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1. Introduction  
Basic motivation 

• Conventional empirical production analysis maintains convexity: Implicit or 
explicit assumption that non-convexities do not impact empirical results.  
 

• Some reasons for non-convexities in technology: 
1. Indivisibilities  
2. Economies of scale  
3. Economies of specialization (e.g., nonrival inputs in new growth theory)  
4. Externalities  

 
• Theoretical results pointing to impact of convexity:  
1. Jacobsen (1970), Shephard (1970, 1974): cost function is non-decreasing and 

convex (non-convex) in outputs when technology is convex (non-convex). 
2. Briec et al. (2004): cost function on convex technology ≤ cost function on 

non-convex technology.  
 
• Convexity can then only be maintained if there is well-established empirical 

evidence that its impact on most or some specific applications is negligible. 
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1. Introduction  
Empirical evidence revealing impact of convexity (1) 

Traditional analysis: 
• Non-convexities in electricity generation due to minimum up and down time 

constraints, multi-fuel effects, etc. lead to non-convex and non-differentiable 
variable costs (Bjørndal & Jörnsten (2008), Park et al. (2010)). 
 

• Costs in car manufacturing are non-convex due to changes in the number of 
shifts and in the shutting down of plants for some time (e.g., Copeland & Hall 
(2011)).  

 
Frontier analysis: 
• Cummins & Zi (1998) and Grifell-Tatjé & Kerstens (2008) offer cost frontier 

estimates and cost efficiency ratios for USA life insurance and Spanish 
electricity distribution respectively that are different from convex results. 
 

• For oil field petroleum data, Kerstens & Managi (2012) report substantial 
differences in Luenberger productivity indicator between convex and non-
convex technologies and only find both convergence for latter technology.   
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1. Introduction  
Empirical evidence revealing impact of convexity (2) 

Frontier analysis (cont.): 
 Wheelock & Wilson (2009), J. Business & Economic Statistics.  
 5 inputs & 5 outputs; 11993, 9585 & 6075 banks for 1985, 1994 & 2004 
 All observations in each year are on the NC-frontier. Only 7.9 to 8.8 % are on C 

frontier. Thus, all inefficiency is due solely to the convexity assumption. 
 
Engineering production function literature: 
 Many operations management problems in industry and distribution involve 

indivisibilities and require integer optimisation.  
  
 Similar to arguments of engineering production function literature: most 

production processes yield neo-classical technologies only under strict 
conditions (see Wibe (1984)).  

 
 
Conclusion:  
 Despite this limited amount of evidence, the assumption of convexity in our 

view ideally requires testing.  
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1. Introduction  
3 goals & Use of non-parametric convex and non-convex cost functions  

We explore differences in: 
• Cost frontier estimates based on convex and non-convex cost functions (incl. 

illustrations with sections relating costs to outputs for specific units). 
• Characterization of economies of scale and returns to scale for convex and 

non-convex cost functions and technologies.  
• Technical and scale efficiencies based on convex and non-convex technology 

and cost function estimations.  
 
Use of non-parametric convex and non-convex cost functions:  
• There are hardly any alternative semi-parametric or parametric 

specifications that easily allow for testing convexity.  
• This non-parametric approach coincides with the non-parametric nature of 

the axioms under scrutiny.  
Fuss, McFadden and Mundlak (1978: 223): 
“Given the qualitative, non-parametric nature of the fundamental axioms, 
this suggests … that the more relevant tests will be non-parametric, rather 
than based on parametric functional forms, even very general ones.”  
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• Efficiency is measured using : - deterministic,  
     - nonparametric technologies.  
      
• Production technologies are based on K observations using a vector of inputs x to 

produce a vector of outputs y.  
 

• Technology is represented by its production possibility set : 
T = {(x,y): x can produce y}.  

 
• Input set L(y) denotes all input vectors x producing the output vector y: 

L(y) = {x: (x,y) ∈ T}.  
 

