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Abstract

We develop a tractable climate-economy model for evaluating a price for carbon

when climate change impacts are non-existing – they may arrive later. We identify

the general-equilibrium value of learning (or not learning) the economic losses from

impacts. The value justifies increasing carbon prices due to increasing vulnerability

to impacts when the global economy expands, although the assessment of climate

change becomes more optimistic. The model produces a belief distribution for

the social cost of carbon that can be calibrated to match a comprehensive survey

of previous estimates. Even if climate change progresses without impacts for the

coming century, the carbon price continues to increase as suggested by the “climate

policy ramp” of existing evaluations. The quantitative assessment justifies climate

policies for a rational skeptic.

(JEL classification: H43; H41; D61; D91; Q54; E21. Keywords: carbon tax,

learning, climate change)

1 Introduction

“Estimating impacts has been the most difficult part of all climate science”

—William W.D. Nordhaus, EAERE lecture 2012

Climate change and the resulting global warming is a complex phenomenon involving

more uncertainties than perhaps any other environmental problem. Yet, there is relatively
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good hard evidence on the fundamentals of climate change, including such processes as

the diffusion of carbon dioxide between atmosphere, oceans and biosphere (e.g, Hoos

et al. 2001). The warming itself is unequivocal to the scientists as well as the role

of anthropogenic emissions in the process (see, e.g., IPCC Fourth Assessment Report,

2007). However, similar hard evidence on the socio-economic impacts that follow from the

ongoing climate change is lacking. In contrast with data on greenhouse gas concentrations

in the atmosphere or on the global mean land-ocean temperature, we have little or

no quantitative information on how changes in the climate will impact our economies,

although there is extensive research on what such impacts might be; see Tol (2009) for a

comprehensive survey on methods and results.

Most evaluations of the social cost of carbon build on middle-of-the-road assumptions

on climate change impacts, commonly expressed in terms of GDP losses, presumed to be

real and existing at the point in time where the climate policies are designed. Climate-

economy models such as DICE (Nordhaus, 2007) combine the impact scenarios with

interdisciplinary climate-research inputs to obtain a monetized value for the social cost

of releasing one unit of carbon emissions to the atmosphere — there is a pressing demand

for such a number as it is required, for example, in the cost-benefit analyses to assess

regulations across wide domains (Greenstone et al., 2011). Clearly, the carbon price

evaluations depend critically on the realism of the impact assessments; that is, on the

part of climate science we know very little about. In this paper, we start with the

observation that climate change impacts are de facto not experienced currently and,

to address this problem, we develop an approach for evaluating the carbon price even

without observable impacts.

To evaluate the carbon price when impacts are absent at the time of policy-making,

we develop a novel and tractable climate-economy model that, in contrast with large-

scale simulation models, allows a transparent quantitative assessment of the carbon price

under the gradual learning of impacts. The resulting carbon price formula is detailed

enough for reproducing the baseline predictions of the comprehensive climate-economy

models — it forms a solid basis for testing the sensitivity of current carbon price evalu-

ations to the fact that impacts will be revealed only gradually over time. The result is

the first tractable general-equilibrium carbon price formula that can quantify the effect

of learning on the climate policies. We build on Golosov et al. (2011) for the general-

equilibrium climate-economy interactions, and on Gerlagh and Liski (2012) for a detailed

but tractable description of the global carbon cycle for the dependence of climate change

on the anthropogenic emissions. The approach incorporates the idea that the fundamen-
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tals of climate change are relatively well understood but it remains, however, uncertain

if climate change will ever have a significant impact on our economies. For illustration,

the Greenland ice-sheet has not yet melted, and even if the process of warming of the

climate is well understood, little is known about the consequences of a 2-degree warming

— whether it will lead to such melting and what the social-economic impacts of such a

possible event will be.

To device a conservative test against existing policy proposals, we assume that impacts

of climate change are currently non-existing. There is uncertainty about the time at which

impacts will start to materialize at such levels that they provide hard evidence. That is,

our approach describes uncertainty for the arrival date of impacts, as a stochastic process

separate from the uncertainty with respect to the magnitude of damages. We consider

two basic possible states of the world: a benign scenario in which no (or low) climate

damages occur, and a more pessimistic scenario in which (high) climate damages will

come about at some future date. The subjective probability of each state depends on

the observations up to that date. There are infinitely many possible scenarios, including

one for no arrival of impacts. When climate change progresses and no very large climate

change impacts occur, beliefs are updated: it becomes more likely that impacts of a given

temperature increase will never become very large, and thus “no news is good news”.

Is no news then good news for climate policy makers? That is, if the climate impacts

remain low or non-existing, should climate policies then gradually loosen over time?

Our learning dynamics are biased towards supporting this outcome and yet the result

is opposite: the monetized value for the carbon price in 2015 is even somewhat higher

than for a sure-thing best-guess (median) estimate for damages. Moreover, the future

development of the carbon price over the next 100 years closely follows the gradual

tightening of policies, advocated as the “climate policy ramp” by Nordhaus (2007).

That the gradual tightening of climate policies makes sense even if climate optimism

increases over time, follows from the connection between optimal carbon prices, beliefs

and the general-equilibrium. The model generates a parametric distribution function for

possible carbon prices which we match with existing estimates for the distribution, as

presented by Tol (2008, 2009) — this distribution sets the initial carbon price level and a

subjective probability, as held by the profession, for both the severity of climate damages

and the possible time when they occur. Learning over time then involves updating

of the beliefs of the “climate policy experts” as captured by our distribution — the

calibrated parameters imply that the learning rates are low, indicating that in climate

change optimism comes slowly, even if no damages occur. This persistence of beliefs is

3



one part of the explanation for our climate policy ramp in the absence of impacts.

The remaining part of the explanation follows from the general-equilibrium setting.

Building on Golosov et al. (2011) and Gerlagh and Liski (2012), the optimal general-

equilibrium carbon price is proportional to the income level that in most scenarios is

expected to increase dramatically, due to the rise of the middle class in major emerging

economies. Our case, following the IPCC (2000) business-as-usual scenario, implies global

per capita incomes that increase tree-fold during the coming century. Then, even if

climate policy makers become more optimistic over time, the severity of potential impacts

increases due to the expanding scale of the potential losses. This increasing economic

vulnerability together with low rates of learning explains the “climate policy ramp”.1

Our approach is different from earlier contributions on learning in climate change.

