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Abstract

This study evaluates the impact of fuel taxes on new car purchases, using exhaustive individual-
level data of monthly registration of new cars in France. We use information on the car holder to
account for heterogeneous preferences across purchasers, and identify demand parameters through
the large oil price fluctuations of this period. We find that the short-term sensitivity of demand
with respect to fuel prices is low, particularly for corporate purchases. Using our estimates to
compute elasticities, we assess the impact of a policy equalizing diesel and gasoline taxes. Such a
policy would reduce the share of diesel-engines in new car purchases without substantially changing
the average fuel consumption or CO2 intensity of new cars. Alternatively, we find that a (revenue-
equivalent) carbon tax has only small effects on average fuel consumption or average CO2 intensity
of new cars.
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Highlights

• A nested logit model of new car purchase decisions is estimated.

• Corporate purchases react less to fuel tax than private purchases.

• Two policies are simulated: alignment of diesel and gasoline tax and a carbon tax.

• Both policies have only small impacts on fuel efficiency and carbon emissions.

• Aligning diesel and gasoline tax shifts consumption away from diesel cars.
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1. Introduction

In France, road transport produces more than a third of total CO2 emissions and much higher

shares of other greenhouse gases.1 On the one hand, this problem might be alleviated by a shift

to diesel-fueled cars, as diesel is more dense in energy and diesel-engines particularly efficient in

using it: typically, a diesel car produces less CO2 per km than a similarly-sized gasoline-fueled

car. On the other hand, diesel cars also produce medically hazardous fine particles (in particular

black carbon) and nitrogen oxides (NOx). Thus, policy makers are facing both a global climate

problem as well as a local health issue; shifting toward more diesel-fueled cars might alleviate the

global externality, but increase local concerns.

Facing the conundrum between global and local pollution, European policy makers have for a

long time opted to support diesel vehicles, particularly in France (Hivert, 2013). Recent episodes

of smog have now sparked a renewed debate about this support for diesel. In December 2016,

air quality in France dropped so low that the government heavily restricted driving and Paris

authorities have banned the oldest and most polluting vehicles from the city center, pledging

“an end to diesel” in Paris by 2020. As stressed, for instance by Mayeres and Proost (2001),

environmental benefits of diesel cars have been overestimated: the environmental costs of diesel

cars are much higher than those of gasoline cars. Diesel cars emit more fine particles and NOx that

harm human health, and new technology decreases the spread between CO2-emission-efficiency of

diesel and gasoline cars.2 The production of diesel-models is also more CO2 intensive because they

are heavier. Against this background, the French government announced in 2015 the progressive

reduction of the relative tax advantages for diesel fuel.3 This tax alignment adds to a previous

“carbon tax” passed in France in 2003 at a modest e15 per tonne of CO2. A carbon tax is

proportional to the amount of CO2 emitted, aiming at aligning the private cost to the consumer

and the externality cost to society.

Emissions from road transport depend heavily on the vehicle fleet in circulation, as cars are

durable goods, thus, regulation that affects the entry of new vehicles has long-time effects on emis-

sions. While mandatory standards (command-and-control regulation) were the most prominent

regulation until the 1990s, alternative regulations have been tested since, in particular economic

1See http://www.citepa.org/en/air-and-climate/analysis-by-sector/transports Retrieved on 14/03/2015.
2Miravete et al. (2015) go as far as to argue that diesel-friendly policy in Europe is essentially a non-tariff trade

barrier against American manufacturers.
3The difference was reduced from 14.9 cent in 2015 to 11.7 cent in 2016 and 9.4 cent in 2017. The path to

full equalization such as described in this study has yet to be defined; see http://www.douane.gouv.fr/articles/
a12285-carburants-gazole-super-e10-taux-de-taxe-par-region Retrieved on 05/09/2017.
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incentives such feebates or fuel taxes.4,5 Fuel taxes have the advantage of affecting both the present

and future emissions: car owners are immediately encouraged to drive less with their current car

when fuel prices rise, while at the same time investment in fuel-efficient cars becomes more attrac-

tive: this paper focuses on the latter aspect. Some previous results on car choice, based mostly

on the US market, emphasize an “energy paradox,” meaning that consumers systematically under-

value future economies of energy-efficiency (e.g. Allcott and Wozny, 2014); others, like Sallee et al.

(2016) or Busse et al. (2013) find no evidence of such consumer myopia. Although the literature

on the subject is large,6 meta-studies (Helfand et al., 2011; Greene, 2010) find that the empirical

evidence about the energy paradox is inconclusive.

Aside the mileage, the effect of fuel taxes on carbon emissions is mediated by the extent to

which car purchases react, i.e. whether such taxes change the composition of the vehicle fleet toward

more fuel efficiency (greenhouse gases) and the share of diesel cars (local pollution). This study

estimates the short-term sensitivity of automobile purchases to changes in fuel prices in France.

We evaluate the impact of two (hypothetical) fuel tax policies on aggregate characteristics of the

vehicle fleet in circulation, leaving aside the question whether consumers adjust their mileage both

to changing fuel prices and to changing fuel efficiency of their car (potential rebound effect).7 We

contribute to the literature by addressing the aggregate impact on the composition of the vehicle

fleet in circulation, disregarding whether a low sensitivity to fuel prices is due to elastic mileage

or to consumer myopia.

We use French car registration data from 2003 to 2007, which includes exhaustive information

about both household and firm automobile purchases. Our main focus lies on the aggregate impact

of fuel taxes on fuel consumption, CO2 emission intensity and the share of diesel purchases. Our

dataset links technical car characteristics to information on the car holder. This enables us to

define consumer types to account for heterogeneity in preferences across purchasers. In particular,

4Besides recent scandals show that standards seem difficult to enforce effectively.
5Feebates, a system combining fees (for more polluting cars) and rebates (for less polluting cars) were imple-

mented in several European countries in the 2010s. This mechanism is expected to shift consumer expenses toward
less polluting goods, and to be self-financed as the fees should compensate the rebates. However, D’Haultfœuille
et al. (2014) show that the French experience has led to unexpected results. In absence of previous empirical
evidence on consumers elasticities to car prices, the feebate system has resulted in a sharp increase in car sales, but
also in CO2 intensity. This disappointing result is partly explained by a “rebound effect”: with a more fuel-efficient
car, the cost per kilometer is lower, which may induce more driving.

6Greene (2010) cite as much as 28 papers on this question.
7There are four components to the reaction of total emissions to fuel taxes: the direct mileage elasticity to fuel

prices, the elasticity of the new car’s fuel efficiency to fuel prices (analyzed here), the elasticity of mileage to this
new fuel efficiency and the elasticity of car lifetime. Frondel and Vance (2014), for example, examine the first point
and find that the elasticity of mileage to fuel prices is not significantly different for diesel and gasoline drivers. We
examine the second point. Small and Van Dender (2007) examine the third point. Adda and Cooper (2000) work
on the fourth point.
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we distinguish between private consumers and firms. While the latter represent more than one-

third of purchases of new cars in France (over our period), virtually no evidence exists so far on

their responsiveness to changes in fuel prices.8,9

As it is common in this literature, we rely on a static discrete choice model assuming that

the decision to buy a specific car depends on several car characteristics, including the cost per

kilometer. The nested logit specification enables us to model substitution patterns depending on

car market segments and on fuel-type versions. We identify the impact of fuel cost in car choice

using time variation in fuel prices and cross-sectional differences in fuel efficiency. We deduce the

elasticity of demand for cars with respect to an increase in fuel taxes.

Our results suggest that short-term sensitivity of demand with respect to fuel prices is generally

low, but presents significant heterogeneity across purchasers. The difference between private and

corporate purchases is particularly salient: firms are much less reactive than households. We use

our estimates to simulate the short-run impact of two hypothetical policies, the equalization of

diesel and gasoline taxes and a “carbon tax.” Both policies increase taxes relative to the status quo

but they are calibrated to be revenue-equivalent to each other.10 Assuming that consumers react

identically to price changes from fuel tax and from oil market fluctuations, our results suggest that

equalizing diesel and gasoline taxes would reduce the market share of diesel cars (from 69% to

65%) in the short-run without notably changing average fleet fuel consumption or CO2 intensity.

The carbon tax leaves the diesel share almost constant and has a similarly small impact on the

other two outcomes. Overall, our results do not suggest a strong short-term impact of fuel taxes

on car choices.

This study is in line with the literature on the impact of fuel prices on the automobile sector.

Most papers focus on American data (Allcott and Wozny, 2014; Busse et al., 2013; Klier and Linn,

2010) and concentrate on the question of consumer rationality, as reviewed in Greene (2010) and

Helfand et al. (2011), while we choose to take a policy maker’s perspective and concentrate on the

aggregate vehicle fleet characteristics. Klier and Linn (2013), who evaluate the effect of fuel prices

on new vehicle fuel economy in the eight largest European markets (including France), observe

strong differences between European and American markets. Much of this existing literature relies

on data with little or no information on consumers, while we have individual data matching cars

8Goldberg (1995) notes that private sales underestimate total sales of new vehicles because of the "existence of
fleet sales".

9Virtually nothing is known about the utilization behavior (mileage) of firms, which is why we refrain from
attempting to calculate the overall impact of the policies on carbon emissions.

10As a consequence, our carbon tax scenario is more ambitious than the tax voted in France.
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to consumers and can identify corporate purchases. Previous results for France suggest that the

elasticity of fuel demand to fuel prices in France is heterogeneous across demographic groups (Clerc

and Marcus, 2009), depending notably on working status. We only estimate short-run reactions,

as we take supply as given: list prices can be adjusted in the medium-term and the set of available

cars might change in the long-run.

The article is organized as follows. Section 2 explains our assumptions on the decision making

process. Section 3 presents the data and some descriptive statistics. The model is presented in

Section 4. Section 5 discusses results and robustness tests, and Section 6 concludes.

2. Choice model

To model market shares of new vehicles, we rely on a standard discrete choice model with

differentiated products. More specifically, we assume that the purchaser buys one product max-

imizing his utility that is a linear function of new vehicle characteristics and a vehicle-specific

unobserved effect. The individual valuation of these vehicles may vary among individuals, like e.g.

Allcott and Wozny (2014), tracing back to seminal work by McFadden (1978).

We assume that the consumer decision can be modeled as a hierarchical choice, choosing first a

car segment (i.e. SUV, compact, etc; see list in Table 1), then a model (combination of nameplate

and car body style) within this segment, and, finally, one of the two fuel-type versions of this

model.11 While this structure is largely ad hoc, it seems empirically validated by our parameter

estimates (see Appendix D). We nevertheless perform robustness checks with less hierarchical

decision trees (see Section 5.4). The nested logit model yields heterogeneous substitution patterns

between products that are more or less similar; for instance a sporty BMW Z3 is more substitutable

to a BMW Z4 than to a bulky Renault Kangoo. We also consider an outside option, which is not

to buy any new vehicle.12 This substitution pattern is represented in the tree diagram of Figure 1.

The individual utility of choosing the product with model (combination of nameplate and car

body style) j, fuel-type f and segment s, for purchaser i at month t is written:

uijft = αi + βip
km
jft + γ1ipjft + γ2iXjft + ξijft + εijft, (1)

11In order to clarify the vocabulary, nameplate refers to the brand name of the car, for instance Corolla, Prius.
Within the same nameplate, there are usually several models that are defined in this study by the intersection of
a nameplate and a body style, i.e. Corolla sedan or Corolla station wagon. Each model typically exists as two
different products, i.e. in a diesel- and a gasoline-version.