• A convenient characterisation of technology is the input distance function:  
 
 
 

• Radial input efficiency measure (DFi(x,y)) is the inverse of the input distance function. 
 

2. Technology and Cost Functions  
Basic definitions 

( ) { }.)(/,0:max, yLxyxDi ∈≥= λλλ
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• Cost function: 
C(y,w) = min {wx  x ∈ L(y)}.  

 
• Duality relations link primal and dual formulations of technology: it allows a well-

behaved technology to be reconstructed from the observations on cost minimizing 
producer behavior, and the reverse. 
 

• Duality between input distance function and cost function: 
 
 
 
 

  
• Traditional duality relation is established under the convexity hypothesis. Briec et al 

(2004) establish a local duality result between non-convex technologies obeying 
different scaling laws and the corresponding non-convex cost functions.  

2. Technology and Cost Functions  
Cost function & duality 

( ) { }
( ){ }
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2. Technology and Cost Functions  
Non-parametric convex and non-convex specifications of technology 
and cost functions 

 Unified algebraic representation of convex and non-convex technologies under 
different returns to scale assumptions (Briec et al (2004)):  
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2. Technology and Cost Functions  
Non-Parametric Convex and Non-Convex Specifications of 
Technology and Cost Functions (2) 

Note:  
(i) activity vector (z) operates subject to a non-convexity or convexity constraint,   
(ii) scaling parameter (δ ) allows for a particular scaling of observations spanning the 

frontier:   
  - δ free under constant returns to scale (CRS),  
 - δ = 1 under variable returns to scale (VRS),  
 - δ ≤ 1 under non-increasing returns to scale (NIRS)  
 - δ ≥ 1 non-decreasing returns to scale (NDRS). 
 
Computational Issues: 
Computing radial input efficiency : 
• relative to convex technologies: NLP, or LP. 
• relative to non-convex technologies: NLMIP, MIP, LP, or enumeration. 
 
Computing cost function:  
• relative to convex technologies: LP 
• relative to non-convex technologies: LP, or enumeration. 
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2. Technology and Cost Functions  
Results on impact convexity on cost function (1) 

Briec et al (2004) prove:  
• Costs evaluated on non-convex technologies are higher or equal to costs evaluated on 
convex technologies:  
 
• In the case of (i) CRS and (ii) a single output:  
 
 
Note: The above convex technologies are similarly the most conservative, inner bound 
approximations of technology satisfying (A.1) to (A.5).  
 
Source: Briec et al (2004) , p. 171. 

( , ) ( , ).NC CC y w C y w≥

( , ) ( , ).NC CC y w C y w=
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2. Technology and Cost Functions  
Results on impact convexity on cost function (3) 

This relation reflects the property that cost functions are non-decreasing in outputs and 
convex (non-convex) in the outputs depending on whether the technology is convex (non-
convex) (see Jacobsen (1970): Proposition 5.2) or Shephard (1970, 1974).  
 
Source: Jacobsen (1970): Proposition 5.2 (Q9) on p. 765. 
 
 
 
 
 
 
Source: Shephard (1974): Proposition 5.2 on p. 15. 
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2. Technology and Cost Functions  
Results on impact convexity on cost function (5) 

Advanced micro-economic textbooks ignore this issue when discussing duality (e.g., Varian 
(1992: p. 84)). 
 
 
 
 
 
 
 
 
 
 
 
 
Duality cost function & input distance f. established under convexity of input sets. 
Empirical methodologies impose convexity on technology.  
While this difference is known to matter for the cost function, textbooks ignore this issue.  
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2. Technology and Cost Functions  
Results on impact convexity on cost function (5) 

Advanced micro-economic textbooks ignore this issue when discussing the properties of the 
cost function (e.g., Jehle and Reny (2011: p. 138)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If this issue is not mentioned in these books, then it must not be important, no?  
The answer is an empirical issue: we simply do not know whether it matters.  
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2. Technology and Cost Functions  
Results on impact convexity on cost function (6) 

Burgeoning literature uses these non-convex models in comparative perspective: 
•Cummins & Zi (1998) and Grifell-Tatjé & Kerstens (2008) offer cost frontier estimates and 
cost efficiency ratios for USA life insurance and Spanish electricity distribution respectively 
that are different from convex results. 
 