The literature modeling the learning of climate impacts has focused on the structural

uncertainties of the climate system, including those related to the climate sensitivity

(Kelly and Kolstad 1999 and Leach 2007) or unknown thresholds leading to tipping

points (Lemoine and Traeger 2010). Our research departs from this literature in two

main ways. First, our target is to make progress in a field previously dominated by

simulation models by developing analytically tractable and thus transparent policies;

however, the model is rich in details to capture the main dynamics of the global carbon

cycle. We follow Golosov et al. (2011) in modeling the economy but Gerlagh and Liski

(2012) for the details of the carbon cycle and also emission abatement options.2

Second, our model of learning is about economic impacts only: it is taken as given

that the climate change as a phenomenon is understood, but the economic losses from

a given climate change are not known. This allows us to keep the climate description

equivalent to that, for example, in DICE, and thereby focus on the learning of economic

uncertainties. The model of learning is simple enough to allow for closed-form evaluations

1The supporting potential climate event that justifies the initial carbon price consistent with Nordhaus

(2007) is equivalent to a GDP loss of about 15 per cent at temperatures that are 3◦C above pre-industrial

level. Such an event is clearly catastrophic, but not a “tail event”, in the sense of Weitzman (2009) where

policies become undefined since, effectively, it is not possible to transfer wealth to the high consequence

events. In our case, the optimal carbon price prior to the possible bad news is effectively implementing

a consumption smoothing path across the expected outcomes, and therefore we are in the domain of

“weak tail dominance”where policies ultimately converge (Nordhaus, 2010), although this converges is

extremely slow.
2We cite both Gerlagh and Liski (2012) and (2013); the former is a longer working paper version

that contains a detailed description of the energy sector that is needed in the quantitative analysis of

the current paper.
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and sharp results — we assume that the economy starts without observations for the

climate damages and then future observations are considered experiments with a potential

persistent arrival of the damage when temperatures increase. Despite the simplicity, the

learning captures the evolution of the initial assessment that the climate change will

ultimately lead to damages, as well as the general-equilibrium implications of the change

over time in assessment. In the concluding section, we show that the results can arise also

in a more comprehensive learning model capturing gradual learning from, for example,

extreme weather events.

The paper is structured as follows. In Section 2, we first explain the emissions-

temperature response that follows from the detailed description of the global carbon

cycle. The response is needed for obtaining the full externality cost of current emissions.

The calibration of the carbon cycle comes from Gerlagh and Liski (2012). In Section 3, we

then introduce the consumption choice model that justifies the derived externality cost in

general equilibrium; this model is effectively Brock-Mirrman (1972) adapted to climate

change. In Section 4, we introduce the learning dynamics that maintain the analytic

nature of optimal policies. Section 5 introduces the calibration and the quantitative

assessment.

2 Emissions–temperature response

We assume that the physical relationships in the climate system are known with certainty

– only the impacts will be uncertain. At the heart of these relationships is the emissions-

temperature response that captures the delay with which current emissions cause future

changes in temperatures. To introduce this response, let Dt be a measure of the global

mean temperature increase above the pre-industrial levels t. Current emissions, denoted

by zt, affect temperatures at time t + τ according to a known function R(τ ):

dDt+τ

dzt
= R(τ ) > 0. (1)

Function R(τ ) captures the delays in the temperature response; when calibrated with

physical data describing the carbon cycle, R(τ ) has a non-linear shape with a peak about

60-70 years after the date of the emissions, and it also has a fat right tail. In Fig. 1, we

illustrate R(τ ) as implied by our calibration based on Gerlagh and Liski (2013), and also

as implied by the Norhaus’ DICE model (2007). The Figure shows the life-path of the

temperature responses following from one unit of emissions at time t = 0, relative to the
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counterfactual where the temperature adjusts immediately.3

Gerlagh and Liski (2013) derive a closed form for R(τ ) as follows. There is a linear

relationship between concentrations and Dt in the climate equilibrium (steady state),

captured by parameter π: a one-unit increase in the steady-state atmospheric CO2 stock

leads to a π-unit increase in the steady-state level of Dt. Outside steady state, there

is a delay in the effect from concentrations to temperatures, and this delay is captured

by parameter 0 < ε < 1: a one-unit increase in emissions increases the next period

concentrations one-to-one but temperatures only επ -units.

The non-linearity of the temperature response, as depicted in Fig. 1, follows from the

break-down of the CO2 stock to reservoirs such as atmosphere, oceans and biosphere that

have differing decay rates for the CO2 that they contain. Such a reservoir system can be

described by a system of “atmospheric boxes” (Maier-Reimer and Hasselman 1987). Let

I denote the set of boxes, with share 0 < ai < 0 of annual emissions entering each box

i ∈ I, and 0 6 ηi < 1 its carbon depreciation factor. A three-box representation will be

sufficiently rich to capture the time-scale of the climate response to emissions.

This description leads to a closed-form for an emissions-damage response (see Gerlagh

and Liski (2013) the derivation): the impact of emissions at time t on temperatures at

time t + τ is

dDt+τ

dzt
= R(τ ) =

∑

i∈I
aiπε

(1− ηi)
τ − (1− ε)τ

ε− ηi
> 0, (2)

where the geometric terms (1 − ηi)
τ and (1 − ε)τ characterize the delays in carbon

concentration and temperature adjustments, respectively.

Parameter ηi captures, for example, the carbon uptake from the atmosphere by forests

and other biomass, and oceans. The term (1−ηi)
τ measures how much of carbon zt is in

box i after τ periods, and the term −(1− ε)τ captures the slow temperature adjustment.

