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Abstract

In an economy with an occasionally binding zero lower bound (ZLB) constraint, the anticipa-

tion of future ZLB episodes creates a trade-off for discretionary central banks between inflation

and output stabilization. As a consequence, inflation systematically falls below target even when

the policy rate is above zero. Appointing Rogoff’s (1985) conservative central banker mitigates

this deflationary bias away from the ZLB and enhances welfare by improving allocations both

at and away from the ZLB.
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1 Introduction

In light of the liquidity trap conditions currently prevailing in many advanced economies, an in-

creasing number of economists and policymakers has called for a re-assessment of central banks’

monetary policy frameworks.1 This paper contributes to this task by examining the desirability of

Rogoff’s (1985) inflation conservative central banker in an economy with an occasionally binding

zero lower bound (ZLB) on nominal interest rates.

Rogoff (1985) considered a model where in the absence of a commitment device monetary

stabilization policy suffers from a credibility problem that results in excessive inflation—the so-

called inflation bias (Kydland and Prescott, 1977; Barro and Gordon, 1983). He showed that in this

environment society can be better off if the central bank is less concerned with output gap stability

relative to inflation stability than is society. The credibility problem of discretionary monetary

policy at the ZLB is of the opposite nature: Expected inflation is too low and the inability of the

central bank to increase inflation expectations further depresses current inflation.2 We consider

the latter credibility problem in a New Keynesian model where monetary policy is delegated to a

discretionary central bank which decides each period about the short-term policy rate. To focus

on the role of the ZLB, we abstract from the original inflation bias problem. Society’s welfare can

then be approximated by the negative of the weighted sum of inflation and output volatility.

In this model, the ZLB makes the first-best equilibrium unattainable and can be a huge drag on

society’s welfare.3 We find that the appointment of an inflation conservative central banker reduces

the welfare costs of discretionary policymaking induced by the ZLB. The mechanism behind our

result is as follows. In an economy in which future shocks can push the policy rate to the lower

bound, the anticipation of lower inflation and output gives forward-looking households and firms

incentives to reduce consumption and prices even when the policy rate is above the ZLB. The

central bank cannot fully counteract these incentives. When the central bank is concerned with

both inflation and output stabilization, it faces a trade-off between the two objectives, implying

deflation and a positive output gap in those states where the ZLB is not binding. Following the

terminology of Nakov (2008), we will refer to this deflation when the policy rate is above zero as

deflationary bias.

A central banker who puts comparatively more weight on inflation stabilization mitigates the

deflationary bias away from the ZLB at the cost of a potentially higher output gap. Viewed in

isolation, this is welfare-reducing because it shifts inflation and output gap realizations away from

the welfare-implied target criteria. However, lower deflation and higher output gaps away from

the ZLB also reduce expected real interest rates and increase expected marginal costs at the ZLB,

mitigating deflation and output declines there. This in turn implies that a smaller positive output

gap is required to stabilize inflation away from the ZLB, setting in motion a positive feedback loop.

We prove analytically the optimality of placing zero weight on output stabilization for our

1See, for example, Blanchard, Dell’Ariccia, and Mauro (2010); Tabellini (2014); Williams (2014, 2016).
2See Krugman (1998) and Eggertsson (2006).
3See Adam and Billi (2007).
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baseline sticky-price model where the economy is only subject to a two-state natural real rate

shock and we quantify the welfare gains from inflation conservatism numerically in a more elab-

orate continuous-state model with additional shocks, nominal price and wage rigidities and en-

dogenous inflation inertia. In the quantitative model, the central bank’s optimal weight on out-

put stabilization—while strictly smaller than society’s weight on output stabilization—is typically

slightly above zero when we account for cost-push shocks. The welfare gains from inflation conser-

vatism are non-negligible, and can be quite large, e.g. up to 80%, for reasonable parameterizations.