•For oil field petroleum data, Kerstens & Managi (2012) report substantial differences in 
Luenberger productivity indicator between convex and non-convex technologies and only 
find both convergence for latter technology.   
 
Sometimes these non-convex models are employed on their own: 
•Alam and Sickles (2000) examine time series of technical efficiency in the USA airline 
industry for convergence.  
 

•Balaguer-Coll et al. (2007) analyse Spanish local government efficiency from a production 
as well as a cost viewpoint. 
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2. Technology and Cost Functions  
Criticism of the convexity assumption (1) 

Critique of convexity assumption can consider a variety of arguments: 
• Convexity justified because of time divisibility of technologies:  
This ignores setup costs (some of which may be sunk) that make switching between the 
underlying activities costly. 
 
• Convexity is not a primitive axiom, but implied by additivity and divisibility. 
(i)  Perfect divisibility of inputs and/or outputs is a most debatable assumption.  
Most operations management problems in industry and distribution involve indivisibilities 
and input fixities resulting in integer, possibly non-linear optimization problems.  
 
In general, all production processes have some lower limit below which a process cannot 
possibly be scaled down realistically.  
 
Thus: Divisibility is questionable (see Scarf (1994) or Winter (2008))  



17 

2. Technology and Cost Functions  
Criticism of the convexity assumption (2) 

(ii)  Additivity is essential to define free entry, but presupposes spatial separation and 
non-interaction which are both debatable (see Winter (2008)).  
Since additivity relates to the aggregation of results of activities occurring in geographically 
distinct places, transportation and coordination costs must be small to be safely ignored.  
When activities are close for transportation costs to be negligible, then the risk of production 
externalities looms when activities get “too close” to create interactions.  
 
(iii) Additivity and divisibility do not only imply convexity, but also CRS.  
The CRS assumption is at odds with indivisibilities and the lower bounds on the scaling of 
almost all production processes (see Scarf (1994: 114-115) for a sharp critique). 
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3. Empirical Methodology 
Sections of cost functions 

Reconstruction and visualization of production frontiers is discussed in some articles (e.g., 
Hackman et al. (1994) or Hackman (2008)). 
 
Some articles exploit the fact that that non-parametric technologies are convex polyhedra to 
enumerate facets. A 2-dimensional projection is then defined relative to a particular point in 
the technology.  
 
Krivonozhko et al. (2004) present a family of parametric optimization methods to construct 
an intersection of the multidimensional frontier with a 2-dimensional plane determined by 
any pair of given directions.  
 
Here, for a given observation a section of a cost function along one particular output 
dimension is computed using parametric programming: grid of 1000 points within the 
empirical range of the sample for the output selected. 
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3. Empirical Methodology 
Sections of cost functions: Example in 2 inputs and 1 output 

Convex Technology with Planar Section Non-Convex Technology with Planar Section 
 
 
 
 
 
 
 
 
 
 

Convex and Non-Convex Cost Function in Single Output 
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3. Empirical Methodology 
Characterising returns to scale 

Kerstens and Vanden Eeckaut (1999) generalise a goodness-of-fit method to suit all 
(including non-convex) technologies. 
 
Definition 1: Using DFi(x,y) and conditional on the optimal projection point, technology is 
locally characterised by: 
CRS ⇔ DFi(x,yC) = max{ DFi(x,yC), DFi(x,yNIRS), DFi(x,yNDRS) }; 
IRS ⇔ DFi(x,y | NDRS) = max{ DFi(x,yC), DFi(x,yNIRS), DFi(x,yNDRS) }; or 
DRS ⇔ DFi(x,y | NIRS) = max{ DFi(x,yC), DFi(x,yNIRS), DFi(x,yNDRS) }.. 
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3. Empirical Methodology 
Characterising economies of scale 

Goodness-of-fit method based on the inclusion of different overall efficiency components 
estimated relative to different return to scale assumptions can be used. 
 