The limiting cases can be helpful. Consider one CO2 box, so that the summation over the

boxes can be ignored. If atmospheric carbon-dioxide does not depreciate at all, η = 0,

then the temperature slowly converges at speed ε to the long-run equilibrium climate

sensitivity π, giving θτ = π[1− (1− ε)τ ]. If atmospheric carbon-dioxide depreciates fully,

η = 1, the temperature immediately adjusts to πε, and then slowly converges to zero,

θτ = πε(1− ε)τ−1. If temperature adjustment is immediate, ε = 1, then the temperature

3The counterfactual response assumes that (i) the emitted CO2 remains in the atmosphere forever and

(ii) the emitted CO2 has immediate full temperature effects. The deviation from the DICE temperature

response is explained below, after the introduction of the carbon cycle representation.
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Figure 1: Emissions-temperature responses. The paths are presented relative to the

counterfactual response that assumes that (i) the emitted CO2 remains in the atmosphere

forever and (ii) the emitted CO2 has immediate full temperature effects. Responses shown

for the current paper and DICE 2007 where the parameters of our model are set to match

to DICE carbon cycle representation.

response function directly follows the carbon-dioxide depreciation θτ = π(1 − η)τ−1. If

temperature adjustment is absent, ε = 0, there is no response, θτ = 0.

The physical data on carbon emissions, stocks in various reservoirs, and the observed

concentration developments are used to calibrate a 3-box carbon cycle representation

leading to the following emission shares and depreciation factors per decade:4

a = (.163, .184, .449)

η = (0, .074, .470).

Thus, about 16 per cent of carbon emissions does not depreciate while about 45 per

cent has a half-time of one decade. Following Nordhaus (2001), we set π = .0156 [per

T tC02, see Gerlagh and Liski (2013)].5 We assume ε = .183 per decade, implying a

4Some fraction of emissions enters the ocean and biomass within a decade, so the shares ai do not

sum to unity.
5This choice is obtained by interpreting D directly as a variable causing damages and assuming, as
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global temperature adjustment speed of 2 per cent per year. These quantitative choices

parametrize the emissions-temperature response that is depicted in Figure 1. 6

3 General-equilibrium carbon price: no uncertainty

The advantage of our R(τ ) is that it allows obtaining the explicit social cost of carbon,

while maintaining a description of the climate system that is consistent with compre-

hensive climate models — this description proves useful also when the damages from

temperature increases are not known with certainty. Let ∆t denote the loss, measured in

utils, per unit of temperature increase Dt at time t . Below we introduce uncertainty and

learning regarding ∆t but, for the time being, assume that ∆t = ∆ > 0 is a constant.

To obtain the carbon price, that is, the social cost of current carbon emissions zt,

consider the effect of emissions at t on period t+ τ utility:

−
dut+τ

dzt
= ∆

dDt+τ

dzt
= ∆R(τ ).

The full loss of utils per increase in temperatures as measured by Dt+τ is thus a

constant given by ∆ for any future t+ τ , giving the social cost of carbon emissions zt at

time t, appropriately discounted to t, as

−
∑∞

τ=1 δ
τ dut+τ

dzt
= ∆

∑∞

τ=1 δ
τ dDt+τ

dzt

= ∆
∑

i∈I

βaiπε

ε− ηi

∑∞

τ=1 δ
τ (1− ηi)

τ − δτ (1− εj)
τ

= ∆
∑

i∈I

δπaiε

[1− δ(1− ηi)][1− δ(1− ε)]

= h. (3)

Value h compresses the present-value utility costs of current emissions to a number; it will

help to identify the currently optimal carbon price. We can justify this externality-cost

calculation in a general-equilibrium by introducing a consumption choice model following

in Nordhaus (2001), that doubling the steady state CO2 stock leads to 2.6 per cent output loss. For this

reason, the interpretation of π is “climate damage sensitivity” rather than “climate sensitivity”. The

Appendix of Gerlagh and Liski (2013) explicates these steps.
6In Figure 1, the main reason for the deviation from DICE is that DICE assumes an almost full

CO2 storage capacity for the deep oceans, while large-scale ocean circulation models point to a reduced

deep-ocean overturning running parallel with climate change (Maier-Reimer and Hasselman 1987). The

scientific literature suggests that the CO2 millennial depreciation in the DICE carbon cycle is too

optimistic (Archer and Brovkin, 2008).
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Brock and Mirman (1972), and by introducing economic losses from climate change as in

Golosov et al. (2011).7 Assume that the utility function is logarithmic in consumption

ct, and linear in intangible damages associated with climate change:8

ut = ln(ct)−∆uDt, (4)

where the potential direct utility losses per temperature increase are denoted by ∆u > 0.

Let kt denote total capital that is assumed to depreciate in one period, say, in a

decade. Combining log-utility for consumption with a production function where capital

contribution takes the Cobb-Douglas form, with 0 < α < 1,

yt = kα
t At exp(−∆yDt) (5)

leads to the workhorse model in analytical macroeconomics for the consumption choices

over time. The contribution of fossil-fuels, that is, carbon inputs zt, as well as labor lt

enter through the function At = A(t, lt, zt) that captures the details of the energy sector

of the economy. The income losses due to climate change arise as reduced output, and

depend on the history of emissions through the state variable Dt, defined through the

emissions-temperature response R(τ). The multiplier, ∆y > 0, is a constant damage

coefficient.

A convenient feature of the structure (4)-(5) is that the optimal policies become free of

the energy-sector details: the current policy for savings and emissions can be determined

when the current state of the economy is known.9 Here we merely assume that the output

is differentiable, increasing and strictly concave in emissions zt. The structure introduced

7The assumption of GDP losses together with the assumption that abatement is not a separate

choice but only related to the use of carbon inputs, is an important departure from the Nordhaus DICE

modeling tradition. Golosov et al. (2011) develop this “real business cycle model of climate change”.