12As we consider monthly sales, the outside option’s market share is likely to be much larger than any other
option’s share. For the sake of comparison, over the period the number of new cars registered a month ranges from
75,000 to 160,000 vehicles, for around 37.5 millions of drivers in France.
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Figure 1: Nested decision-making structure of the car purchaser

where pjft denotes the car price and Xjft represents the characteristics of new cars. pkmjft is

the cost at time t for the amount of fuel needed to drive one km with the model j of fuel-type

f .13 ξijft measures the unobserved (to the econometrician) preference for product jf . As such, it

captures attributes like perceived quality, design and reputation.

We rely on a nested logit specification with two nesting levels to reflect our decision process of

Figure 1. This means we assume the error term can be decomposed as:

εijft = νist + (1− σ2i)(νijt + (1− σ1i)eijft), (2)

where νijt measures the individual preference for unobserved characteristics of model j common

to both fuel versions, for example design, while νist is the consumer’s overall preference for seg-

ment s, for example status symbol value of SUVs. The remaining error eijft is assumed to be

independent and identically distributed according to an extreme value distribution. There is a

unique distribution for νist and νijt such that εijft follows an extreme value distribution (Cardell,

1997). This specification is standard in this literature (see in particular Berry, 1994).

The parameters σ1i and σ2i capture the correlation between individual preferences for cars

within nests, as defined above. As shown by McFadden (1978), the nested logit model is consistent

with random-utility maximization for values of σ1i and σ2i between 0 and 1. σ1i = 0 means that

substitution effects are identical across and within model,14 while a high σ1i, approaching 1, implies

13Another way to look at this would be to multiply the fuel consumption by the number of kilometers expected
by the purchaser and using some sort of discounting; this is equivalent to our presentation if βi is defined to include
this expected number of kilometers and discount factor of purchaser i.

14“Within-model” substitution refers to the substitution between the gasoline-powered and the diesel-powered
versions of the same model.
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a high correlation between preferences for both fuel-versions of the same model. σ2i = 0 implies

that the purchaser is a priori indifferent to substitute between models within and across segments

(see for example Verboven, 1996 for a more complete discussion of these terms).

This nest structure is based on the commonly agreed structure of the automobile market, but

its order with the fuel-type versions is largely ad hoc. We therefore present robustness checks

with alternative nest structures at the end of the results in Section 5. This does not alter our

conclusions fundamentally.

3. Data and descriptive evidence

3.1. New vehicle registrations

We use the exhaustive dataset of all new cars registered in France from January 2003 to

November 2007, provided by the Association of French Automobile Manufacturers (CCFA, Comité

des Constructeurs Français d’Automobiles), giving us over 7 million observed registrations. As a

feebate scheme was introduced in January 2008, which dramatically changed the demand for fuel

economy, we only use data up to the date of its announcement in November 2007.15

Our data includes all information necessary for the registration of a new car, i.e. both technical

specifications of the car as well as demographic information on the purchaser. The CCFA has

further linked this data to list prices of new cars as provided by the car manufacturers.16

A product is defined by brand, nameplate (Corolla, Kangoo, etc.), fuel-type (diesel or gaso-

line),17 CO2 intensity class and body style (for instance city-car and sedan).18 Moreover, the

dataset contains other characteristics like number of doors, horsepower, weight, cylinder capacity.

Given the outlined structure of the decision process, we exclude models available with only one

fuel-type; this is only the case for exceptional cars which represent overall 7% of sales.19

3.2. Types of consumers: demographic groups

Our administrative registration data match every sale of a new car with information on the new

car owner. We can distinguish between private buyers and firms. Fuel price elasticities are likely

15See D’Haultfœuille et al. (2014) for an analysis of this policy and a description of this dataset.
16List prices may differ from the actual selling prices, which are unobserved.
17We exclude electric and hybrid vehicles as they constitute a tiny share of the French market over the examined

period.
18The definition seeks to be detailed enough to avoid the aggregation of heterogeneous products. At the same

time, a too narrow definition yields many zero monthly market shares, which have to be dropped by definition: the
logit model does not accommodate zero market shares, conceptually, and we cannot take the log of zero, practically.
The definition used here is similar to Allcott and Wozny (2014) and somewhat more detailed than those used in
most of the literature (e.g. Goldberg, 1995, and Verboven, 1996).

19One of the robustness checks verifies that this assumption is not crucial for the results, cf. Section 5.4.

7



Table 1: Descriptive statistics: main characteristics of new car registrations 2003-2007

Products Sales-weighted Products Sales-weighted
By type of car-body By class of CO2 (g/km)

City-car 3% 7% ≤100 0% 0%
Compact 14% 34% 101 to 120 4% 18%
Sedan 33% 24% 121 to 140 9% 27%
Minivan 13% 24% 141 to 160 14% 33%
Utilitarian 6% 4% 161 to 200 29% 21%
Sport 20% 3% 201 to 250 26% 6%
All-road/SUV 10% 5% >250 18% 2%

By horsepower By type of fuel
≤60 14% 34% Gasoline 57% 32%
61 to 100 35% 60% Diesel 42% 74%
101 to 140 27% 10%
141 to 180 13% 2%
>180 10% 1%

Number of products and observations 2,148 7,828,903
Source: CCFA, authors’ calculations.

to be related to consumer characteristics such as income, working status and area of residence.

Most of the relevant literature on fuel elasticity relies on aggregate data, but as noted by Bento

et al. (2012), this omission might entail erroneous findings about fuel economy valuation.

In order to account for heterogeneous preferences, we split our sample into consumer types

based on demographic characteristics: we differentiate three firm sectors and three occupational

types of private consumers. We further differentiate types based on geography and income, result-

ing in 30 distinct consumer types. These categories aim at capturing factors essential to vehicle

choice and fuel-price sensitivity: mileage and preference for diesel cars, as well as a comfort-price

trade-off. The location additionally captures the extent to which a buyer can substitute with other

means of transports (bike, public transport, etc.). The groups are designed in a way to explain as

much variation in diesel share, annual mileage20 and car price as possible.

Table 2: Average mileage by purchaser type (private households only), km/year

Not employed Employed
Income Low High Low High
Urban 10,850 10,950 14,950 15,600
Suburb./rural 10,750 14,300 16,250 18,850
Paris urban 9,750 14,050
Paris suburban 11,950 18,350
Source: INSEE National Transport and Travel Survey 2007, author’s calculations.

For both private consumers and firms, we differentiate between types of residence areas. Resi-

20Information on annual mileage is available for households only and not by age group, computed from INSEE
National Transport and Travel Survey 2007, see Table 2.
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Share of population going to work by car

below 55%
55-70%
70-80%
over 85%

Share of diesel purchases

below 65%
65-70
70-75%
75-80%
over 80%

Figure 2: Overview of spatial variation in share of diesel cars and mileage
Source: CCFA (left graphic) and INSEE National Transport and Travel Survey 2007 (right
graphic), authors’ calculations.

dence area (rural or urban) accounts for differences in average travel distance and the availability

of means of transport other than the car. Residence area is derived from the postal code: we

sort areas of residence between urban Paris, the larger Paris metropolitan region,21 other urban

areas and suburban/rural zones. Different types of residence areas have considerably different av-

erage travel times and distances (Baccaini et al., 2007). The average yearly mileage is consistently

smaller in the Paris region with its dense public transportation network than in other comparable

areas.

Activity status is an additional important factor for private owners, as employed consumers

have larger mileage across all geographic areas, shown in Table 2. Indeed, the difference between

average yearly mileage ranges from around 10,000 km/year for non-active households living in

urban Paris, to almost twice more for working households living in wealthy suburban areas. As

shown in Clerc and Marcus (2009), French private consumer elasticity to fuel prices largely depends

on whether the consumer uses their car to go to work, as commuting represents the majority of

kilometers driven in France. The Paris region is again special to this extent as reflected in Figure 2,

which shows that this region has an exceptionally low share of people using their car to go to work.

21In the following, we use the term “Paris” or “urban Paris” for Paris and its close and densely populated sub-
urbs (departments Paris (75), Hauts-de-Seine (92), Seine-Saint-Denis (93), Val-de-Marne (94) and some adjoining
municipalities) while “Paris metropolitan region” or “suburban Paris” describe the rest of the Île-de-France region.
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We consider the three groups: young employed under the age of 30, employed (over 30-year-old),

and not employed, with the latter including retirees and unemployed.

We moreover split households according to income. We proxy the buyer income by the median

earnings of their age group at the precise municipality (“commune”) of each consumer and define

two groups corresponding to the upper and lower half of this distribution. As group sizes are

smaller in the Paris region, we do not distinguish along income dimensions for this region (see

Table A.6 in the Appendix for group sizes).

Little is known about the factors of heterogeneity in mileage for firms; thus, we use the same

geographic partition as for households as it is partly related to infrastructure facilities. We also

differentiate with respect to the business sector that is available in the data: industry and agri-

culture, rental, and trade/services. To our knowledge, this is the first study to explicitly account

for firm purchases, so that we do not know a priori what factors are important for their fuel-price

sensitivity.

3.3. Diesel and gasoline cars

As shown by Hivert (2013), the advantage given to diesel cars in France is particularly salient

in international comparison. Figure 3 illustrates this specific position of France among European

countries. Outside Europe, policies are much less favorable for diesel and diesel-engines virtually

do not exist: in both Japan and the US, diesel cars make up about 2% of the overall vehicle fleet

in circulation (Cames and Helmers, 2013).

Fuel prices varied considerably between e1.01 per liter and e1.38 per liter of gasoline, and

between e0.75 and e1.21 per liter of diesel;22 this variation is about the same order of magnitude

as the policies we consider in this study. In order to address potential concerns, Appendix B gives

some more detail on the fuel price evolution and performs preliminary reduced-form regressions.

Pre-tax prices for gasoline and diesel are highly correlated (correlation over 0.95) and their

difference is small (between -3 and 9 cents), so we assume price variations of both depend equally

on oil prices. The final fuel tax rates result from the combination of a fuel-type specific lump-sum

22Monthly fuel prices are obtained from the French Ministry of Environment; we use sales-weighted national
average prices available at http://www.developpement-durable.gouv.fr/Prix-de-vente-moyens-des,10724.html.
For diesel prices we use the price of car diesel oil (“gazole”), while for gasoline price we use premium unleaded gasoline
(“super sans plomb 95”). All price indications in this study are deflated by the French National Statistical Institute
(INSEE) consumer price index, taking January 2008 as reference. Local prices are available only since 2007 and
cannot be used here. However, the spatial variation is much lower than the temporal variation: the relative standard
deviation is below 2 % for monthly fuel prices measured at the local (French “département”) level in 2007, while it
above 10% for national monthly prices over the period 2003-2007.
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Figure 3: Diesel fuel prices and market shares in Europe in 2012
Source: European Automobile Manufacturer’s Association (ACEA). Price advantage of diesel is
defined as the price differential (including taxes) between diesel and super unleaded gasoline (95
RON) divided by the latter.

tax23 and the proportional VAT of 19.6%. For firms, VAT is reduced to 4% for diesel. Over the

whole examined period, diesel fuel prices are significantly lower than gasoline prices because of

the lower lump-sum tax on diesel fuel: in 2011, the consumption tax on energy products reached

e0.61 per liter of gasoline, while it was e0.44 per liter of diesel.