Definition 2: Using C(y,w.) and conditional on the optimal projection point, the cost 
function is locally characterised by: 
CRS  ⇔ C (y,wC)       = max{ C(y,wC), C(y,wNIRS), C(y,wNDRS) }; 
IRS   ⇔ C(y,wNDRS) = max{ C(y,wC), C(y,wNIRS), C(y,wNDRS) }; or 
DRS  ⇔ C(y,wNIRS) = max{ C(y,wC), C(y,wNIRS), C(y,wNDRS) }.. 
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3. Empirical Methodology 
Efficiency decomposition with technical & scale efficiency 

Definition 3: Under the assumptions on the input set L(y), the following input-oriented 
efficiency notions can be distinguished: 
1. Technical Efficiency is the quantity: TEi(x,y) = DFi(x,yV). 
2. Overall Technical Efficiency is the quantity: OTEi(x,y) = DFi (x,yC). 
3. Scale Efficiency is the quantity: SCEi(x,y) = DFi (x,yC)/DFi(x,yV). 
4. Economic Efficiency for given scale is the quantity: OEi(x,y,wV) = C(y,wV)/wx. 
5. Overall Economic Efficiency is the quantity: OEi(x,y,wC) = C(y,wC)/wx. 
6. Cost-based Scale Efficiency is the quantity: 
 
  
 
 
 
Note: gap between the above technical efficiency notions and their corresponding overall 
efficiency notions results in the definitions of allocative efficiency components. 

.
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3. Empirical Methodology 
Efficiency decomposition with technical & scale efficiency 

Link primal and dual approaches to scale efficiency via allocative efficiency components: 
 
  
 
 
 
 
 
 
 
Note: Second ratio can be smaller, equal or larger than unity, hence both scale efficiency 
notions cannot be related to one another ().  
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3. Empirical Methodology 
Efficiency decomposition with technical & scale efficiency 

Relations between the decompositions in Definition 3 relative to convex and non-convex 
technologies are trivially defined: 
 
Proposition 1: Relations between convex and non-convex decomposition components are: 
1.  

 
2.  

 
3.  

 
4.  

 
5.  

 
6.  
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3. Empirical Methodology 
Efficiency decomposition with technical & scale efficiency 

Convexity can be tested for any comparison between convex and non-convex technologies and 
cost functions imposing a similar returns to scale hypothesis: differences in these components 
are completely attributable to convexity and offer goodness-of-fit test. 
 
 

Definition 4: The convex and non-convex efficiency components based upon constant returns to 
scale technologies and cost functions respectively can be related by: 
 
1. 
 
2. 
 
Note: Both these measures are ≤ 1. 

( ) ( ) ( )yxOTEyxOTEyxCRTE NC
i

C
ii ,,, =

( ) ( ) ( ), , , , , ,C NC
i i iCRCE x y w OE x y w C OE x y w C=
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4. Description of the Samples 
Two secondary data sets 

Use 2 secondary data sets in empirical analysis: 
 
1. Chilean hydro-electric power generation plants 
16 Chilean hydro-electric power generation plants observed on a monthly basis for several 
years (Atkinson & Dorfman (2009)).  
Focus on single year 1997: ignore technical change & specify inter-temporal frontier.  
Total: 192 observations.  
One output: electricity generated.  
Prices and quantities of 3 inputs: (i) labour, (ii) capital, & (iii) water.  
 
2. Unbalanced panel of 3 years of French fruit producers  
Based on annual accounting data collected in a survey (Ivaldi et al. (1996)).  
Short panel justifies use of intertemporal frontier (ignore technical change). 
Total: 405 observations  
Two outputs: (i) production of apples, and (ii) aggregate of alternative products.  
Prices and quantities of 3 inputs: (i) capital (including land), (ii) labour, & (iii) materials. 