Our analysis follows Gerlagh and Liski (2013) where we develop the carbon cycle with realistic delays

for this model, and also introduce a detailed energy sector that allows calibration of productivities such

that the model can produce the IPCC basic scenarios as the benchmark outcome.
8Golosov et al. (2011) do not have direct utility losses from temperature increase; including them

changes essentially nothing in the analysis.
9The details of the energy sector will affect the future development of the economy and thus the

future states of the economy and future policies. For this reason, we will introduce more structure to

the energy sector in Section 5.2.
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by (4)-(5) implies that the optimal allocations {ct, kt, zt}t>0 that maximize10

∑∞

t=0
δtut

will be characterized by policies where constant share 0 < g = αδ < 1 of the gross output

is invested,

kt+1 = gyt, (6)

and where the climate policy is defined through

∂yt
∂zt

= h(1− g)yt. (7)

Note that since ∂u
∂c

= 1/c = 1/(1 − g)y, expression (7) implies that the utility-weighted

carbon price ∂yt
∂zt

∂u
∂c

= h remains constant over time. Intuitively, the marginal output gain

from increasing carbon use at time t, having consumption value ∂u
∂c
, should be equalized

with the future utility-cost of current emissions, given by h. Using our previous expression

(3) for h, we can express the optimal carbon price, denoted by τ t =
∂yt
∂zt

, as

τ t = (1− g)yt∆
∑

i∈I

δπaiε

[1− δ(1− ηi)][1 − δ(1− ε)]
(8)

where

∆ = ∆u +
∆y

1− g
(9)

This description of the optimal policy now gives a structural interpretation for the loss

in utils, ∆, that we used to derive the full utility cost of current emissions in (3): it

incorporates the direct utility loss ∆u as well as the current and future output losses,

captured by ∆y/(1− g), from a current temperature increase.11

Proposition 1 (Gerlagh and Liski, 2013). Given the economy described by emissions-

temperature response (2), preferences (4), and technologies (5), the optimal carbon price

(8) is proportional to income, with proportionality depending only on δ, ∆, and the carbon

cycle parameters in (2). Given loss ∆, the same tax is optimal for any division between

utility and production losses satisfying (9).

10Note that we do not scale the objective with labor to avoid having time trends in the policy variables.

This implies no loss of generality; the solution for the case where the total, rather than average, utility

is maximized is available on request.
11The latter term takes this form since a current drop in output propagates to subsequent periods

through savings. See Gerlagh and Liski (2013) for the explicit derivation.
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We build on this general-equilibrium model in the analysis of learning. Learning of

climate impacts will change the climate policy variable over time, h = ht, so that through

(7) there will be learning-induced changes in the carbon price, τ t = (1− g)ytht.

Throughout the quantitative analysis, we assume 10-year periods; the first year is

’2010’ corresponding to period 2006-2015. We assume only output losses from climate

change and thus set ∆u = 0, to maintain an easy comparison to earlier studies. We take

the Gross Global Product as 600 Trillion Euro [Teuro] for the decade, 2006-2015 (World

Bank, using PPP). Throughout we assume a capital share of α = .3 and one per cent

pure rate of annual time preference, implying δ = .90 for decadal periods and resulting

in savings g = .27.

Normalizing the output loss parameter at unity, ∆ = 1, gives us the Nordhaus (2007)

baseline where a temperature rise of 3 Kelvin leads to about 2.7 per cent loss of out-

put.12 This, together with our carbon cycle, results in a carbon price of 22 EUR/tCO2,

equivalent to about 105 USD/tC, for 2010. This estimate is higher than the Nordhaus

baseline (2007) because of our lower pure rate of time preference; this choice facilitates

the calibration in Section 5.1.13

4 Carbon price learning

Our approach to climate change uncertainty is dichotomous: the climate change as de-

scribed through the emissions-temperature response R(τ ) is assumed to be perfectly

known but the impacts, as captured by ∆, are non-existing and it remains uncertain

whether ∆ will ever turn positive. This approximates the asymmetry of the availability

of evidence on the physical facts of the climate change, and, on the other hand, on the

socio-economic impacts.

How should the learning of damages be conceptualized when observations or signals

regarding the severity of the problem caused by temperature increases are lacking? Here

12To clarify the units, the damages are measured per Teraton of CO2 [TtonCO2], and the 3-Kelvin

rise follows from doubling the CO2 stock. We have chosen the value of π such that the normalization

∆ = 1 gives the Nordhaus case.
13Note that 1 tCO2 = 3.67 tC, and 1 Euro is about 1.3 USD. Our number 105 USD/tC is almost

precisely equal to the DICE-2007 carbon price when the elasticity of substitution parameter and the

pure rate of time preference are both chosen to take value 1, as in our analytical model. The number

appearing in Nordhaus (2007), that is 35USD/tC, can be matched by setting 2.7 per cent pure rate of

time preference. However, Tol’s data, used in the calibration below, does not exist for this value of time

preference.
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we develop a simple model for learning that preserves the tractability of the carbon

prices formulas introduced in the previous section. We want to model learning as a

phenomenon where potentially very little hard evidence on damages accumulates when

the climate change progresses.14

4.1 Beliefs

The economy can be in two states, It ∈ {0, 1}. If It = 0, no damages have been expe-

rienced by t. If It = 1, damages have appeared, and once It = 1, then It+τ = 1 for all

τ ≥ 0. The damage at time t, in utils, is ∆t = ∆It per unit of temperature measure Dt.

Thus, once damages appear, the policies can be determined exactly as in Proposition 1.

With no experience of damages prior to or at t, the experienced damage is zero. Note

that if It = 1, then the total damage experienced depends on state of the physical system,

that is, on the total temperature increase reached at time t: the damage equals ∆Dt at

t and ∆Dt+τ for all subsequent periods τ > 0. Since Dt is extremely persistent in past

emissions (see Fig. 1), there is an implied irreversibility of impacts that contributes to

the cautiousness of policies.

The hazard rate for damages, denoted as p, is the probability that damages start and

It = 0 moves to It+1 = 1. The hazard rate is a given constant but unknown to the policy

maker. p has has a discrete prior distribution: it can either take value p = 0 or p = λ.

The hazard rate can depend on the degree of climate change as measured by Dt, that is,

we can allow that only for periods where Dt > D > 0, the state can switch. We consider

this extension in Section 4.3, and assume now learning in all periods by setting D = 0.15

Since there are no prior climate experiments, we do not know the value of p. We

assume that there is a subjective prior probability µ0 > 0 for a positive hazard rate,

p = λ, which implies the probability for eventual climate impacts:

1− µ0 = Pr( lim
t→∞

It = 0) = Pr(p = 0)

µ0 = Pr( lim
t→∞

It = 1) = Pr(p = λ > 0).

