091 -1.34 0.182

σu 0.390 0.147
σe 0.419 0.251
ρ 0.464 0.255
R2 0.481 0.612

N 669 669
interviewer 324 324

Breusch/Pagan
χ2

1 10.42 (p = 0.001) 21.3 (p = 0.000)
Hausman
χ2

9 14.93 (p = 0.037) 4.27 (p = 0.748)
Source: SOEP, sample C, wave 1-3 (own calculation)

24The variable ’household contacts’ is not available in the first waves of sample C.
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Table 13: Regression models for the transformed chi-square values of clusters in sample E, wave
1-3

first digit first two digit
Random Effects Model Random Effects Model

variable Coef. z P > z Coef. z P > z

intercept 3.190 7.57 0.000 8.865 10.27 0.000
w2 0.047 0.37 0.714 0.100 0.39 0.697
w3 0.109 0.78 0.437 0.277 0.98 0.329
workload 0.019 3.79 0.000 0.081 7.47 0.000
self -0.001 -0.48 0.629 0.001 0.15 0.882
capi -0.002 -1.41 0.160 -0.008 -2.32 0.020

vc -0.248 -1.32 0.186 0.910 2.38 0.017
round 0.397 0.56 0.573 7.715 5.35 0.000
refuse -0.021 -0.85 0.396 -0.036 -0.72 0.475
unusable -0.518 -1.87 0.061 -0.624 -1.11 0.267
HH-contacts 3.190 7.57 0.000 0.019 0.22 0.824

σu 0.354 0.889
σe 0.668 1.287
ρ 0.220 0.323
R2 0.090 0.314

N 305 305
interviewer 136 136
Box-Cox λ 0.126 0.321
Breusch/Pagan
χ2

1 11.91 (p = 0.001) 21.94 (p = 0.000)
Hausman
χ2

9 7.24 (p = 0.703) 10.23 (p = 0.421)
Source: SOEP, sample E, wave 1-3 (own calculation)

Table 14: Regression models for the transformed chi-square values of clusters in sample F, wave
1-3

first digit first two digit
Random Effects Model Fixed Effects Model

variable Coef. z P > z Coef. z P > z

intercept 2.262 15.59 0.000 2.459 73.53 0.000
w2 0.006 0.17 0.868 0.000 0.01 0.989
w3 0.362 10.26 0.000 0.115 17.96 0.000
workload 0.015 14.36 0.000 0.003 5.46 0.000
self 0.001 0.80 0.422 0.000 -0.77 0.440
capi 0.000 -0.38 0.705 0.000 0.81 0.420

vc -0.138 -2.02 0.044 0.035 2.15 0.032
round 0.794 3.17 0.002 0.573 10.84 0.000
refuse 0.006 0.81 0.415 0.001 0.54 0.590
unusable -0.066 -0.38 0.705 -0.042 -1.31 0.189
contacts -0.018 -1.31 0.189 -0.006 -1.77 0.078

σu 0.281 0.068
σe 0.482 0.071
ρ 0.254 0.478
R2 0.250 0.530

N 1254 1254
interviewer 523 523
Boxcox λ - -0.273
Breusch/Pagan
χ2

1 61.48 (p = 0.000) 43.54 (p = 0.000)
Hausman
χ2

9 8.78 (p = 0.553) 18.93 (p = 0.041)
Source: SOEP, sample F, wave 1-3 (own calculation)
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7 Summary and conclusion

This paper focuses on fabricated interviews in the German Socio-Economic Panel (SOEP) and
the detection of these falsifications. A total of 90 falsified household interviews and 184 falsified
individual interviews have been detected, almost all of them in the first wave of a subsample. The
share of fabricated data is low in all samples and the maximum is 2.4% in sample E. It is important
to note that, apart from the fakes in sample E, falsified data have never been disseminated as part of
the widely-used SOEP, since the fabrications were detected before the data were released. However,
these falsifications are in the original data files - kept at DIW Berlin - and provide a rich source
for methodological research.

First, we examined in detail whether Benford’s Law holds in each interviewer cluster of samples
A/B, C, E, and F. We find a solution to assess the plausibility of the obtained chi-square values
that is independent of the cluster size. A resampling method such as the interval percentile method
allows us to determine the probability P (perc) of obtaining a chi-square value more extreme than
that which is actually observed. High probabilities can be interpreted as a high plausibility and
vice versa.