Diesel has a higher energy content so it produces more CO2 per liter than gasoline: one liter

of gasoline is transformed to 2.33 kg of CO2 while one liter of diesel is transformed to 2.63 kg of

CO2.24 Besides this important global greenhouse gas, diesel cars also emit local pollutants like

NOx, as well as fine particles (see e.g. Cames and Helmers, 2013). As a consequence, the French

government has decided to adjust diesel taxation.

Beyond fuel taxation, firms face an annual tax related both to the CO2 class and to the fuel-

type.25 As it may impact the preferences of firms toward one or other class, we use dummies

for CO2 classes in our estimations. This also accounts for marketing-based preferences for CO2

classes (Koo et al., 2012) beyond direct valuation of fuel cost savings.

23Consumption tax on energy products, “Taxe intérieure de consommation sur les produits énergétiques” (TICPE).
24The differences in CO2 intensity are due to the differences in density of the fuel-types, see for example Demirel

(2012). The mass of CO2 per liter of fuel that weighs less than a kg might seem surprising; it results of the
association of carbon elements from the fuel and ambient oxygen.

25The yearly amount of the tax ranges from e750 for the smaller cars to e4,500 for the biggest ones in 2014.
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3.4. Expected cost per kilometer

Our focus lies on the consumer sensitivity to fuel prices when buying a new vehicle, via the

cost of driving. We thus focus on the impact of the expected cost E(pkmjft) at time t for the amount

of fuel f needed to drive one km with the car jf . By definition, it depends on the car’s fuel

consumption φjf in L/100km, its fuel-type f (diesel or gasoline) and the expectations about fuel

prices.

E(pkmjft) = 1/100× φjf [1f=dieselEt(pD) + 1f=gasEt(pG)] , (3)

where pD and pG denote the fuel prices including tax for one liter of diesel and gasoline, respec-

tively. φjf denotes the car’s fuel consumption, measured in L/100km, which is the inverse of fuel

efficiency as typically used in the US, measured in miles per gallon (MPG). Note that it is not

equal to the total amount of fuel consumed, which results from the product of fuel consumption

and mileage.

As a car is a durable good, the decision to buy a given product jf at time t should take

into account the discounted utility of the future utilization of this car net of operating cost. In

line with the literature, we take the most simple assumption on how purchasers forecast future

gasoline prices: according to Anderson et al. (2013), consumer beliefs regarding future fuel prices

are indistinguishable from a no change forecast, consistent also with a random walk. However,

given that new cars are rarely sold “off the rack,” it usually takes a few months between purchase

and the actual delivery and registration, which is our point of data collection. Thus, in our

estimates, we do not use the contemporaneous fuel price but rather a three months lag of fuel

prices. Alternative approaches in the literature include using moving averages, which are for

example consistent with a purchaser belief in mean-reversion of fuel prices. In a model similar to

ours, Klier and Linn (2013) use both current fuel prices and moving averages, and find that this

assumption has no significant impact on parameter estimates, but standard errors are larger with

moving averages.26

We thereby assume that consumers are equally sensitive to fluctuations in the oil price as to

changes in fuel taxes. If consumers place more weight on certain price changes (for behavioral

reasons like salience) or have a reversal to the mean expectation, our methodology underestimates

26In an earlier version of this study, we estimated the results using moving averages over 6 months preceding the
purchase without finding significantly different results.
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the true effect of a fuel tax reform. However, if consumers are loss averse, our methodology

overestimates the true effect. Our methodology cannot account for behavioral effects either, such

as asymmetric responses for prices increases and decreases (discussed in Greene, 2010).

Across different cars in our data, the price of driving one kilometer, i.e. the product of fuel price

pf and fuel consumption φ in liters per 100 km, covers a wide range from e2.60 per 100 km up

to e30.9 per 100 km depending on the car. We reproduce the aggregate reduced-form estimation

of Busse et al. (2013) in order to verify that the variation is large enough and significance is not

only driven by the sheer size of our dataset (Appendix B).

4. Econometric approach

4.1. Nested logit estimation

We take advantage of the fact that our data matches consumers and products: we assume that

systematic differences in the valuation of the different characteristics are captured by consumer

types that are based on demographic characteristics. We thus use the 30 consumer types as speci-

fied in Section 3.2 and estimate our model separately for each consumer type. Our approach is an

alternative to two common ways to include demographic variation: random coefficient models à

la BLP (Berry et al., 1995) and linear specifications as in Goldberg (1998). First, random coeffi-

cient models allow preferences to be shaped by aggregate distributions of household demographics,

which is useful when only aggregate data is available.27 As relevant heterogeneity is assumed to

be observed and captured by the demographic groups here, we can refrain from using such com-

plex models (see also Grigolon and Verboven, 2014). Second, Goldberg (1995, 1998), for instance,

makes certain parameters linearly dependent on household demographics by including interactions

of purchaser and product characteristics. Our methodology nests such a linear specification, as

we estimate parameters separately for each consumer type.

We thus aggregate individual choices within each consumer type, in order to recover the market

shares of each product jf (model j of fuel-type f) up to an identifying normalization. As usual

in the literature, identification stems from the normalization of the outside good’s value to zero.

As an intermediary step, we thus obtain a linear specification for the market share sdjft of the

product jf at time t among consumer type d relatively to sd0t the market share of the outside

27However, this comes at the cost of high computational complexity. This complexity is also shown to lead to
numerical instability in some cases: Knittel and Metaxoglou (2014) find results often depend on starting values and
optimization algorithms.
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good for that same demographic group:

ln(sdjft)− ln(sd0t) = αd + βdp
km
jft + γ1dpjft + γ2dXjft + σ1d ln(sdf |j) + σ2d ln(sdj|s) + ξdjft, (4)

where sdf |j =
sdjft

sdjt
is the relative share of purchases of fuel-type f within purchases of model j in

each month t and sdj|s =
sdjt
sdst

is the relative share of model j within the sales of segment s.

However, these shares are defined over the entire potential market size, which in our case –

as in virtually all cases – is unknown. Indeed, this market size should contain only those who

consider buying a car in a given period (and maybe decide not to). As detailed information on

this market size is unknown, using some approximation is a standard procedure in this literature

(for instance the seminal papers by McFadden, 1978; Goldberg, 1995), using for example most

recent estimates of the population size or the number of people holding a driver’s license. This

number dramatically overstates the actual market with durable goods like cars, because in each

given month only a small fraction of consumers considers buying a car. Moreover, when a large

portion of new car registrations are made by firms and not by private owners, it is not clear

whether the number of driving license holders is relevant. Huang and Rojas (2014) show both

theoretically and practically that coefficients estimated using such a wrong market size may be

considerably biased.

To avoid this potential bias, we follow a suggestion by Huang and Rojas and reformulate

Equation (4): by using quantities rather than market shares, the market size cancels out on the

left-hand side. We are left with the log of the outside good’s quantity, which we can move to the

right-hand side and estimate it as part of the time-specific constant. Given the highly seasonal

fluctuations of the number of purchases in Figure B.5, we allow this constant to vary with year

and calendar month. The overall market size and the outside good quantity are not necessary to

compute the relative shares sdj|s and sdf |j . Our main estimation equation is thus:

ln(qdjft) = αd + βdp
km
jft + γ1dpjft + γ2dXjft + σ1d ln(sdf |j) + σ2d ln(sdj|s) + yd +md + ξdjft, (5)

where qdjft stands for the number of sales of product jf . The characteristics of the new car,

namely horsepower, CO2 class, number of doors, fuel-type, car body (sedan, sport, compact, etc.)

and brand are controlled for. Year and calendar month dummies, yd and md, account for temporal

14



trends as well as seasonality in aggregate new cars purchases.28

The main parameter of interest is the parameter βd measuring sensitivity to fuel prices. We

use the parameters of Equation (5) to compute the fuel price elasticity, which takes into account

both direct and indirect effects of an increase in fuel prices in the market share of one specific car.

This elasticity can be approximated by:29

ηdsjf =
∂sdsjf/sdsjf
∂pe/pe

,

≈(1 + tV AT )pe
(

βd
1− σ1d

φsjfd +

(
βd

1− σ2d
− βd

1− σ1d

)
φ̄sjd +

βσ2d

1− σ2d
φ̄sd

)
. (6)

Equation (5) is estimated using the generalized method of moments separately for each demo-

graphic group, assuming these groups homogeneous enough to include only buyers with the same

demand parameters.

4.2. Endogenous variables and instruments

Gas prices can be considered as exogenous in the French case, as France represents about 2%

of world oil consumption and produces less than 0.1% of the world production.30 French gas prices

are defined by the international energy market, on which France has only a limited weight (which

may be not the case for the US, see Davis and Kilian (2011) for a discussion).

By contrast, the vehicle price pjft is endogenous, as it is the result of demand and supply which

by assumption vary with the unobserved attractiveness ξdjft. As it is usual in the literature, we

use a set of instruments based on the characteristics of potential substitutes aiming at capturing

market density, and thus beyond production cost, the variation in mark-ups. More specifically, in

a multi-product Bertrand competition framework, one can derive a set of instruments based on

the sums of each characteristics of other models produced by the same firm in the same segment

and those of competing firms (Berry et al., 1995, henceforth “BLP”). This measure is computed

twice; once over all products within the same nest, and another time over all products in all other

nests. Importantly, we use yearly list prices and thus assume that purchase prices do not to vary

with fuel prices. In the short term, this is likely to be true, as list prices are set on a much longer

horizon than fuel prices; in the medium-run, list prices can obviously adapt to fuel price variation.

28Note that we have to exclude observations with zero market shares. We test for robustness by excluding not
only months with market share equal to zero, but all “rare” models with sales of 0-3 units per month. This leaves
results virtually unchanged; results are available upon request.

29Details of elasticity computation are given in Appendix C.
30In 2009, see http://www.eia.gov/countries/country-data.cfm. Retrieved on 14/03/2015.
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Armstrong (2016) argues that in markets with a large number of heterogeneous goods, BLP

instruments are no longer sufficiently strong. Thus, we add cost-shifters, such as the prices of

raw materials, that provide exogenous variations in market prices as they are related to supply

but not demand. Thus, we use the price indices of iron (current and lagged value) and indices

of export prices of tires as instruments, both weighted by the car’s weight. These cost shifters

appear strongly correlated to vehicle prices.

Within segment, the market share sdj|s is endogenous by definition. As for the price, we

use BLP-style instruments for this variable and further add the number Js of offered goods per

segment s.

Finally, we instrument the within-model market share sdf |j by the difference in characteristics

of gasoline and diesel versions (fuel consumption, proportion of 3 or 5-door versions, weight...), as

well as the difference in costs shifters for these two versions, capturing the relative attractiveness

of each version.

As pointed out by Bound et al. (1995), using many over-identifying restrictions as we do can

lead to misleading results if the instruments are weak. In case of only one endogenous variable,

it is now common to test the strength of the instruments by using on the first-stage F-values, as

proposed by Stock and Yogo (2005). As shown by Sanderson and Windmeijer (2016), this method

can be extended to regressions with multiple endogenous variables: for each endogenous variable,

the relevant test statistic is then the first-stage F-value conditional on the other two endogenous

regressors, that can be compared to the values tabulated by Stock and Yogo (2005). We compute

these test statistics for each of our three endogenous variables and for each demographic group.