Let µt denote the posterior probability that p = λ conditional on no learning by time

14Alternatively, gradual learning can follow, for example, through extreme whether events; we explain

the extension to this direction in the concluding section.
15For example, D can correspond to 2-degrees Celsius warming, but since we have little information

about the learning thresholds, we will set D = 0 in the calibration. Also, the solution of the model can

be easily extended to the case of different temperature brackets having different hazard rates.
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t. Each period where Dt > D = 0, but where no damages have appeared so far, It = 0,

climate change runs an experiment. If the outcome is It+1 = 1, which happens with

probability µtλ > 0, we have learned that p = λ, so µt+1 = 1. If the outcome is It+1 = 0,

we have not learned the state of nature with certainty, but we update the beliefs µt+1.

We can then write the Bayesian updating rule as16

µt = Pr(p = λ |It = 0) (10)

=
µ0(1− λ)t

µ0(1− λ)t + 1− µ0

.

which is the probability that climate change damages will ultimately arrive even though

such damages have not been experienced by time t. Note that µt declines over time:

“no news is good news”. The assessment of the distribution for damages becomes more

optimistic over time.17

4.2 Carbon price distribution

The model generates a distribution of damages. Let Z be a stochastic variable, measuring

the full future utility cost from increasing current emissions zt marginally: Z can take

the values Z1, Z2, ...., where Zτ is the current social cost of carbon if damages appear

for the first time, precisely at period t + τ . Thus, Zτ characterizes the present-value

marginal utility damages of current emissions zt, assuming that the damage indicator It

remains at zero for all periods prior to t + τ but then turns positive. Proceeding as in

Section 3, and using the emissions-temperature response from Section 2, we can obtain

the present-value of such delayed damages in closed-form:

Zτ = ∆
∑∞

t=τ
δτR(τ )

= ∆
∑

(i,j)

δπaibjεj
εj − ηi

δτ
(

(1− ηi)
τ

[1− δ(1− ηi)]
−

(1− εj)
τ

[1− δ(1− εj)]

)

.

16Note that Pr(p = λ |It = 0)×Pr(It = 0) = Pr(p = λ ∩ It = 0). The probability that there has been

no news by time t is Pr(It = 0) = µ0(1 − λ)t + 1− µ0. The probability that there has been no news by

time t and that p = λ is Pr(p = λ ∩ It = 0) = µ0(1− λ)t. Combining gives the equation.
17One could argue that impacts must ultimately arrive for a sufficiently severe climate change. While

the model can be extended to include temperature brackets where impacts arrive almost surely, it is also

reasonable to think that, for example, a long period of 2-degrees warming without impacts is evidence

for not having impacts at such temperatures. Even if one considers “no news is good news” learning to

be biased, this bias is consistent with the idea of having a conservative test against the climate policy

ramp, as explained in the Introduction.
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Given our model of learning, we find for the distribution of Z that

Pr(Z = Zτ |It = 0) = Pr(Iτ = 1 ∩ Iτ−1 = 0|It = 0)

which gives the probability that damages turn positive exactly after τ periods when the

current time t subjective belief for the climate problem is µt. To find the corresponding

cumulative distribution function for the social cost of carbon, denoted by Ft(Z), we first

establish the probability that the damage has revealed itself at period t, irrespective of

if t it is the first time:

Pr(It = 1) = (1− µ0) Pr(It = 1|p = 0) + µ0 Pr(It = 1|p = λ)

= µ0[1− Pr(It = 0|p = λ)]

= µ0[1− Pr(I1 = ... = It = 0|p = λ)]

= µ0[1− (1− λ)t]

We can generalize this to expectations at period t,

Pr(It+τ = 1|It = 0) = µt[1− (1− λ)τ ]

so that the distribution for the carbon price is then given by

Ft(Z) = Pr(Z ≤ Zτ |It = 0) = Pr(It+τ−1 = 0|It = 0)

= 1− µt + µt(1− λ)τ−1.

We can use this distribution to determine the social cost of carbon at time t as

dependent on beliefs µt.

Proposition 2 Conditional on no experience of impacts by time t (It = 0), the previous-

period distribution of the optimal carbon price per consumption Ft−1(Z) stochastically

dominates the current distribution Ft(Z). The social cost of carbon as measured by ht =

EtZ declines over time conditional on It = 0. Moreover,

ht = EtZ =
∑∞

τ=1 δ
τ
Et

dut+τ

dzt

= µt∆
∑

i∈I

{ δπaiε

[1− δ(1− ηi)][1− δ(1− ε)]

−
δ(1− λ)πaibjεj

[1− δ(1− λ)(1− ηi)][1− δ(1− λ)(1− εj)]

}

.
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Proof. It is straightforward to see that the expected change in damages associated

with current emissions are equal to

ht = Et∆
∑∞

τ=1 δ
τIt+τ

dDt+τ

dzt
= ∆

∑∞

τ=1 δ
τ Pr(It+τ = 1|It = 0)R(τ)

= µt∆[
∑∞

τ=1 δ
τR(τ)−

∑∞

τ=1(1− λ)τδτR(τ )].

Using our temperature-response function leads to the expression for ht. Decreasing car-

bon prices and stochastic dominance follow from µt decreasing over time.

The result gives a closed-form expression for the optimal carbon price policy depend-

ing both on the climate system parameters and on the current belief of the damage distri-

bution given by (µt, λ,∆). Recall that, from (7), the optimal general-equilibrium carbon

price is the income-weighted future utility-cost of current actions so that τ t = (1−g)ytht,

giving the learning-adjusted carbon price expression, analogous to (8), as

τ t = (1− g)ytµt∆
∑

i∈I

{ δπaiε

[1− δ(1− ηi)][1− δ(1− ε)]

−
δ(1− λ)πaibjεj

[1− δ(1− λ)(1− ηi)][1− δ(1− λ)(1− εj)]

}

. (11)

This result is the key to the observation that the “climate policy ramp”, that is,

the gradually tightening carbon price policy over time, can follow even with increasing

climate optimism over time: in a growing economy, the income-weighted social cost of

carbon can increase, although the optimism as captured by the declining ht increases.

The economy becomes more exposed to losses from climate change.