Our results show that, in fact, the fabricated clusters in samples A/B, E, and F have mostly
low probabilities and occur at the top of the interviewer ranking list for the first digit distribution.
If we regard the first ten interviewers as suspicious, we identify, using Benford in sample A, one of
three falsifiers, in sample E wave 1, three of five falsifiers, in wave 2 one of one, and in sample F
also one of one falsifiers. This is an impressive outcome.

The undetected fabricated clusters in sample E are too small for our detection procedure.
However, in sample A/B, we could not find two large fabricated clusters because the first digits
of their continuous values tend to conform to the logarithmic distribution.25 However, if we relax
the assumption that Benford’s Law holds in the whole data set and, instead, use a more general
test statistic, we find an additional falsifier among the top twenty. This test statistic only makes
the assumption that the vast majority of interviewers are honest.

Finally, the most striking result is that, using Benford, we find a new fabricator who has
never been detected previously by the fieldwork organization. The interviews from this cheating
interviewer will be deleted in the upcoming waves of the SOEP. This success demonstrates the
predictive power of our Benford method.

In the last section, we estimated linear random-effects and fixed-effects models to explain the
obtained values of the chi-square statistic for both digit distributions. Our results show that several
factors contribute to the values of the test statistic.

First of all, we have shown that the homogeneity in clusters is one important factor. Inter-
viewers whose questionnaires often contain equal values or values with equal first significant digits
obtain unavoidably higher chi-square values. This is important as it seems that the detection of
fabrications using Benford’s Law is based, among other things, on the homogeneity of the clusters.

Second, rounding of continuous values increases the chi-square values only for the first two
digit distribution. It is, by far, the strongest predictor. In the last section, we showed that, for
sample A/B, the first two digit distribution works better in fraud detection than the first digit
distribution.26

Table 15 on page 47 shows the mean values of the variation and rounding coefficient for the
faked and assumed non-faked clusters of samples A/B, E, and F. In all samples the mean of the
variation coefficient vc in the faked clusters is lower than in the non-faked clusters. Particularly
in sample F, the value of vc is only 0.054. This means that - based on the income values - the
clusters of cheating interviewers are more homogeneous than non-fabricated clusters. The mean
for the rounding coefficient in samples A/B and E is higher and in sample F lower in the case of

25We can, however, use alternatives: the examination of the plausibility for the first two digit fit statistic yields
low probabilities for all three falsified clusters.

26Nevertheless, in samples E and F, the first digit distribution was clearly more successful than the first two digit
distribution.
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fabricated clusters than of the non-faked clusters.

Table 15: Mean values of homogeneity, rounding, missing values and contacts

Sample A/B Sample E Sample F
non-fake fake non-fake fake non-fake fake

vc 0.513 0.492 0.522 0.345 0.583 0.054
round 0.465 0.512 0.468 0.554 0.480 0.399
missing values 4.395 1.404 5.792 5.246 2.749 0.273
contacts 3.346 2.751 3.009 2.231 3.256 1.625

Source: SOEP, samples A/B, E, and F, wave 1 (own calculation)

Also note that the mean for missing values and household contacts are always lower in faked
than in non-faked clusters. Cheating interviewers consistently underestimate these variables. Un-
fortunately, we cannot use this information in our Benford analysis because missing values are
indicated by assigned numbers (-1;-2;-3). However, an alternative method which we called the
variability method can also take non-continuous variables into account. The variability method
is an unsupervised learning method for outlier detection. It is based on the assumption that the
variability across questionnaires in faked interviews is lower than expected, considering the whole
survey. The success of this method is documented in Schäfer/Schräpler/Müller/Wagner (2005).
The results suggest using a combination of both procedures for detecting frauds in surveys.
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Table 17: Descriptive measurements of HH-contacts in each subsample
Obs. Mean Std. Dev. Min Max

Sample A/B
wave 1 631 3.342 1.328 1 13
wave 2 451 2.675 0.934 1 7
wave 3 397 2.681 1.171 1 9

Sample C
wave 1 214 n.k. n.k. n.k. n.k.
wave 2 215 2.199 0.711 1 5.25
wave 3 270 2.473 0.996 1 9

Sample E
wave 1 128 2.997 1.168 1.1 8.8
wave 2 131 3.145 1.424 1 9
wave 3 132 2.776 1.172 1 7

Sample F
wave 1 539 3.253 1.289 1 9
wave 2 493 3.012 1.289 1 9
wave 3 469 2.796 1.197 1 8

Source: SOEP samples A/B, C, E, and F, (own calcul.)