At a 5% significance level, we can reject for most regressions a bias of the 2SLS regression relative

to an OLS of more than 5%; in only two cases (out of eighty) we can only reject biases superior to

20% (cf. Tables E.14, E.15 and E.16 in the Appendix). One case is problematic, as we cannot reject

that our instruments are too weak to identify the within-model parameter σ1d for the purchases

by car rental companies in the Paris suburban area. This group is small and aggregate results

are virtually identical if we drop it. Thus, we are confident that our results are not biased by

weak-instrument effects.

5. Empirical results

Our aggregate outcomes of interest are: the share of diesel cars (local pollution), average fleet

fuel consumption (international fuel dependency) and average CO2 intensity (global pollution).
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The presentation of the empirical results proceeds in three steps: first, we present the aggre-

gate elasticities of market shares, diesel share, fuel consumption, and CO2 emission intensity.31

Then, these elasticities are used to compute ex ante estimates of the impact of two policies, one

equalizing tax on diesel and gasoline; the other taxing carbon directly. The two policy scenarios

are calibrated such that they are revenue-equivalent for the implementing government in absence

of consumer reaction. The raw coefficients cannot be interpreted directly, but we discuss them in

the Appendix D, where we also compute the demand elasticities for some popular car models.

5.1. Aggregate elasticities to fuel price variation

We model the aggregate elasticities to a change in fuel prices (both gasoline and diesel) through

an international oil price shock. As diesel engines tend to be more efficient with an average fleet fuel

consumption of 5.6L/100km versus 6.8L/100km for gasoline engines (Table A.7 in the Appendix),

an increase of fuel prices raises the share of diesel cars among new purchases πD (see elasticity ηD

in Table 3).32 Consequently, the average fleet fuel consumption decreases as well as average CO2

intensity. However, all these effects have a small magnitude.

These results can be compared to some previous estimates obtained in the literature. Using

aggregated data on several European car markets, Klier and Linn (2011) estimate that a 1$ increase

in fuel prices per gallon would increase the average miles-per-gallon (MPG) efficiency in France

by 0.21, implying an average fuel consumption elasticity ηφ of -0.017.33 This value is similar to

our estimate and much lower than the value they find for the US: there, 1$ decreases the average

MPG by 1.03, implying an average fuel consumption elasticity of -0.042. Our estimate is smaller

than the estimates by Clerides and Zachariadis (2008), who find a short term elasticity of average

fleet fuel consumption to fuel prices equal to -0.08 for the EU, using aggregate data. Klier and

Linn (2011) also estimate that a hypothetical policy equalizing diesel and gasoline prices reduces

the diesel market share in France by 1.4 percentage points only; much less than suggested by our

estimate of around 4 percentage points.

5.2. Tax alignment

These estimates allow us to simulate the impact of a policy that aligns diesel and gasoline

taxes. Leaving gasoline taxes unchanged, this policy raises diesel taxes by almost a third, from

31See Appendix C for details on the computation of these elasticities.
32πD is the market share of diesel cars among purchased cars whereas the market shares sj , ss etc. are defined

on the whole market, including the outside good.
33Brons et al. (2008) analyze more in detail the aggregate elasticity of fuel demand, resulting of the elasticities

of mileage, fuel consumption and car ownership; their meta-study also finds this elasticity to be empirically small.
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Table 3: Elasticities with respect to fuel prices: diesel share, average fleet fuel consumption
(L/km) and CO2 intensity (g/km)

Diesel share Fuel cons. CO2

ηD ηφ ηCO2

Households 0.026
(0.003)

∗∗∗ −0.013
(0.001)

∗∗∗ −0.015
(0.001)

∗∗∗

Firms 0.017
(0.003)

∗∗∗ −0.004
(0.001)

∗∗∗ −0.006
(0.001)

∗∗∗

Total 0.029
(0.003)

∗∗∗ −0.010
(0.001)

∗∗∗ −0.012
(0.001)

∗∗∗

Source: CCFA, authors calculations. Estimates rely on the parameters of
Equation (5) estimated by GMM separately for each type of consumers.
Standard errors are estimated by bootstrap (500 replications).

43 cent/liter to 60 cent/liter. Futhermore, this policy abandons the VAT advantage for corporate

diesel cars, increasing it to the standard rate of 19.6%.

As expected, the induced variation in diesel share is negative and strong: since taxes only

increase for diesel, they would push many purchasers to substitute for a gasoline-fueled car. We

find that such a policy would reduce the aggregate share of diesel cars in overall sales by 5.9%,

that is from 69% to 65% (Table 4). This decrease in diesel sales comes mostly from households

who substitute much more easily away from diesel engines, rather than from firms (7.4% and 3.6%

reduction, respectively).

This result can be compared to the one in Klier and Linn (2011) who also evaluate a hypothet-

ical policy of equalizing diesel and gasoline prices. At the European level, their estimates suggest

that the impact of such a policy on the market share of diesel cars would be negligible (less than

1%). Two elements explain this difference. First, our analysis is focused on France, where the gap

between gasoline and diesel taxes is the highest of all countries they consider: the hypothetical

policy change is strong which is not the case for other countries.34 Second, as they emphasize,

Klier and Linn (2011) cannot distinguish in their data company cars from privately owned cars.

According to our estimates, firms are much less sensitive to fuel prices (Table 3).

Gasoline cars consume more liters of fuel per km but produce 13% less CO2 per liter of fuel,

as gasoline is a less energy-rich combustible. The effect of a demand shift toward gasoline cars

on CO2 is thus a priori ambiguous. According to our estimations, substitutions between gasoline

and diesel cars have only a marginal impact on both fuel consumption of the new vehicle fleet and

CO2 intensity. It increases fuel consumption (Table 4) and reduces the average CO2 intensity of

newly purchased cars. Both effects are significant but small: in spite of the large jump in diesel

34Estimates detailed by countries are available in a previous working paper (Klier and Linn, 2011). They obtain
that the diesel market share in France would decrease by 1.4 percentage points. This reduction is higher than the
effect in most other countries they examine.
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tax, average fleet fuel consumption increases only by 0.44% and average CO2 intensity decreases

by 0.12%. The absolute magnitudes of these changes are small: fuel consumption increases by

26 mL/100km from the average of 6L/km and CO2 intensity is reduced by 180mg/km from the

average of 152g/km.

5.3. Carbon tax

We also predict the impact of a carbon tax, i.e. a tax increase that is proportional to the carbon

emissions of each fuel-type. The amounts are calibrated such that the government revenue is equal

to the previous tax alignment policy, yielding a price of e51 per tonne of CO2. This results in

an increase of 11.9 cent/liter of gasoline and 13.4 cent/liter of diesel, representing around 9% of

the average end-user price.35 A very similar but less ambitious policy has been voted in France in

2014, leading to a progressive increase in fuel taxes up to e30.5/tCO2 in 2017.36

The impact ∆tcηD of this carbon tax policy on the share of diesel engines sold is positive, but

very small: it increases the diesel share by 0.6% (Table 4). This is the result of two contrasting

effects: on the one hand, the carbon tax is higher on diesel than on gasoline, but on the other

hand, diesel cars are more fuel-efficient. The incentive for purchasers to buy more fuel-efficient

cars seems to dominate. The carbon tax reduces average fleet fuel consumption as well as average

CO2 intensity (Table 4). The impacts are significant but again very small. The fuel consumption

decreases by 0.37%, which is however only around 22 mL/100km from the average of 6L/km; CO2

emission intensity shift by 0.33% which is 500mg/km from the average of 152g/km.

Table 4: Percentage impact of a carbon tax and a tax alignment on diesel share, average
fleet fuel consumption (L/km) and CO2 intensity (g/km)

Tax alignment Carbon tax
Diesel
share

Fuel
cons.

CO2 Diesel
share

Fuel
cons.

CO2

∆tDηD ∆tDηφ ∆tDηCO2
∆tcηD ∆tcηφ ∆tcηCO2

Households −7.43
(0.36)

∗∗∗ 0.50
(0.03)

∗∗∗ −0.13
(0.01)

∗∗∗ 0.15
(0.07)

∗∗ −0.43
(0.02)

∗∗∗ −0.43
(0.02)

∗∗∗

Firms −3.55
(0.46)

∗∗∗ 0.28
(0.09)

∗∗∗ −0.11
(0.06)

∗ 0.65
(0.12)

∗∗∗ −0.21
(0.03)

∗∗∗ −0.15
(0.03)

∗∗∗

Total −5.94
(0.32)

∗∗∗ 0.44
(0.04)

∗∗∗ −0.12
(0.02)

∗∗∗ 0.59
(0.07)

∗∗∗ −0.37
(0.02)

∗∗∗ −0.33
(0.02)

∗∗∗

Source: CCFA, authors calculations. Estimates rely on the parameters of Equation (5) estimated by GMM
separately for each type of consumers. Instrumental variables for prices are the price indices of iron (current
and lagged value) and indices of export prices of tires, interacted with the car model’s weight. Standard
errors are estimated by bootstrap (500 replications).

35This scenario maintains the VAT rebate for diesel cars of corporate consumers.
36See the website of the French ministry of environment: https://www.ecologique-solidaire.gouv.fr/

fiscalite-carbone Retrieved on 09/09/2017.
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The impact of both policies on fuel consumption and CO2 intensity is economically small. The

main difference is that leveling out the diesel tax advantage induces a noticeable shift away from

diesel engines, thus reducing local pollution. Moreover, the carbon tax achieves a larger reduction

in CO2 intensity and furthermore reduces fuel consumption, thus leading – on its modest level –

to a lower dependency on foreign petrol imports.

5.4. Robustness checks

We estimate several alternative specifications to check that results are not driven by our main

specification choice, but also to emphasize the impact of individual hypothesis underlying this

main specification. On the whole, the estimated impact of our policy scenarios remains at a

similar order of magnitude across specifications.

Our first test includes all models, i.e. including those that are available only with either gasoline

or diesel motor. In our main specification, we drop these models as they lead to “degenerate” nests

at the end of the decision tree, where a model-branch only includes one product. While the

aggregate elasticities (Table F.17 in the Appendix) appear similar to our main specification, the

policy simulation shows that this model slightly over-estimates the policy impact while leading

broadly to the same conclusions.

In the same spirit, our second test uses a more commonly used model accounting only for two

levels: purchasers choose a segment and then a product within that segment. The two fuel-type

versions of a model then count as independent products, which is the same as constraining all

σ1d coefficients to zero. The elasticities are similar to the previous test (Table 5) and just slightly

stronger than our main specification. Although the changes are small, we still reject this more

constrained model as in our main estimation σ1d was significantly different from zero for almost

all demographic groups (Table D.10 in the Appendix).

Our third test drops the cost-shifter instruments and includes only the BLP-style instruments.

Again, the elasticities are very similar and the policy impacts give the same intuition, but overstate

the impact of a carbon tax on the diesel share.

As a last test, we estimate the model jointly for all demographic groups, which means we do not

account for consumer heterogeneity. Bento et al. (2012) suggest that unaccounted heterogeneity

biases estimated elasticity downwards, which we do not find here (Table F.17 in the Appendix).