Chilian Hydro-power Plants 
 Non-Convex Cost Frontier Convex Cost Frontier 
 VRS CRS VRS CRS 
Average 10.6663 6.2228 8.4522 6.2228 
Stand.Dev. 13.6422 7.4285 11.0802 7.4285 
Minimum 2.4912 0.0442 2.4912 0.0442 
Maximum 65.8023 39.2475 65.8023 39.2475 

French Fruit Producers 
 Non-Convex Cost Frontier Convex Cost Frontier 
 VRS CRS VRS CRS 
Average 1160.91 683.06 718.84 511.51 
Stand.Dev. 1730.08 880.89 1124.45 758.76 
Minimum 150.11 13.15 150.11 8.51 
Maximum 13448.39 6754.19 11815.72 6095.27 
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5. Empirical Results 
Cost frontier estimates: Descriptive statistics 

Table 1: Non-Convex and Convex Cost Frontier Values: Descriptive Statistics 
 
 
 
 
 
 
 
 
 
 
 

 
Conclusions: 
• NC cost frontier estimates are on average higher than their C counterparts. 
• VRS cost frontier estimates are again higher than the CRS ones.  
• For hydro-power plants: NC and C results are identical for CRS, since single output. 
•Li-test statistics (not visible): all distributions C/NC are different. 
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5. Empirical Results 
Cost frontier estimates: Densities (1) 

Figure 1: Kernel Density Estimates of Cost Frontiers for Chilean Hydro-power Plants 
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5. Empirical Results 
Cost frontier estimates: Densities (2) 

Figure 2: Kernel Density Estimates of Cost Frontiers for French Fruit Producers 
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5. Empirical Results 
Sections of the Cost Function in the Output 

Figure 3: VRS Cost Function in the Single Output for Hydro-power Plant 5 
 
 
 
 
 
 
 
 
 
 

 
 



31 

5. Empirical Results 
Sections of the Cost Function in the Output 

Figure 4: CRS Cost Function in the Single Output for Hydro-power Plant 5 
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5. Empirical Results 
Sections of the Cost Function in the Output 

Figure 5: VRS Cost Function in Output 1 for Fruit Producer 19 
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5. Empirical Results 
Sections of the Cost Function in the Output 

Figure 6: CRS Cost Function in Output 1 for Fruit Producer 19 
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5. Empirical Results 
Returns to scale & Economies of scale results 

Table 2: Returns to Scale and Economies of Scale Results 
 
 
 
 
 
 
 
 
 
 
 

Conclusions: 
• Majority of observations operate under IRS.  
Qualification: NC cost approach for the hydro-power plants indicates about an equal 
amount of IRS and DRS.  
• NC cost approach reveals a larger share of observations subject to DRS compared to the 
production-based analysis.  
• More CRS under NC.  
Exception: cost approach for hydro-power plants. 

Chilean Hydro-power Plants (%) 
Production IRS CRS DRS 
Non-convex 70.31 16.67 13.02 
Convex 76.04 2.60 21.35 
Cost IRS CRS DRS 
Non-convex 51.56 0.52 47.92 
Convex 68.23 9.38 22.40 

French Fruit Producers (%) 
Production IRS CRS DRS 
Non-convex 74.07 12.84 13.09 
Convex 90.37 1.73 7.90 
Cost IRS CRS DRS 
Non-convex 73.83 1.98 24.20 
Convex 93.33 0.25 6.42 
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5. Empirical Results 
Returns & Economies of scale: Conflicting information 

Per data set and per production and cost method, Table 3 reports the % observations for 
which the returns and economies to scale classification coincides/diverges.  
 
Focus on part of results in Table 3 (Table suppressed):  
Switch from IRS (economies to scale) to DRS (diseconomies to scale), or the reverse. 
•Hydro-power plants: 7.81% (production) - 21.88% (cost)  
•Fruit producers: 6.91% (production) - 17.78% (cost). 
 