Limiting cases can be revealing. At time t = 0, where the subjective belief of damages

is given by µ0, if damages are almost surely observable, the optimal initial policy prior to

experimentation is the full information policy weighted with the subjective probability

for damages:

λ ≈ 1 ⇒ h0 ≈ µ0h

where h is defined in (3). However, if damages do not appear at time t = 1, then

conditional on no news, the carbon policy is

λ ≈ 1, I1 = 0 ⇒ h1 ≈ 0

because the subjective assessment µ1 drops to zero by the updating rule (10). The carbon

policy variable drops from its maximum value to its minimum value in just one period,
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because no news reveals the true state of the world precisely when λ ≈ 1. The effect is

particularly dramatic if the subjective prior µ0 assumes that climate is causing damages

almost surely, µ0 ≈ 1. On the other hand, for any given µ0 at time t = 0, if climate

change damages are hard to observe, then

λ ≈ 0 ⇒ h0 ≈ 0

simply because the climate change is a problem with a non-significant rate of appearances

in all cases. Note that in this case there will be no learning either: the subjective

assessment µt in (10) almost does not change over time.

Outside the extreme values for (µ, λ) discussed so far, for intermediate values we find

that the carbon policies as captured by ht will initially be high but ht will decline as t

increases conditional on no news by t. This pattern of carbon pricing fully incorporates

the understanding of future learning; the early prices reflect our initial beliefs. Thus, for

each point in time in the future, we can consider two separate carbon price levels: one

for the good news situation, and another for the situation where the damage has revealed

itself at a prior point in time. These two carbon price paths diverge from each other over

time for reasons that are obvious from the discussion above.

4.3 Learning thresholds

Before moving to the quantitative analysis, let us consider the situation where we ex-

pect learning only for climate change above a certain threshold level, covering situations

where the degree of climate change determines the intensity of experimentation. Suppose

learning takes place only above the temperature threshold, Dt ≥ D̄, corresponding, for

example, to 1 or 2 degrees Celsius above the pre-industrial temperature levels.

Proposition 3 Let h0 be the carbon policy in Proposition 2 for initial belief µ0, and

assume that temperatures generate information on damages only if Dt ≥ D̄. Let ht be

the optimal policy path if no damages are observed until period t. Let D0 < D̄ and t′

be the first period such that Dt′ > D̄. Then, prior to t′, the carbon policy variable ht,

increases over time: ht < ht+1 for 0 < t < t′.

Proof. Let T be the periods t for which Dt > D̄, if no damages are observed. It is

straightforward to see that the expected damages associated with current emissions, in
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utility terms, satisfy

ht = ∆Et

∑

τ∈T

Pr(Iτ = 1|Iτ−1 = 0)
∑∞

s=τ δ
sdDt+s

dzt

= ∆Et

∑

τ∈T

Pr(Iτ = 1|Iτ−1 = 0)
∑∞

s=τ δ
sR(s)

< ∆Et

∑

τ∈T

Pr(Iτ = 1|Iτ−1 = 0)
∑∞

s=τ−1 δ
sR(s)

= ∆Et+1

∑

τ∈T

Pr(Iτ = 1|Iτ−1 = 0)
∑∞

s=τ δ
s−1R(s− 1)

= ht+1

The first line follows as with certainty It = 0, for 0 < t < t′. The fourth line follows as

beliefs do not change between t and t+ 1.

As long as no information can be obtained, policy becomes more strict, in utility

terms, over time until the temperatures start generating information. Note again that

since the actual carbon tax is a multiple of income, the tax implied by h0 for Dt < D̄

will be growing over time at a rate exceeding the growth of the economy. Recall that our

emissions-temperature response implies that the temperature peak for a given emissions

impulse lags 60-70 years behind the date of emissions: the learning effects described here

may start several decades after emissions have set in motion climate change. Mean-

while, optimal policies are characterized by constant beliefs, but by potentially sharply

increasing carbon prices.

5 Quantitative assessment

5.1 Matching Tol

Richard Tol (2009) conducted a comprehensive survey of the existing estimates for the

social cost of carbon. From the sample of 232 estimates he derived a distribution for

the carbon price measured in 1995 USD/tC, for various time discount rates used in the

studies. We match the carbon price distribution F (Z) implied by our learning model to

that in Tol to obtain estimates for the three parameters (µ, λ,∆) above.

The exercise provides a basis for our illustration in that the initial carbon price level

will be consistent with the views expressed by the experts; the updating of the beliefs

is then given by the model interpretation. The distribution in Tol (2009) arises from

multifaceted differences in the underlying original studies — arguably, the heterogeneity

is driven by different subjective views on the fundamentals of the climate problem. In

contrast, in our interpretation of the social cost distribution the heterogeneity is coming
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purely from different possible outcomes for the arrival date of the damage. This uncer-

tainty is parametrized by µ0 and λ; for given parameters, we can find the cumulative

distribution for the arrival times, and then translate this into a distribution for the social

cost of carbon, comparable with that in Tol.

Consider now Figure 2 which depicts the blue linear spline curve connecting the 33, 50,

67, 90 and 95 percentiles of carbon prices, expressed in 2010 EUR/tCO2, as reported by

Tol.18 We focus on Tol’s sample corresponding to 1 percent pure rate of time preference.19

There is a mass point at zero, corresponding to 20 per cent of the assessment indicating

insignificant or positive climate change impacts.20

We calibrate the climate system and economic parameters as in Section 3, and then

fit our cumulative damage distribution function F (Z) by choosing the initial prior µ0,

the hazard rate λ, the damage parameter ∆. We set D = 0, assuming that any level of

temperature increase produces information, that is, there is no delay in the information

acquisition.

We can match our cumulative distribution with Tol’s by choosing the triple (µ0, λ,∆).

This can be achieved either by minimizing the errors at the reported percentile points,

or, more directly, by matching the means and the end-points of the distributions. Both

approaches are almost outcome-equivalent; we followed the latter approach to allow for

the interpretation that the initial assessment of the carbon price equals exactly the assess-

ment held by the profession. Moreover, to avoid giving too much weight to a few extreme

cost estimates in the sample, we truncated the fitted distribution at 93 EUR/tCO2 by

setting ∆ = 4.2, that is, this is by factor four higher than the middle-of-the-road damage

assumed in Nordhaus (2007) — the implied output loss is then about 10.7 per cent from

doubling the CO2 stock, if climate impacts materialize. To match the lower end of the

distribution, we set µ0 = .8, meaning an initial 20 per cent assessment of no negative

climate impacts. Finally, we choose λ to match Tol’s mean value for the carbon price

which is 32.7 for 2010 EUR/tCO2 (his Table 2, 2009). We can obtain value λ = .07 such

that the initial carbon price implied by our model exactly matches 32.7. The resulting

cumulative distribution is depicted in Figure 2 as the green line.