Quite the contrary, elasticities and estimated policy impacts overstate the consumer reaction in

our case (Table 5).
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Table 5: Robustness checks: percentage impact of carbon tax and tax alignment on diesel
share, average fleet fuel consumption (L/km) and CO2 intensity (g/km)

Tax alignment Carbon tax
Diesel
share

Fuel cons. CO2 Diesel
share

Fuel cons. CO2

∆tDηD ∆tDηφ ∆tDηCO2
∆tcηD ∆tcηφ ∆tcηCO2

Main specification - including degenerate nests (gas- and diesel-only models)
Households −9.37

(0.35)

∗∗∗ 0.80
(0.03)

∗∗∗ 0.02
(0.01)

∗∗∗ 0.55
(0.08)

∗∗∗ −0.50
(0.02)

∗∗∗ −0.47
(0.02)

∗∗∗

Firms −3.85
(0.41)

∗∗∗ 0.24
(0.08)

∗∗∗ −0.19
(0.05)

∗∗∗ 0.70
(0.11)

∗∗∗ −0.23
(0.02)

∗∗∗ −0.17
(0.03)

∗∗∗

Total −7.15
(0.32)

∗∗∗ 0.62
(0.04)

∗∗∗ −0.06
(0.02)

∗∗∗ 0.99
(0.06)

∗∗∗ −0.44
(0.02)

∗∗∗ −0.36
(0.02)

∗∗∗

Alternative specification - Nests (segment>model)
Households −9.17

(0.38)

∗∗∗ 0.79
(0.03)

∗∗∗ 0.02
(0.01)

∗∗∗ 0.49
(0.08)

∗∗∗ −0.48
(0.03)

∗∗∗ −0.45
(0.02)

∗∗∗

Firms −3.51
(0.54)

∗∗∗ 0.22
(0.09)

∗∗ −0.17
(0.06)

∗∗∗ 0.59
(0.14)

∗∗∗ −0.22
(0.03)

∗∗∗ −0.16
(0.03)

∗∗∗

Total −6.84
(0.40)

∗∗∗ 0.59
(0.05)

∗∗∗ −0.05
(0.02)

∗∗ 0.97
(0.08)

∗∗∗ −0.42
(0.02)

∗∗∗ −0.35
(0.02)

∗∗∗

Main specification - BLP-instruments only
Households −8.67

(0.39)

∗∗∗ 0.60
(0.04)

∗∗∗ −0.13
(0.01)

∗∗∗ 0.28
(0.08)

∗∗∗ −0.51
(0.02)

∗∗∗ −0.50
(0.02)

∗∗∗

Firms −3.12
(0.55)

∗∗∗ 0.29
(0.10)

∗∗∗ −0.06
(0.06)

0.65
(0.15)

∗∗∗ −0.16
(0.03)

∗∗∗ −0.10
(0.03)

∗∗∗

Total −6.27
(0.42)

∗∗∗ 0.49
(0.05)

∗∗∗ −0.10
(0.02)

∗∗∗ 0.84
(0.07)

∗∗∗ −0.42
(0.02)

∗∗∗ −0.36
(0.02)

∗∗∗

Main specification - without purchaser heterogeneity
Total −7.45

(0.77)

∗∗∗ 0.45
(0.07)

∗∗∗ −0.26
(0.02)

∗∗∗ 0.26
(0.05)

∗∗∗ −0.61
(0.06)

∗∗∗ −0.60
(0.05)

∗∗∗

Source: CCFA, authors calculations. Estimates rely on the parameters of Equation (5) estimated by GMM
separately for each type of consumers. Instrumental variables for prices are the price indices of iron (current and
lagged value) and indices of export prices of tires, interacted with the car model’s weight. Standard errors are
estimated by bootstrap (500 replications).
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Our main specification still seems most appropriate, but these alternative specifications do not

dramatically change the implications of this study.

6. Conclusion

This paper estimates the short-term impact of fuel prices on new automobile purchases of both

households and firms. These estimates allow us to compute elasticities which we aggregate to

estimate ex ante the impact of two tax reforms. Using a nested logit specification, we control for

hedonic valuation of a large range of car characteristics. We also account for taste heterogeneity

between consumer groups, in particular between private and corporate purchases.

Our aggregate outcomes of interest are: the share of diesel cars (local pollution), average fleet

fuel consumption (international fuel dependency), and average CO2 intensity (global pollution).

We use our estimates to examine a (hypothetical) policy equalizing tax levels on gasoline and

diesel. We find that this policy decreases the share of diesel cars in sales from 69% to 65%. As

purchasers would substitute to (less efficient) gasoline cars, the average fuel consumption would

rise in response to this policy, while at the same time average CO2 intensity would slightly decrease

as gasoline cars emit less CO2 per liter of used fuel. The examined carbon tax – which implements

a much higher carbon price than the recently voted French policy – is expected to slightly increase

the share of diesel cars among new purchases. It decreases both fuel consumption and CO2

intensity significantly, but the overall amounts stay low.

All in all, the estimated effects of these two tax policies are significant but economically small in

the short-run, i.e. holding supply constant. This is even more noteworthy, as one might argue that

our policy scenarios are somewhat overly ambitious and might not be politically feasible. Overall,

we find cannot find evidence of a strong impact of fuel prices on car choices in the short-run.

An important advantage is provided by our individual registration data, as we can account for

purchaser heterogeneity and our estimates are thus less prone to omitted sorting bias. Indeed,

consumer types react differently to fuel tax changes. A large part of aggregate market reaction

comes from households, and particularly from urban and non working consumers. To our knowl-

edge, this important distinction between household and firm purchases is not accounted for in

earlier related literature, although firm purchases constitute about a third of the market in our

sample. Corporate purchases are particular important for the diesel share, as firms buy a lot more

diesel-powered cars and are less likely to substitute away from them.

A limitation of this study is that our simple demand model does not take into account long-run
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shifts on the supply side. While one can be confident that the monthly fuel price variation used for

identification in this article does not impact the characteristics of available cars instantaneously, it

is likely that producers react more to long-term shifts: if fuel efficiency becomes more valuable, they

might in the medium-run adjust their list prices and in the long-run adjust the products developed

and offered. For Klier and Linn (2011) this means that these short-run results underestimate

the true impact on fuel efficiency and emissions, which would be enhanced by the producer’s

reactions. However, as shown by Verboven (2002), producer price reaction should counteract

purchaser reaction to changes in differential fuel taxation. However, one could argue like Goldberg

(1998) that a short-term consumer reaction as small as suggested by our estimates is unlikely to

shift supply, so that the long-run effect should be small as well.

A TRAVAILLER... Moreover, consumers might react differently to fuel price changes, which

might be temporary, than to fuel tax changes, which are announced to be permanent.

The aim of environmental policy is ultimately not to increase fuel efficiency, but to decrease

CO2 emissions which result from the interaction of fuel consumption and mileage. Additional

research is needed to clarify the impact of fuel efficiency on car mileage. Previous research suggests

that rebound effects might reduce any impact on fuel consumption (see for example Austin and

Dinan, 2005; Frondel et al., 2012), so that our (already small) estimated effects become even less

economically and environmentally significant. Nevertheless, the change in the composition of the

vehicle fleet impacts fuel efficiency in the long run as cars circulate on average for 13 years in

France (Bilot et al., 2013).

We do not use any data on mileage nor assume anything on car lifetime and discounting,

so that we remain agnostic on the actual profit a consumer realizes with fuel efficiency. As a

consequence, we cannot evaluate welfare effects of the policy such as Bento et al. (2009) or Bureau

(2011) or the rationality (or myopia) of consumers such as reviewed in Greene (2010) and Helfand

et al. (2011). To our knowledge, there is no study that includes mileage elasticity to fuel prices

and to fuel efficiency, as well as potentially elastic lifetime, so that computations usually remain

back-of-the-envelope sketches (e.g. Grigolon et al., 2014; Allcott and Wozny, 2014; Busse et al.,

201337).

Nevertheless, our estimated consumer reactions are too small to fully account for the change in

operating cost if utilization does not change. In this light, it may seem surprising that corporate

37These papers account for mileage at a detailed car- or consumer-level but assume zero elasticity; they can thus
not account for well documented phenomena such as the “rebound effect” (Small and Dender, 2007).
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purchases are even less reactive to fuel price changes than household purchases. However, similar

results have been obtained on the market for airline tickets. Firms benefit from fuel tax advantages

in France, so that firms in general pay less for fuel. Firms can also deduce total fuel cost from

taxes and may pass costs through to consumers. These factors may explain why they react less to

fuel prices than households. This is the first study documenting this difference on the car market.

Further research is needed to clarify whether this is due to differences in mileage or whether there

are behavioral and organizational factors at play.
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A. Descriptive statistics

Table A.6: Distribution of demographic groups among buyers (%)

Private consumers
Not employed Young employed (<30) Employed (≥30)

Income Low High Low High Low High Total
Urban 150,214 82,692 389,903 192,957 679,981 646,949 2,142,696

5.0% 2.5% 8.7% 8.3% 1.7% 1.5% 27.6%
Suburban/rural 136,187 116,348 246,876 331,066 450,728 564,686 1,845,891

1.7% 1.5% 3.2% 4.2% 5.8% 7.2% 23.6%
Paris urban 40,298 186,758 486,700 713,756

0.5% 2.4% 6.2% 9.1%
Paris suburban 11,069 45,160 81,893 138,122

0.1% 0.6% 1.0% 1.8%
Total 536,808 1,392,720 2,910,937 4,840,465

11.3% 27.3% 23.5% 62.1%
Firm purchases

Industry & Car rental & Trade &
agriculture repairing services Total

Urban 307,871 1,261,364 374,754 1,567,383
3.9% 16.1% 4.8% 24.8%

Suburban/rural 113,947 66,416 137,182 383,855
1.5% 0.8% 1.8% 4.1%

Paris urban 203,606 313,880 172,532 565,762
2.6% 4.0% 2.2% 8.8%

Paris suburban 7,674 4,083 25,129 47,902
0.1% 0.1% 0.3% 0.5%

Total 633,098 1,645,743 709,597 2,564,902
8.1% 21.0% 9.1% 38.2%

Source: CCFA, authors’ calculations.
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Table A.7: Descriptive statistics of car characteristics

Percentiles
Coefficient

Mean of
variation

(%)

25% Median 75%

Gasoline (N= 2,376,527)
Car price (e) 16,606 69.4 11,738 13,975 18,800
Cost of driving 100 km (e) 8.4 22.7 7.3 8.1 9.1
Horse power (kW) 70 48.8 54 60 80
Fuel consumption (L/100km) 6.8 21.7 6.0 6.5 7.4
CO2 intensity (g/km) 159.3 21.7 139.0 152.0 172.0

Diesel (N= 5,452,376)
Car price (e) 22,968 41.0 16,783 21,875 26,236
Cost of driving 100 km (e) 5.7 27.1 4.8 5.4 6.3
Horse power (kW) 78 34.6 63 78 88
Fuel consumption (L/100km) 5.6 24.5 4.7 5.4 6.0
CO2 intensity (g/km) 147.0 24.5 124.0 141.0 157.0

Note: The coefficient of variation, or unitized risk, is the ratio of the standard error to the mean.
Source: CCFA, authors’ calculations.
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B. Is there enough variation in fuel prices?

The variation identifying our main parameter of interest stems from the product of product-

specific fuel-efficiency and temporal variation in fuel prices. Within the time frame of the data

used in this study, from January 2003 through November 2007, gasoline and diesel prices became

more variable, with a general upward trend, after some time of relative stability, as shown in

Figure B.4.

In France until 2017, the number of diesel cars sold has consistently been higher than the

number of gasoline cars, and this difference has been increasing over the period under study in

this study (Figure B.5). The overall number of new registrations is strongly seasonal, but is

virtually constant over the years. The details of the choice between diesel and gasoline cars is

amply discussed by Rouwendal and de Vries (1999).