Table 18: Decriptive measurements of the average number of refused answers in clusters
Obs. Mean Std. Dev. Min Max

Sample A/B
wave 1 636 4.377 1.929 0 23.00
wave 2 463 1.903 1.991 0 18.00
wave 3 410 1.828 1.974 0 30.00

Sample C
wave 1 214 2.279 2.800 0 20.22
wave 2 264 1.567 1.598 0 13.50
wave 3 278 2.003 2.021 0 13.55

Sample E
wave 1 150 5.774 3.178 2 19.00
wave 2 125 2.255 1.783 0 8.62
wave 3 129 1.864 1.698 0 8.43

Sample F
wave 1 536 2.744 2.367 0 25.00
wave 2 473 2.894 2.727 0 18.00
wave 3 461 2.760 2.381 0 21.86

Source: SOEP samples A/B, C, E, and F, indiv. questionnaires (own calc.)
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Table 20: Interviewer ranking by plausibility, first two digit distribution, sample A/B, wave 1
Rank Intnr digits chi-sq. P(normal) P(perc) chi-sq. (boot)

1 xx365x 227 831.9497 1.83E-11 0 410.2177
2 xx582x 170 709.7847 2.22E-16 0 280.2723
3 xx049x 77 402.2741 1.05E-06 0 208.797
4 xx143x 203 626.5366 4.30E-07 0 358.1882
5 xx512x 90 418.3447 5.33E-07 0 216.8385
6 xx552x 3 267.5491 0.000138 0 93.35402

7 xx827x 122 453.0379 2.52E-06 0.001 252.0209

8 xx901x 146 445.6096 9.61E-05 0.001 281.5031
9 xx698x 63 388.9238 0.000118 0.004 220.3225

10 xx202x 213 557.7646 0.000356 0.005 366.5032

11 xx582x 152 416.7733 0.00108 0.005 285.5435

12 xx800x 95 371.1279 0.000179 0.006 221.9303

13 xx147x 94 352.1639 0.001545 0.009 224.0793
14 xx756x 58 390.9862 0.00094 0.009 230.8448
15 xx079x 139 382.5185 0.003442 0.01 265.6753
16 xx474x 147 411.88 0.001418 0.012 283.9175
17 xx306x 104 323.4291 0.003711 0.016 218.1264
18 xx801x 70 314.7503 0.007359 0.02 213.2567
19 xx515x 78 301.8357 0.012839 0.026 210.5901
20 xx852x 63 320.2045 0.014672 0.029 220.3225
21 xx401x 26 328.9332 0.010712 0.029 197.208
22 xx544x 76 300.4866 0.016797 0.031 211.4826
23 xx320x 16 301.4572 0.020058 0.043 177.4095
24 xx709x 65 312.2405 0.029421 0.043 225.6979
25 xx895x 118 319.3288 0.031588 0.044 241.3161
26 xx234x 55 311.488 0.040255 0.049 222.2785
27 xx815x 69 287.4532 0.042703 0.053 215.3047
28 xx293x 101 286.6554 0.040163 0.059 218.1927
29 xx450x 96 289.7921 0.047038 0.063 221.3673
30 xx112x 45 303.869 0.054023 0.064 223.1108

.

.

.
636 xx087x 46 87.73752 0.996945 1 222.4255

Source SOEP, individual questionnaire, only continuous variables, 1984 (own calcul.)