 
 
Per data set and per convexity or non-convexity assumption, Table 4 reports the % 
observations for which the returns and economies to scale classification coincides/diverges. 
 
Focus on part of results in Table 4 (Table suppressed):  
Switch from IRS (economies to scale) to DRS (diseconomies to scale), or the reverse. 
•Hydro-power plants: 2.08% (convex) - 27.60% (non-convex) 
•Fruit producers: 6.17% (non-convex) - 6.42% (convex).   
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5. Empirical Results 
Basic Efficiency Decompositions 

Table 5: Non-Convex and Convex Decompositions: Descriptive Statistics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chilean Hydro-power Plants 
 Non-Convex Decomposition Convex Decomposition 
 TEi(.)¶ SCEi(.) OTEi(.) CRTEi(.) TEi(.) SCEi(.) OTEi(.) 
Average* 0.9391 0.7452 0.6998 0.9027 0.7410 0.8525 0.6317 
Stand.Dev. 0.1382 0.2049 0.2333 0.0809 0.2035 0.1568 0.2297 
Minimum 0.3154 0.1663 0.0647 0.6869 0.1325 0.1868 0.0647 
% Effic. Obs. 80.21 22.40 22.40 11.98 16.67 6.77 6.77 
 OEi(.V) CSCEi(.) OEi(.C) CRCEi(.) OEi(.V) CSCEi(.) OEi(.C) 
Average* 0.4360 0.5108 0.2227 1.0000 0.3587 0.6210 0.2227 
Stand.Dev. 0.3581 0.2155 0.2433 0.0000 0.3075 0.2565 0.2433 
Minimum 0.0549 0.0177 0.0010 1.0000 0.0549 0.0177 0.0010 
% Effic. Obs. 13.02 0.52 0.52 100.00 2.60 0.52 0.52 

French Fruit Producers 
 Non-Convex Decomposition Convex Decomposition 
 TEi(.) SCEi(.) OTEi(.) CRTEi(.) TEi(.) SCEi(.) OTEi(.) 
Average* 0.8210 0.6087 0.4997 0.6200 0.5721 0.5416 0.3098 
Stand.Dev. 0.1904 0.2379 0.2804 0.1545 0.1933 0.2589 0.2194 
Minimum 0.3590 0.0789 0.0486 0.3713 0.1868 0.0728 0.0481 
% Effic. Obs. 45.68 12.84 12.84 2.72 5.43 2.22 2.22 
 OEi(.V) CSCEi(.) OEi(.C) CRCEi(.) OEi(.V) CSCEi(.) OEi(.C) 
Average* 0.5754 0.5483 0.3155 0.6830 0.3939 0.5470 0.2154 
Stand.Dev. 0.2476 0.2049 0.2186 0.1399 0.1898 0.2435 0.1614 
Minimum 0.1337 0.0619 0.0393 0.5205 0.1039 0.0567 0.0364 
% Effic. Obs. 15.31 1.98 1.98 13.58 1.73 0.49 0.49 
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6. Conclusions 

• What has been achieved? 
• First to empirically illustrate the differences in distributions between convex and non-

convex cost frontier estimates.  
• Sections of cost in function of a single output illustrated the differences for individual 

observations.  
• Characterization of both economies of scale and returns to scale for individual 

observations turns out to be seriously conditioned by convexity.  
• Differences in the relative importance of the sources of poor performance. 

Substantially less inefficiency under non-convexity.  
More observations are efficient under non-convexity.  

• General perspectives: 
• Be cautious with the use of convex technologies and cost functions.  
• Quantify incidence of convexity as 1st step to statistical testing. 
 
Dilemma: 
• If you do not like large inefficiencies, then accept non-convexity.  
• If you do not like non-convexity, then accept large inefficiencies.  
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The End 

 
Thanks for your attention 

Any questions??? 
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