In order to verify that fuel price fluctuations present enough variation to identify their impact

on the car market, we follow the procedure of equation (7) in Busse et al. (2013), estimating the

following equation:

logQkft = γ0 +γ1(pfuelft ×ConsumptionQuartilekf ) +γ2ConsumptionQuartilekf + τt+µt+ εkft

(B.1)

where we previously attributed each product to a quartile of the fuel consumption (among available

models not weighted by sales) by fuel type.38 Qkft is then the national quantity sold within a

ConsumptionQuartile k in month t, γ0 is an intercept, pfuelft is the fuel price of the fuel-type

corresponding to the ConsumptionQuartilekf , γ1 and γ2 are vectors of dimension 8 × 1. We

include fixed effects for the quartiles ConsumptionQuartileskf , for year τt and for month-of-year

µt.

The results in Table B.8 (following Table 5 of Busse et al., 2013) show that even in this

reduced-form regression with only 384 observations, fuel prices have a significant effect on car pur-

chases: when fuel prices increase, the relative market share of models with high fuel consumption

(least efficient) decreases while the relative market share of more efficient models increases. This

relationship holds significantly for both fuel types.

38Busse et al. (2013) do not take into account fuel types, but they work on US data, where there is virtually no
diesel. We believe that fuel-types play a central role in our case and should be accounted for.
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Figure B.4: Monthly consumer fuel prices (incl. taxes) and cost per km (resulting from fuel
prices (e) and fuel consumption (L/km) of new car purchases)
Source: French Ministry of Ecology and CCFA, authors’ calculations.
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Figure B.5: Monthly new registrations by fuel-type (in thousands, raw and smoothed series,
studied period shaded in blue)
Source: CCFA, authors’ calculations.

Table B.8: Fuel price coefficients γ1 in the aggregate quantity regression

Fuel economy Coefficient SE Mean market
share

Percent
change in

market share
Gasoline

Consumption quartile 1 (most efficient) 0.31 0.15 12.6 36.4
Consumption quartile 2 0.26 0.15 11.1 29.7
Consumption quartile 3 -0.10 0.15 4.5 -9.1
Consumption quartile 4 (least efficient) -0.50 0.15 1.6 -39.3

Diesel
Consumption quartile 1 (most efficient) 0.27 0.19 29.2 30.6
Consumption quartile 2 0.23 0.19 26.6 26.2
Consumption quartile 3 -0.19 0.19 8.5 -17.2
Consumption quartile 4 (least efficient) -0.82 0.09 5.8 -55.9

N 384
Source: CCFA, author’s calculations. Least squares regression following equation (B.1), including an intercept, time
dummies and dummies for ConsumptionQuartilekft (not listed).
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C. Details on the computation of the elasticities

The demand elasticity ηsjf for a given product with respect to oil price pe exclusive of tax at a

given point in time can be computed using parameters corresponding to the demand model. Fuel

prices affect all products proportionally to their fuel consumption: both the nominator and the

denominator of the market shares are impacted. In order to find this elasticity, let us differentiate

Equation (4) for the model j in segment s and of fuel-type f , using the definition of the cost per

kilometer of equation (3). Note that we the fuel prices including tax for one liter of diesel and

gasoline are respectively pD = (1 + tV AT )(pe + tD) and pD = (1 + tV AT )(pe + tD) where pe is the

pre-tax fuel price, tD and t−G lump-sum taxes for diesel and gasoline fuel respectively, and tV AT

the VAT rate. For the sake of readability, we omit the index for demographic groups and do not

state the obvious aggregation over these groups for all equations in this Section.

∂ssjf
ssjf

− ∂s0

s0
= β∂pe(1 + tV AT )φsjf + σ1(

∂ssjf
ssjf

− ∂sj
sj

) + σ2(
∂sj
sj
− ∂ss

ss
) (C.1)

or slightly rearranged:

∂ssjf −
∂s0

s0
ssjf = β∂pe(1 + tV AT )φsjfssjf + σ1(∂ssjf − ssjf

∂sj
sj

) + σ2ssjf (
∂sj
sj
− ∂ss

ss
) (C.2)

We then aggregate this last equation over both fuel-type versions of the same model, to obtain

the change in the market share of one model j in one segment s:

∂sj −
∂s0

s0
sj =

∑
f∈j

(∂ssjf −
∂s0

s0
ssjf )

= β∂pe(1 + tV AT )
∑
f∈j

φsjfssjf︸ ︷︷ ︸
φ̄jsj

+ σ1(
∑
f∈j

∂sfjs︸ ︷︷ ︸
∂sj

− ∂sj
sj

∑
f∈j

ssjf︸ ︷︷ ︸
∂sj

)

+ σ2(
∂sj
sj
− ∂ss

ss
)
∑
f∈j

ssjf︸ ︷︷ ︸
sj

We define φ̄j as the sales-weighted average fuel consumption of both fuel-type versions of the
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same model j. Thus we obtain that

(1− σ2)
∂sj
sj

= β∂pe(1 + tV AT )φ̄j − σ2
∂ss
ss

+
∂s0

s0
(C.3)

Aggregating further, we can also recover the relative variation in the market share of segment

s (∂ssss ) or of the outside good (∂s0s0 ) by summing on respectively all cars in the same segment, and

all new cars. For segment s, we obtain that:

∂ss
ss

= β∂pe(1 + tV AT )φ̄s +
∂s0

s0

while for the overall number of sold cars we get:

∂s0

s0
= −β∂pe(1 + tV AT )φ̄(1− s0)

Combining these expressions in equation (C.1) we finally can compute the elasticity ηsjf as:

ηsjf =
∂ssjf/ssjf
∂pe/pe

,

=β(1 + tV AT )pe
(
ρ1φsjf + (ρ2 − ρ1)φ̄j − (ρ2 − 1)φ̄s

)
− β(1 + tV AT )peφ̄(1− s0),

≈β(1 + tV AT )pe
(
ρ1(φsjf − φ̄j) + ρ2(φ̄j − φ̄s) + φ̄s

)
. (6)

where ρi = 1
1−σi

∈ [1,+∞]. The demand elasticity depends on the parameter β measuring

sensitivity to fuel prices, the VAT rate tV AT ,39 as well as on the current price of fuel and the car’s

fuel consumption φsjf relative to the average fuel economy of its substitutes (within the same

model φ̄j , within its segment φ̄s and among all sales φ̄). The share of the outside good s0 is very

close to 1, as a monthly frequency is high compared to vehicle lifetime: most people do not buy

a car in any given month and monthly sales are small compared to the market size. Thus, the

second term involving φ̄(1− s0) is negligible.

The easier purchasers substitute between fuel-type versions of the same model, resp. between

models within a segment, the higher is σ1, resp. σ2, and, thus, the higher is ρ1, resp. ρ2. Intuitively

speaking, a higher correlation of preference for similar products (same nests) leads to a relatively

39This is specific to the French form of petrol tax: as the fuel-type specific taxes are of a lump-sum form, they
do not play a role here. The tV AT is the same for both fuel-types.
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higher weight put onto the comparison with these similar products.

Obviously, diesel taxes affect cars differently depending on their fuel-type. Using our main

model defined in Equation (5), the elasticity ηtDsjf of demand for a given car sjf with respect to an

increase in diesel tax (holding gasoline tax constant) can be computed as:

ηtDsjf =
∂ssjf/ssjf
∂tD/tD

,

=β(1 + tV AT )tD
(
ρ1(1f=dieselφsjf + (ρ2 − ρ1)πDj φ̄j − (ρ2 − 1)πDs φ̄s

)
− β(1 + tV AT )tDφ̄

DπD(1− s0),

≈β(1 + tV AT )tD
(
ρ1(1f=dieselφsjf − πDj φ̄j) + ρ2(πDj φ̄j − πDs φ̄s) + πDs φ̄s

)
. (C.4)

where the indicator 1f=diesel takes the value 1 if the vehicle sjf is running on a diesel engine, πDsj

is the share of diesel in sales of model j, πDs is the share of diesel in sales of segment s, and πD is

the overall market share of new diesel cars (among purchases). φ̄D is the mean fuel consumption

of new diesel cars (sales-weighted average). Again, (1− s0) is very close to zero and this elasticity

can be closely approximated by the first part of the equation.

Intuitively, an increase in the diesel tax rate has a direct negative impact for all diesel cars.

However, this effect may be reduced if its substitutes are also impacted by this increase. The effect

for gasoline cars of a diesel tax is expected to be positive.

On a more aggregate level, we examine the impact of an increase in fuel prices on the com-

position of the automobile fleet, with a particular focus on the amount of diesel cars purchased.

More specifically, we evaluate the elasticity of the share of diesel cars among new purchases πD.

Assuming again that an international oil price shift equally affects both gasoline and diesel pre-tax

prices, such a price shift would change the share of diesel cars by ηD. In the simple logit demand,

this change can be computed as:

ηD =
∂πD/πD

∂pe/pe
,

=

∑
s,j,f 1f=dieselssjfηsjf∑
s,j,f 1f=dieselssjf

− ∂(1− s0)

∂pe
pe

1− s0
,

= β(1 + tV AT )pe

(
ρ1(φ̄D − ˜̄φj) + ρ2(˜̄φj − ˜̄φs) + ˜̄φs − φ̄) ,

=
β(1 + tV AT )pe
πD(1− s0)

∑
s,j

sj

ρ1 π
D
j (φDj − φ̄j)︸ ︷︷ ︸

S1

+ρ2 (πDj − πDs )φ̄j︸ ︷︷ ︸
S2

+ (πDs − πD)φ̄s︸ ︷︷ ︸
S3

 , (C.5)
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which involves weighted averages of fuel consumption, where the weights are given by the share

of diesel sales.40 ˜̄φj =
∑
s,j

πD
j sj

πD(1−s0)
φ̄j is the average fuel consumption weighted by the share of

diesel per model, whereas ˜̄φs =
∑
s

πD
s ss

πD(1−s0)
φ̄s is the average weighted by the diesel share per

segment. φDj is the fuel consumption of the diesel version of model j. πDj , resp. πDs , is the share

of diesel among purchases of model j, resp. of segment s.

The interpretation of this equation is not straightforward. In the simplest logit case (σ1 = σ2 =

0), ηD = β(1 + tV AT )pe(φ̄
D− φ̄). Naturally, ηD depends on the average fuel consumption of diesel

cars relative to the overall average fuel consumption. φ̄D − φ̄ is always negative because diesel

cars are more fuel-efficient. β is negative as well, so that ηD is positive: if fuel prices increase,

purchasers substitute to more fuel-efficient diesel cars and their share among purchases increases.

In a nested setup, the effect is less straightforward, but we still expect a positive sign. Indeed,

the first term S1 in Equation (C.5) involves the difference between diesel fuel consumption and

average fuel consumption; again, this change is expected to be negative as diesel engines tend to

be more fuel-efficient. However, we do not have such an unambiguous relation for the two other

terms S2 and S3.41 Both ρ1 and ρ2 are positive and larger than one. In practice ρ2 is smaller than

ρ1, so that ηD is most strongly impacted by the first element of the parenthesis, which is likely to

be positive.