Table 21: Interviewer ranking by Plausibility, first two-digit distribution, sample C, wave 1
Rank Intnr digits chi-sq. P(normal) P(perc) chi-sq. (boot)

1 xx053x 115 664.9291 2.22E-16 0 284.3378
2 xx611x 99 824.206 2.22E-16 0 271.0816
3 xx528x 107 639.6402 2.22E-16 0 275.69
4 xx303x 98 510.0764 5.63E-08 0.0001 266.915
5 xx246x 58 478.6509 2.42E-07 0.0008 231.4268
6 xx056x 67 460.2145 3.23E-05 0.0029 253.7367
7 xx211x 91 412.443 0.000113 0.0036 249.3335
8 xx076x 80 391.9182 0.000788 0.0078 247.7214
9 xx670x 57 377.2998 0.002031 0.0124 233.8839

10 xx840x 87 381.5224 0.003785 0.015 255.8684
11 xx622x 94 372.2561 0.004225 0.0155 253.5131
12 xx567x 64 393.5778 0.004322 0.017 253.3455
13 xx617x 76 373.1486 0.005858 0.0191 250.6293
14 xx408x 9 195.0309 0.003692 0.0209 104.216
15 xx202x 43 301.8178 0.011837 0.0253 213.0471
16 xx452x 69 350.4006 0.019552 0.0381 245.2613
17 xx571x 88 341.8425 0.028047 0.0451 253.8837
18 xx031x 96 351.6598 0.036524 0.0498 267.2451
19 xx443x 46 274.9916 0.034572 0.0501 206.8606
20 xx606x 44 271.4332 0.048766 0.0624 206.904
21 xx311x 71 328.9495 0.066986 0.0796 254.1529
22 xx811x 92 312.5017 0.073781 0.081 248.8333
23 xx151x 48 249.0779 0.086152 0.0948 198.3651
24 xx264x 91 296.061 0.145357 0.1402 249.3335
25 xx431x 42 252.601 0.161368 0.1575 213.7435
26 xx142x 103 310.4689 0.204754 0.1879 272.8453
27 xx111x 51 245.8508 0.204872 0.1913 212.8777
28 xx180x 55 276.2341 0.222694 0.192 235.6924
29 xx754x 59 277.3699 0.227564 0.1975 239.0226
30 xx959x 79 279.7506 0.24075 0.2057 246.8276

.

.

.
214 xx377x 125 131.1992 0.999769 1 298.4655

Source SOEP, sample C, wave1, only cont. variables, 1989 (own calcul.)
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Table 22: Interviewer ranking by Plausibility, first two digit distribution, sample F, wave 1
Rank Intnr digits chi-sq. P(normal) P(perc) chi-sq. (boot)

1 xx690x 124 638.5831 7.23E-09 0 334.9819
2 xx199x 3 553.0672 2.62E-05 0 222.4406
3 xx708x 106 569.7923 3.70E-08 0 301.6514
4 xx057x 75 547.3914 2.94E-06 0.0005 306.9953
5 xx129x 98 529.2237 3.78E-06 0.001 303.1539
6 xx314x 95 523.2931 8.48E-06 0.001 303.1845
7 xx984x 9 603.0896 0.000375 0.0095 251.1293
8 xx027x 24 511.817 0.002129 0.011 287.4346
9 xx232x 140 516.08 0.005096 0.0145 369.8288