We have forced one structural interpretation of the existing cost distribution to obtain

strong conclusions for the subjective views on the likelihood of climate change damages.

18Note that 1 tCO2 = 3.67 tC, and 1 Euro in 2010 is about at parity with 1 USD in 1995.
19Tol reports distributions 0, 1 and 3 per cent discount rates. Our analysis of the 3-percent case

produced very similar qualitative results; the levels of the policy variables systematically lower.
20This number we inferred from Tol (2008).
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Figure 2: Fitting cumulative distribution with Tol’s (2009) distribution.

First, the damage parameter, ∆ = 4.2, implies that a 3-Kelvin temperature increase

leads to a 10.7 per cent output loss if the impacts arrive at such temperature levels.

Second, λ = .07 means that information is generated very slowly – 7 per cent probability

of learning per decade. A geometric distribution, λ = .07 per decade, means that the

expected arrival time for a severe climate change damage event is about 140 years. After

100 years without damages, the posterior for the eventual impact arrival is still 65 per

cent.

5.2 Climate-economy adjustment paths

By the above calibration procedure, we have set the optimal initial carbon price for 2010

at 32.7 EUR/tCO2 but how should the carbon price develop over time? We consider

now the optimal carbon policies using a climate-economy model from Gerlagh and Liski

(2012) that determines the development of basic macro variables over time. The model

has the structure introduced in Section 3 so that savings are given by a policy where

fraction g = αδ of output is saved in a period, and carbon policies are given by the

carbon price per consumption ht that we derived above. We calibrate savings to 25

per cent to maintain consistency with comparable climate-economy models; we set time

discounting to 1 per cent, which leads to a relatively low capital share of output. Climate

policy variable ht follows from the carbon cycle calibration and from the parametrization

of the learning process described above.

While the policy variables (g, ht) can be separately solved and calibrated, the climate-

economy adjustment paths will depend also on the details of the energy sector. Consider

19



a production function as in (5) but further specified to

yt = kα
t [At(ly,t, et)]

1−α exp(−∆yDt)

At(ly,t, et) = min {Ay,tly,t, Ae,tet}

where the overall labor-energy composite At(ly,t, et) takes a CES form with extreme low

elasticity of substitution between labor in the final-good sector ly,t and energy et. That is,

we consider a Leontief structure for the labor-energy composite.21 Final good and energy

productivities Ay,t and Ae,t are calibrated so that the model matches the business-as-

usual (BAU) quantities with the A1F1 SRES scenario from the IPCC (2000). Energy

et uses labor: the core allocation problem is how to allocate a given total labor lt at

time t between final output ly,t, fossil-fuel energy, lf,t, and non-carbon energy, ln,t. Thus

the energy and climate policy steers the labor allocation (ly,t, lf,t, ln,t)t≥0 and thereby

the quantities of fossil-fuel, ef,t, and non-carbon energy, en,t. Both energy sources are

intermediates, summing up to the total energy input:

et = ef,t + en,t.

We assume that ef,t can be produced with constant-returns to scale technology using

labor lf,t and the fossil-fuel zt,

ef,t = min{Af,tlf,t, Btzt},

where Af,t and Bt describe productivities. The fuel resource is not a fixed factor and

commands no resource rent; by this assumption, our focus is on the “coal phase”, as

coined by Golosov et al. (2011), where the fuel resource relevant for long-term climate

policies is in principle unlimited. In contrast, the non-fossil fuel energy production is

land-intensive and subject to diminishing returns and land rents (Fischer and Newell,

2008):

en,t =
ϕ+ 1

ϕ
(An,tln,t)

ϕ

ϕ+1 ,

where ϕ > 0 describes the elasticity of supply from this sector, given the labor cost.

The model structure described here can reasonably well capture the two main adjust-

ment channels to carbon policies: energy savings that typically feature the early decades

of the adjustment, and then decarbonization that is needed to meet the long-run climate

targets. The use of a Leontief aggregation for energy and final goods implies that we

21This assumption implies that early emissions are reduced through energy savings but long-run targets

are achieved through decarbonization.
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focus on the long-run decarbonization. All parameter choices are the same as in Gerlagh

and Liski (2012), excluding those related to the modeling of learning of damages and the

discount fact which we set to reflect 1 per cent annual discounting. Time periods are

decades.22

2000 2020 2040 2060 2080 2100 2120 2140 2160 2180 2200 2220
0

50

100

150

200

250

300

Year

E
U

R
/tC

O
2

 

 

No news path

DICE 

Figure 3: The optimal carbon price path conditional on no news on damages

5.2.1 “Climate policy ramp”

Let us now look at the optimal time path for the carbon price conditional on no learning,

that is, we focus first on the evolution of the carbon pricing policy when no news on

climate impacts arrive. Note that without impacts, the economy is unaffected by the

climate change but, since the carbon policies are in place, emissions will be reduced

below the business-as-usual path. The optimal carbon price path is depicted as the green

path in Figure 3 over the coming century and beyond (we come to the other path shortly).

Strikingly, for the learning parameters derived, it takes close to 200 years for beliefs to

become optimistically enough to support the carbon price to start declining – despite

the ultimate decline, the social cost of carbon virtually never dies out. It is practically

impossible to have an affirmative assessment from not observing such an event that severe

damages will not ultimately arrive.

For the shape of the carbon price path, recall that the optimal carbon price is pro-

portional to income, τ t = (1 − g)ytht. In table 1, we decompose the effect the income,

22See the Appendices of Gerlagh and Liski (2012) for the temporal solution of the labor allocation as

well as for the details of the calibration. See also the supplementary material of that paper.
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τ t = (1− g), and the utility-cost, ht, to the carbon price over time.

where the global income about doubles during the first 50 years, and then again more

than doubles in the next 50 year period, after which the growth starts to level off. The

scenario for the total global per-capita income growth is driven by the rise of the emerging

economies, and also consistent with the IPCC baseline predictions.