Similarly, the elasticity of the share of diesel cars πD to a change in fuel taxes (holding gasoline

taxes constant) ηtDD may be written:

ηtDD =
∂πD/πD

∂tD/tD
,

= β(1 + tV AT )pe

(
ρ1(φ̄D − π̃Dj φ̄j) + ρ2(π̃Dj φ̄j − π̃Ds φ̄s) + π̃Ds φ̄s − φ̄

)
. (C.6)

(C.7)

This elasticity ηtDD depends only on the fuel consumption of diesel cars and on their relative

share among purchases: the lower their fuel consumption, the smaller the impact of a diesel tax

increase.

40With any variable A we denote Ã =
∑
s,j,f

ssjf
πD(1−s0)

Asjf1f=diesel this variable weighted by the share of the

diesel version amongst all diesel cars (for example, φ̃sjf corresponds to the average fuel consumption of diesel cars
φ̄D)

41The last term for example does not have a well defined sign. For example in the case of only two segments in
proportion s1 and (1− s1), this term is proportional to s1(1− s1)(πDs1 − πDs2 )(φ̄s1 − φ̄s2 ). One cannot exclude that
this term is positive, for example if cars have a much higher fuel consumption on average in the segment with the
higher share of diesel cars.
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Finally, we can also compute the elasticity ηφ (respectively ηCO2) of the average fuel consump-

tion (respectively of average CO2 intensity) of new cars with respect to fuel prices pe and to fuel

taxes.

ηφ =
∂φ̄/φ̄

∂pe/pe
,

= β(1 + tV AT )
pe

(1− s0)φ̄

∑
j,s,f

(
φsjfssjf

(
ρ1(φsjf − φ̄j) + ρ2(φ̄j − φ̄s) + φ̄s − φ̄

))
(C.8)

For example, in the simple logit demand model, ηφ simplifies to:

ηφ = β(1 + tV AT )pe(
φ2 − φ2

φ̄
), (C.9)

with φ2 is the mean of squared fuel consumption of new vehicles. The impact of an oil price

shock on average fuel consumption depends thus on the ratio of the variance and the mean of

fuel consumption. Both the variance and the mean of φ are always positive, so that ηφ is always

negative in the simple logit case: when fuel prices increase, we expect to find that average fuel

consumption is reduced. In the more realistic nested logit demand model, the conclusion is less

straightforward. Again, we have some intuition for the first term of Equation (C.8) which is of

first order in the sum: it can be simplified rewritten as βρ1

∑
s,j π

D
j (1− πDj )sj(φ

D
j − φGj )2 and is

thus expected to be negative.

The elasticity of average fuel consumption ηtDφ (respectively ηtDCO2
) to a change in diesel tax

(holding gasoline tax constant) can be written in case of a simple logit demand model:

ηtDφ =
∂φ̄/φ̄

∂tD/tD
,

= βtD(1 + tV AT )
βπD

φ̄︸ ︷︷ ︸
<0

φ2
D − φ

2

D︸ ︷︷ ︸
>0

+(1− πD)φ̄D (φ̄D − φ̄G)︸ ︷︷ ︸
<0

 . (C.10)

This elasticity depends on the fuel consumption of diesel cars and on their relative share among

purchases compared with the average fuel consumption. The sign is not clear-cut. An increase in

the diesel tax can reduce the share of diesel cars, which are more fuel-efficient. The higher the

gap between the average fuel consumption of gasoline and diesel cars, the higher the increase in

the average fuel emissions of new cars. This effect may be partially offset by the dispersion in

fuel emissions of diesel cars, as we expect that an increase in diesel prices has more impact on less
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fuel-efficient cars. Overall, we expect that a rise in diesel tax increases the average fuel emissions

of new cars if diesel cars are much more fuel-efficient that gasoline cars and that the diesel share

is not too high.

D. Complementary results for the main specification

D.1. Raw coefficients

Tables for estimated coefficients are not directly interpretable. This is why the body of this

article concentrates on elasticities and counterfactual policy impacts. The coefficients βd measure

each demographic group’s direct sensitivity to fuel prices. As expected, βd is statistically significant

for most demographic groups and is always negative when significantly different from zero: as fuel

prices increase, the utility from any given car decreases (Table D.9).

We find substantial heterogeneity in the relative magnitude of βd across consumer types. The

heterogeneity in this sensitivity parameter depends on three main factors: first, the flexibility

of the consumer’s car usage (if he can adjust his car mileage, the fuel efficiency becomes less

important for his purchasing decision); second, whether the consumer buys fuel-efficient cars no

matter what (there might not be much of a margin to react on for some consumers); and finally,

the consumer’s income and preferences for other characteristics of the car.

Among private consumers, the effect of fuel price increases is stronger for employed consumers

(Table D.9). Working people have to drive more and travel distances cannot be easily reduced;

they are thus expected to be the more responsive to fuel price changes. This effect is less strong

in the Paris region, where more public transport alternatives are available.

Generally, firms react less strongly to fuel prices than private consumers. Among other factors

this may be due to firms’ ability to pass through fuel costs to the consumer and to smaller absolute

fuel price variations when VAT refund is taken into account. Within firms, we see considerable

heterogeneity (Table D.9). The most responsive firms are in urban areas except Paris. In the

Paris metropolitan region, sensitivity is particularly low and almost never significant.

However, because of the nested logit specification, the magnitude of the parameters is not

directly informative on the actual fuel prices elasticities. One has to consider indirect effects due

to the correlation (and thus higher potential substitution) between gasoline and diesel versions of

the same model captured by σ1d, as well as substitution within segment σ2d. The estimates for

these parameters are as expected all between 0 and 1. σ1d is on average 0.5 implying a relatively

high correlation between the two fuel-type versions of the same model (Table D.10, while σ2d is
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Table D.9: Estimates for the coefficient on cost per km βd

Private consumers
Not employed Young professional Employed (>30)

Income Low High Low High Low High
Urban −0.11

(0.02)

∗∗∗ −0.08
(0.02)

∗∗∗ −0.15
(0.02)

∗∗∗ −0.13
(0.02)

∗∗∗ −0.13
(0.02)

∗∗∗ −0.14
(0.01)

∗∗∗

Suburb./rural −0.08
(0.02)

∗∗∗ −0.11
(0.02)

∗∗∗ −0.10
(0.02)

∗∗∗ −0.15
(0.02)

∗∗∗ −0.10
(0.02)

∗∗∗ −0.15
(0.01)

∗∗∗

Paris urban −0.10
(0.02)

∗∗∗ −0.09
(0.02)

∗∗∗ −0.10
(0.01)

∗∗∗

Paris suburban −0.03
(0.02)

−0.08
(0.02)

∗∗∗ −0.10
(0.01)

∗∗∗

Firm purchases
Agriculture & Car Trade &

Sector industry rental services
Suburban/rural −0.01

(0.01)
−0.03
(0.04)

−0.06
(0.01)

∗∗∗

Urban −0.09
(0.02)

∗∗∗ −0.16
(0.03)

∗∗∗ −0.10
(0.01)

∗∗∗

Paris urban −0.07
(0.02)

∗∗∗ 0.08
(0.02)

∗∗∗ −0.01
(0.01)

Paris suburban −0.01
(0.02)

0.01
(−)

−0.04
(0.02)

Source: CCFA, authors’ calculations. Equation (5) is estimated by GMM separately for each type of
consumers. Other controlling variables include horsepower, brand fixed effects, segment fixed effects, class
of CO2, month-year effects, and price. Instrumental variables for prices are the price indices of iron (current
and lagged value) and indices of export prices of tires (both interacted with the car’s weight), BLP-style
instruments and differences of characteristics between gasoline and diesel versions. The estimation of car
rental purchases in the Paris suburban area appears to have a problem of weak instruments (see Section
4.2) and does not converge for all bootstrap draws, so that we give no bootstrap error term for it.

relatively low, on average 0.2, implying a relatively low correlation within segments (Table D.11).

If the purchaser has a preference for a particular model, he substitutes easily between gas and diesel

versions when fuel prices change, rather than switching to a different model and only reluctantly

switches segment. Intensity of substitution between the gasoline and diesel versions of the same

model appears to be higher in urban areas (including Paris urban and metropolitan areas) than

in rural areas. Indeed, while diesel cars yield savings in running costs for long journeys, this

advantage is not clear cut for city driving.

The signs of other variables’ coefficients are as expected; in particular, the vehicle price impacts

utility negatively (Table D.12).

D.2. Demand for selected car models

For a given product, the demand elasticity to fuel prices depends on the car’s fuel consumption

(relative to competing products) and on the preferences of the consumer types that buy this car

(Table D.13). For the sake of illustration, we compute different elasticities ηjf implied by the

previously presented parameters for some selected cars, as well as the shifts in demand ∆tcηjf and

∆tDηjf corresponding to the equalization of diesel and gasoline taxes (tD) and the carbon tax (tc),
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Table D.10: Estimates for coefficient σ1d (substitutability within model, between engine
types)

Private consumers
Not employed Young professional Employed (>30)

Income Low High Low High Low High
Urban 0.41

(0.04)

∗∗∗ 0.48
(0.04)

∗∗∗ 0.51
(0.03)

∗∗∗ 0.51
(0.03)

∗∗∗ 0.55
(0.02)

∗∗∗ 0.59
(0.02)

∗∗∗

Suburb./rural 0.45
(0.04)

∗∗∗ 0.41
(0.03)

∗∗∗ 0.38
(0.03)

∗∗∗ 0.41
(0.03)

∗∗∗ 0.55
(0.02)

∗∗∗ 0.52
(0.02)

∗∗∗

Paris urban 0.30
(0.04)

∗∗∗ 0.62
(0.03)

∗∗∗ 0.62
(0.02)

∗∗∗

Paris suburban 0.10
(0.06)

0.34
(0.04)

∗∗∗ 0.57
(0.03)

∗∗∗

Firm purchases
Agriculture & Car Trade &

Sector industry rental services
Suburban/rural 0.29

(0.03)

∗∗∗ 0.26
(0.08)

∗∗∗ 0.24
(0.03)

∗∗∗

Urban 0.33
(0.03)

∗∗∗ 0.18
(0.04)

∗∗∗ 0.23
(0.03)

∗∗∗

Paris urban 0.17
(0.04)

∗∗∗ −0.16
(0.04)

∗∗∗ 0.18
(0.03)

∗∗∗

Paris suburban 0.77
(0.05)

∗∗∗ 0.42
(−)

0.60
(0.05)

∗∗∗

Source: CCFA, authors’ calculations. Equation (5) is estimated by GMM separately for each type of
consumers. Other controlling variables include horsepower, brand fixed effects, segment fixed effects, class
of CO2, month-year effects, and price. Instrumental variables for prices are the price indices of iron (current
and lagged value) and indices of export prices of tires (both interacted with the car’s weight), BLP-style
instruments and differences of characteristics between gasoline and diesel versions. The estimation of car
rental purchases in the Paris suburban area appears to have a problem of weak instruments (see Section
4.2) and does not converge for all bootstrap draws, so that we give no bootstrap error term for it.