10 xx127x 124 473.4838 0.00486 0.016 334.9819
11 xx739x 90 399.9429 0.015306 0.03 292.4988
12 xx046x 53 368.1531 0.024254 0.0405 256.8608
13 xx451x 78 394.6435 0.027093 0.0425 299.7499
14 xx382x 78 390.4618 0.032848 0.0465 299.7499
15 xx951x 85 390.8057 0.034371 0.048 297.6858
16 xx076x 65 371.7019 0.038472 0.0515 282.051
17 xx564x 120 416.4118 0.039299 0.053 324.2004
18 xx476x 91 377.1788 0.037939 0.054 291.022
19 xx262x 71 372.6702 0.055355 0.066 292.5239
20 xx679x 23 383.3964 0.075064 0.0875 269.0439
21 xx911x 55 342.3433 0.086705 0.089 265.8463
22 xx079x 136 440.1743 0.084204 0.0915 361.5663
23 xx393x 115 364.206 0.094594 0.0965 300.63
24 xx257x 33 365.9924 0.095279 0.1015 277.0514
25 xx315x 59 351.1641 0.094835 0.1025 277.9259
26 xx063x 133 427.5619 0.098681 0.103 351.5313
27 xx236x 19 311.8948 0.108755 0.1095 226.4403
28 xx668x 163 462.8384 0.123697 0.1245 396.1332
29 xx800x 183 527.7181 0.134018 0.1375 453.1797
30 xx249x 105 345.0767 0.157496 0.147 295.9721
31 xx404x 20 308.9099 0.178108 0.1655 242.8545
32 xx831x 74 349.1529 0.188435 0.1795 302.8532
33 xx802x 31 327.4075 0.2379 0.2075 275.5537
34 xx009x 54 309.0565 0.251996 0.23 270.0162
35 xx213x 74 334.7756 0.271172 0.238 302.8532
36 xx115x 92 336.8014 0.259955 0.2385 303.1825
37 xx864x 10 299.9186 0.296701 0.2495 245.7578
38 xx136x 161 427.516 0.27826 0.2565 394.8668
39 xx924x 14 275.7848 0.298095 0.257 233.1723
40 xx787x 45 296.9131 0.283414 0.261 263.5864
41 xx986x 14 271.17 0.318284 0.274 233.1723
42 xx029x 267 596.3646 0.293913 0.2755 554.0989
43 xx660x 38 292.6412 0.335834 0.3025 266.8111
44 xx815x 84 320.5421 0.341419 0.3095 298.9255
45 xx796x 102 316.4268 0.347767 0.314 296.5205
46 xx839x 88 304.8939 0.35734 0.3175 286.8169
47 xx389x 87 308.5076 0.358326 0.3225 290.3978
48 xx062x 122 351.1829 0.361406 0.3255 331.6586
49 xx609x 86 310.6596 0.377863 0.3375 295.0213
50 xx876x 42 294.1547 0.403438 0.3495 278.8361
51 xx843x 114 310.3228 0.394953 0.35 297.5998
52 xx552x 44 284.5226 0.409528 0.353 271.0785
53 xx617x 53 269.7471 0.409653 0.355 256.8608
54 xx010x 124 349.6234 0.392297 0.3575 334.9819
55 xx046x 6 314.8121 0.392405 0.366 284.9588
56 xx977x 54 283.2419 0.410456 0.3665 270.0162
57 xx282x 139 384.9927 0.399867 0.367 370.5132

58 xx085x 43 284.0233 0.436945 0.383 274.4162

59 xx436x 64 288.9794 0.429788 0.3875 279.6033
60 xx663x 20 250.3141 0.45851 0.3885 242.8545
61 xx524x 46 268.2891 0.451171 0.403 261.0893
62 xx491x 78 305.261 0.455484 0.408 299.7499
63 xx044x 14 235.984 0.486054 0.4085 233.1723
64 xx343x 114 303.9369 0.447213 0.4095 297.5998
65 xx496x 48 260.2462 0.459289 0.41 254.6699
66 xx273x 22 264.5579 0.47853 0.4145 260.2214
67 xx242x 224 524.5763 0.46759 0.4155 518.1083
68 xx995x 138 372.1559 0.45608 0.4155 365.5529
69 xx278x 63 283.9802 0.465071 0.4265 279.3771
70 xx642x 292 616.3593 0.463819 0.4265 608.1957
71 xx724x 99 303.1847 0.477636 0.437 300.3804
72 xx037x 50 263.8566 0.491234 0.4395 262.6082
73 xx491x 40 278.3183 0.520932 0.4695 281.6244
74 xx635x 86 292.7491 0.518027 0.4795 295.0213
75 xx251x 46 255.1027 0.540633 0.493 261.0893
76 xx325x 60 270.0982 0.542965 0.4975 276.0948
77 xx454x 112 288.0436 0.550965 0.5125 294.2781
78 xx589x 13 221.7654 0.597106 0.514 242.9841
79 xx530x 36 263.7028 0.567788 0.515 274.8634
80 xx969x 73 287.0598 0.557856 0.5215 294.5273

. . .
536 xx260x 29 119.1835 0.979552 1 279.8405

Source SOEP, individual questionnaire, only continuous variables, 2000 (own calcul.)
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