Figure 3 also depicts the carbon price path that corresponds to the base calibration

with certainty, based on Nordhaus’ DICE (2007) middle-of-the-road damage, correspond-

ing to ∆y = 1 – our model tracks very closely the DICE outcome when damages are

assumed to exist from the start. For 2010, with 1 per cent annual discounting this path

gives about 22 EUR/tCO2 as the optimal price which exceeds Nordhaus’ (2007) base-

line policy; assuming 2.7 per cent time discount rate leads to his initial number almost

precisely. The blue line captures the climate policy ramp, that is, the gradualism in tight-

ening of the policies over the coming century and beyond. Our climate policy proposal,

without actual experienced damages, has the same shape, and hence the main result of

the paper follows: the policies should become tighter as the climate change progresses

even if the impacts become more uncertain. The fact that our policy path has a higher

level is a consequence of the calibration procedure; the mean value of estimates in the

literature for the social cost of carbon lies above the Nordhaus’ number. Assuming that

the potential high-damages are about 8 per cent for a 3 Kelvin temperature increase,

brings the optimal policy ramp close to the certainty policy, with a similar shape of the

policy ramp for the coming decades.

income externality share carbon price

2010 437 .075 33

2050 1065 .070 75

2100 2215 .063 140

2150 3719 .055 206

2200 5123 .047 241

Table 1: Decomposition of the carbon price to income (Trillion 2010 EUR) and to the

externality share of income. Carbon prices in EUR/tCO2 year 2010.

22



5.2.2 Virtual carbon price

It may seem surprising that carbon prices under learning, as depicted in Figs. 3, reach

such high levels, despite no actual damage taking place. Obviously, in addition to the

income growth development, the persistent tightness of the climate policy is supported

by the possibility of real damages that may arrive at any time period. The virtual carbon

price captures the economic meaning of the threat: it is the carbon price at time t that

would be socially optimal if bad news arrived at time t. Fig. 4 depicts the virtual carbon

price path for the near and longer terms. Note that the price path is “virtual” because

it is drawn against the economy that does not, but could, experience the damage. The

starting level is given by our calibration at 93 EUR/tCO2, as this is the highest price

estimate that we applied to the immediate arrival of impacts. The virtual price increases

for a long period of time reflecting the expanding world economy.

As the level of the virtual price path indicates —it reaches levels exceeding the carbon

price without news by a factor of ten— the bad news outcome can be characterized as a

catastrophic outcome.
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Figure 4: The virtual carbon price

6 Concluding Remarks

The learning model used in the analysis is stylized — it does not allow a gradual arrival of

information, say, learning of damages from extreme weather events. However, the model

can be easily extended to this direction, and under certain assumptions, qualitatively
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similar carbon price dynamics can follow. The key observation is that if the precision of

the estimates for the climate impacts increases over time, and if a lack of precision leads to

a carbon price mark-up, then the assessment of the utility-costs from current emissions in

most cases declines over time, while the expanding economy still puts pressure on carbon

price increases.

Consider the following model of learning about the true damage parameters ∆y and

∆u. Assume that priors are normally distributed random variable with mean my (mu,

resp.) and variance σ2
y (σ

2
u, resp.). Signals are the realizations of damages that come from

the true distributions, but initially we cannot tell apart damages from weather volatility

and those from more persistent climate impacts. We experience output losses given by

exp(−Λy,tDt)

where we observe the state of the climate Dt, and output losses contain a stochastic

signal for the persistent damage sensitivity

Λy,t = ∆y + εy,t

with εy,t ∼ N(0, σ2
ε) and i.i.d. across periods and also independent of ∆y. While we

observe Λy,t but cannot tell apart the contribution of the noise and the true damage

that has an initial prior ∆y ∼ N(m∆,y, σ
2
∆,y) with m∆,y > 0. Thus, in expectations,

temperature causes output losses but there can also be temporary positive productivity

shocks, εy,t < 0. Let Hy,t = Λy,1, ...,Λy,t be the history of observed damages. Then, in

this setting, we can apply the normal learning rule to see that after sufficiently many

observations, EΛy(·) converges to the initially unknown true mean ∆y. However, for such

learning, the improving estimate will have no effect on policies, as, obviously, there will

be no expected trend in learning. Also notice that the model allows for positive effects

of climate change on output. To capture the effect of improving estimates on policies,

consider the intangible damages that we can include in the periodic utility as having a

log-normal distribution,

ut = ln(ct)− exp(Λu,t)Dt

where

Λu,t = ∆u + εu,t

with zero-mean normal realizations εu,t that are i.i.d. across periods and also independent

of ∆u. Here, too, the initial prior is normal, ∆u ∼ N(m∆,u, σ
2
∆,u). Thus, again, the

realized (experienced) damage depends on the unknown damage-generating process and
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on the noise term. As above, we obtain the expected intangible damage, after a given

history of observed damages. We can easily calibrate such a model with a lognormal

distribution of intangible damages.

However, in this set up, there is a difference between the tangible damages that have,

in utility terms, normal distribution and the intangible damages that have, in utility

terms, log-normal distribution. For the intangible damages, the expected damages have

a skewed distribution with a fat tail for large damages, so that

−E{exp(Λu,t+1)Dt+1} = − exp(Λu(Hu,t) +
1

2
var[Λu |Hu,t ])Dt+1 (12)

where var[Λu |Hu,t ] is the conditional variance of the intangible damage after history Hu,t

of observations. By the normal learning rule, after t observations, this takes the form:

var[Λu |Hu,t ] =
1

thεu + h∆u

+
1

hεu

(13)

The expected damage hence depends on the distribution: the optimal policy ht will

depend on the distributional assumptions and on the details of learning. Moreover, (13)

implies that the fat-tail effect on damages declines over time.

If all damages follow log-normal distribution as in (12), our carbon price distribution

is also log-normal since τ t is a linear function of the damage. This allows us to follow

similar steps as for the simple analysis presented in the main text, to conclude that the

effect of uncertainty on carbon pricing declines over time.
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