Table D.11: Estimates for coefficient σ2d (substitutability within segment, between models)

Private consumers
Not employed Young professional Employed (>30)

Income Low High Low High Low High
Urban 0.11

(0.02)

∗∗∗ 0.13
(0.02)

∗∗∗ 0.22
(0.02)

∗∗∗ 0.19
(0.02)

∗∗∗ 0.32
(0.01)

∗∗∗ 0.39
(0.01)

∗∗∗

Suburb./rural 0.14
(0.02)

∗∗∗ 0.16
(0.02)

∗∗∗ 0.23
(0.01)

∗∗∗ 0.21
(0.01)

∗∗∗ 0.28
(0.02)

∗∗∗ 0.34
(0.01)

∗∗∗

Paris urban 0.17
(0.02)

∗∗∗ 0.26
(0.02)

∗∗∗ 0.37
(0.02)

∗∗∗

Paris suburban 0.21
(0.02)

∗∗∗ 0.20
(0.02)

∗∗∗ 0.30
(0.02)

∗∗∗

Firm purchases
Agriculture & Car Trade &

Sector industry rental services
Suburban/rural 0.08

(0.02)

∗∗∗ 0.16
(0.03)

∗∗∗ 0.01
(0.02)

Urban 0.07
(0.02)

∗∗∗ 0.08
(0.03)

∗∗∗ 0.16
(0.02)

∗∗∗

Paris urban 0.12
(0.03)

∗∗∗ 0.10
(0.02)

∗∗∗ 0.24
(0.02)

∗∗∗

Paris suburban 0.28
(0.03)

∗∗∗ 0.22
(−)

0.32
(0.03)

∗∗∗

Source: CCFA, authors’ calculations. Equation (5) is estimated by GMM separately for each type of
consumers. Other controlling variables include horsepower, brand fixed effects, segment fixed effects, class
of CO2, month-year effects, and price. Instrumental variables for prices are the price indices of iron (current
and lagged value) and indices of export prices of tires (both interacted with the car’s weight), BLP-style
instruments and differences of characteristics between gasoline and diesel versions. The estimation of car
rental purchases in the Paris suburban area appears to have a problem of weak instruments (see Section
4.2) and does not converge for all bootstrap draws, so that we give no bootstrap error term for it.
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Table D.12: Estimates for coefficient γd

Private consumers
Not employed Young professional Employed (>30)

Income Low High Low High Low High
Urban −0.63

(0.05)

∗∗∗ −0.57
(0.05)

∗∗∗ −0.30
(0.04)

∗∗∗ −0.31
(0.04)

∗∗∗ −0.21
(0.03)

∗∗∗ −0.12
(0.03)

∗∗∗

Suburb./rural −0.65
(0.05)

∗∗∗ −0.66
(0.05)

∗∗∗ −0.42
(0.04)

∗∗∗ −0.30
(0.04)

∗∗∗ −0.36
(0.03)

∗∗∗ −0.15
(0.03)

∗∗∗

Paris urban −0.36
(0.05)

∗∗∗ −0.32
(0.04)

∗∗∗ −0.21
(0.03)

∗∗∗

Paris suburban −0.20
(0.05)

∗∗∗ −0.25
(0.04)

∗∗∗ −0.14
(0.03)

∗∗∗

Firm purchases
Agriculture & Car Trade &

Sector industry rental services
Suburban/rural −0.22

(0.03)

∗∗∗ −0.29
(0.08)

∗∗∗ −0.10
(0.03)

∗∗∗

Urban −0.01
(0.03)

0.14
(0.05)

∗∗∗ −0.00
(0.03)

Paris urban −0.01
(0.03)

−0.03
(0.04)

−0.09
(0.03)

∗∗∗

Paris suburban −0.14
(0.03)

∗∗∗ −0.28
(−)

−0.27
(0.05)

∗∗∗

Source: CCFA, authors’ calculations. Equation (5) is estimated by GMM separately for each type of
consumers. Other controlling variables include horsepower, brand fixed effects, segment fixed effects, class
of CO2, month-year effects, and price. Instrumental variables for prices are the price indices of iron (current
and lagged value) and indices of export prices of tires (both interacted with the car’s weight), BLP-style
instruments and differences of characteristics between gasoline and diesel versions. The estimation of car
rental purchases in the Paris suburban area appears to have a problem of weak instruments (see Section
4.2) and does not converge for all bootstrap draws, so that we give no bootstrap error term for it.

respectively.

An increase in fuel prices (both gasoline and diesel) reduces demand for all cars (ηjf < 0),

but the magnitude varies: Table D.13 gives only a sample of the most popular cars in our data,

where the Peugeot 307 gasoline model had an elasticity with respect to fuel price of -0.17, while

the Citroen C3 gasoline model had an elasticity of -0.34. An increase in diesel fuel tax strongly

lowers the demand for diesel cars (∆tDηjf < 0); for example the sales of the Audi A6 with diesel

engine would decrease by 18.2% (Table D.13). At the same time, such a policy has a small but

significantly positive effect on the demand for gasoline cars, reflecting a substitution effect.

42



Table D.13: Demand elasticity for selected models with respect to fuel prices

model (segment) fuel CO2 fuel ηjf ∆tDηjf ∆tcηjf
(g/km) cons.

(L/km)
(%) (%)

Audi A6 (sedan) gasoline 236.9 10.2 −0.22
(0.03)

∗∗∗ 1.17
(0.22)

∗∗∗ −6.73
(0.89)

∗∗∗

Audi A6 (sedan) diesel 200.1 7.6 −0.29
(0.02)

∗∗∗ −18.20
(1.55)

∗∗∗ −9.39
(0.60)

∗∗∗

Citroen C3 gasoline 147.8 6.4 −0.34
(0.02)

∗∗∗ 2.46
(0.23)

∗∗∗ −10.62
(0.51)

∗∗∗

Citroen C3 diesel 112.8 4.3 −0.19
(0.01)

∗∗∗ −13.48
(0.69)

∗∗∗ −6.55
(0.32)

∗∗∗

Peugeot 307 (sport) gasoline 192.7 8.3 −0.17
(0.01)

∗∗∗ 1.57
(0.08)

∗∗∗ −4.29
(0.21)

∗∗∗

Peugeot 307 (sport) diesel 159.0 6.0 −0.32
(0.01)

∗∗∗ −18.62
(0.87)

∗∗∗ −9.41
(0.43)

∗∗∗

Renault Twingo (compact) gasoline 137.0 5.9 −0.32
(0.01)

∗∗∗ 0.86
(0.03)

∗∗∗ −9.78
(0.44)

∗∗∗

Renault Twingo (compact) diesel 113.0 4.3 −0.25
(0.01)

∗∗∗ −15.62
(0.93)

∗∗∗ −7.30
(0.37)

∗∗∗

Source: CCFA, authors’ calculations. Equation (5) is estimated by GMM separately for each type of consumers.
Standard errors are estimated by bootstrap (500 replications).
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E. Testing for weak instruments

Table E.14: Conditional F-values of the weak instrument test – instruments for the price

Private consumers
Not employed Young employed (<30) Employed (>30)

Income Low High Low High Low High
Urban 35.1*** 31.9*** 51.8*** 51.7*** 47.8*** 49.0***
Suburban/rural 31.7*** 37.6*** 64.8*** 70.9*** 51.3*** 51.5***
Paris urban 20.4*** 42.2*** 44.2***
Paris suburban 16.3** 36.6*** 39.4***

Firm purchases
Industry & Car Trade &
Agriculture rental services

Urban 42.2*** 11.5** 39.7***
Suburban/rural 45.9*** 34.9*** 37.2***
Paris urban 52.4*** 36.3*** 34.6***
Paris suburban 14.2** 14.1** 15.4**
Note: Stars denote conditional F-values beyond the critical value (at 5% significance level) for different
levels of maximal bias of the IV estimator relative to OLS; *** stands for a maximal bias of 5%, ** for 10%,
* for 20%.

Table E.15: Conditional F-values of the weak instrument test – instruments for the market
share of the model within its segment sdj|s

Private consumers
Not employed Young employed (<30) Employed (>30)

Income Low High Low High Low High
Urban 68.1*** 71.3*** 61.4*** 62.4*** 60.7*** 53.6***
Suburban/rural 71.5*** 73.3*** 71.1*** 64.0*** 58.9*** 55.7***
Paris urban 53.4*** 58.3*** 49.3***
Paris suburban 36.5*** 53.5*** 54.8***

Firm purchases
Industry & Car Trade &
Agriculture rental services

Urban 45.9*** 34.9*** 37.2***
Suburban/rural 42.2*** 11.5** 39.7***
Paris urban 52.4*** 36.3*** 34.6***
Paris suburban 14.2** 14.1** 15.4**
Note: Stars denote conditional F-values beyond the critical value (at 5% significance level) for different
levels of maximal bias of the IV estimator relative to OLS; *** stands for a maximal bias of 5%, ** for 10%,
* for 20%.
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Table E.16: Conditional F-values of the weak instrument test – instruments for the market
share of a fuel-type within its model nest sdf |j

Private consumers
Not employed Young employed (<30) Employed (>30)

Income Low High Low High Low High
Urban 26.5*** 22.6*** 32.6*** 32.3*** 41.9*** 44.7***
Suburban/rural 23.6*** 27.9*** 31.7*** 38.1*** 43.7*** 44.3***
Paris urban 15.0** 27.3*** 31.7***
Paris suburban 16.7** 22.2*** 26.5***

Firm purchases
Industry & Car Trade &
Agriculture rental services

Urban 24.2*** 21.6*** 25.8***
Suburban/rural 32.4*** 6.3* 28.6***
Paris urban 15.2** 21.0*** 20.8***
Paris suburban 11.7** 2.9 10.4*
Note: Stars denote conditional F-values beyond the critical value (at 5% significance level) for different
levels of maximal bias of the IV estimator relative to OLS; *** stands for a maximal bias of 5%, ** for 10%,
* for 20%.
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F. Robustness checks: elasticities

Table F.17: Robustness checks: elasticities with respect to fuel prices of diesel share, average
fleet fuel consumption (L/km) and CO2 intensity (g/km)

Diesel share Fuel cons. CO2

ηD ηφ ηCO2

Main specification - including degenerate nests (gas/diesel-only models)
Households 0.044

(0.003)

∗∗∗ −0.015
(0.001)

∗∗∗ −0.018
(0.001)

∗∗∗

Firms 0.017
(0.003)

∗∗∗ −0.004
(0.001)

∗∗∗ −0.006
(0.001)

∗∗∗

Total 0.045
(0.002)

∗∗∗ −0.011
(0.001)

∗∗∗ −0.015
(0.001)

∗∗∗

Alternative specification - Nests (segment>model)
Households 0.042

(0.003)

∗∗∗ −0.014
(0.001)

∗∗∗ −0.017
(0.001)

∗∗∗

Firms 0.015
(0.004)

∗∗∗ −0.004
(0.001)

∗∗∗ −0.006
(0.001)

∗∗∗

Total 0.044
(0.003)

∗∗∗ −0.010
(0.001)

∗∗∗ −0.014
(0.001)

∗∗∗

Main specification - BLP-instruments only
Households 0.033

(0.003)

∗∗∗ −0.015
(0.001)

∗∗∗ −0.017
(0.001)

∗∗∗

Firms 0.017
(0.004)

∗∗∗ −0.003
(0.001)

∗∗∗ −0.004
(0.001)

∗∗∗

Total 0.039
(0.003)

∗∗∗ −0.011
(0.001)

∗∗∗ −0.014
(0.001)

∗∗∗

Main specification - without purchaser heterogeneity
Total 0.039

(0.004)

∗∗∗ −0.028
(0.003)

∗∗∗ −0.025
(0.002)

∗∗∗

Source: CCFA, authors calculations. Estimates rely on the parameters of Equation (5) estimated
by GMM separately for each type of consumers. Standard errors are estimated by bootstrap (500
replications).
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