The desirability of inflation conservatism in the presence of the ZLB is compared with several

other institutional configurations that were originally studied in the context of the classic inflation

bias problem of discretionary policymaking.4 Imposing an optimized output or inflation target on

the central bank, or assigning a simple linear contract that rewards the central bank for positive

inflation rates or positive output gaps also helps to reduce the welfare costs of discretionary poli-

cymaking induced by the ZLB. Depending on the model variant, the gains from these alternative

institutional arrangements may be larger than those from inflation conservatism. However, an ap-

pealing feature of inflation conservatism is its robustness. Conservatism is desirable both in the

context of the deflationary bias problem considered here and in the context of the classical inflation

bias problem. In contrast, the sign of the optimized target or contract parameter is sensitive to

whether the economy suffers from the deflationary bias or the inflation bias problem.

An additional contribution of our paper is to show that the ZLB makes discretionary monetary

policy prone to equilibrium multiplicity.5 In our baseline two-state model, there can be two Markov-

Perfect equilibria, and we provide analytical characterizations of the conditions for equilibrium

existence.

Our paper is related to a set of papers that examine various ways to improve allocations at the

ZLB in time-consistent manners. Eggertsson (2006), Burgert and Schmidt (2014), and Bhattarai,

Eggertsson, and Gafarov (2015) consider economies in which the government can choose the level

of nominal debt and show that an increase in government bonds during the liquidity trap improves

allocations by creating incentives for future governments to inflate. In a model in which government

spending is valued by the household, Nakata (2013) and Schmidt (2013) show that a temporary

increase in government spending can improve welfare whenever the policy rate is stuck at the ZLB.

Schmidt (2016) examines the desirability of fiscal policy delegation regimes in the context of the

ZLB. He finds that fiscal authority that cares less about government consumption stability relative

to output gap and inflation stability than society mitigates the time-inconsistency problem and

increases welfare. A key characteristic of these proposals is that they involve additional policy

instruments and require coordination of monetary and fiscal authorities. The approach studied in

our paper only requires that the central bank is maximizing its assigned objective.6

4See, e.g., Persson and Tabellini (1993), Walsh (1995), and Svensson (1997).
5See also Armenter (2014) and Nakata (2014). The fact that the ZLB can give rise to equilibrium multiplicity was

first shown by Benhabib, Schmitt-Grohe, and Uribe (2001) in the context of simple monetary policy rules. They did
not consider discretionary policy.

6Some studies examine other time-consistent ways to better stabilize inflation and output in the model with
the ZLB constraint without relying on additional policy instruments. See Nakata (2014) for an approach based on
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Finally, our work is also related to a set of papers that examine the desirability of Rogoff’s

conservative central banker in settings other than the original model with inflation bias. Clarida,

Gali, and Gertler (1999) showed that the appointment of a conservative central banker is also

desirable in a New Keynesian model, in which the presence of persistent cost-push shocks creates a

stabilization bias in discretionary monetary policy—that is, an inferior short-run trade-off between

inflation and output stabilization compared with the time-inconsistent Ramsey policy. Adam and

Billi (2008), Adam and Billi (2014), and Niemann (2011) examined the benefit of conservatism in

versions of New Keynesian models augmented with endogenous fiscal policy. However, all of these

studies have abstracted from the ZLB constraint.

The remainder of the paper is organized as follows. Section 2 describes the baseline model

and the government’s optimization problem, and defines the welfare measure. Section 3 presents

the main results on inflation conservatism. Section 4 compares inflation conservatism to other

institutional configurations that aim to mitigate the credibility problem of discretionary monetary

policy. Section 5 provides a quantitative analysis of inflation conservatism based on a bigger

continuous-state model calibrated to the U.S. economy. Section 6 concludes.

2 A simple model

This section presents the baseline model, lays down the policy problem of the central bank and

defines the equilibrium. The basic structure of this model is also at the heart of the more elaborate

model that we use in our quantitative analyses.

2.1 Private sector

The private sector of the economy is given by the standard New Keynesian structure formulated

in discrete time with infinite horizon as developed in detail in Woodford (2003) and Gali (2008).

Following the majority of the literature on the ZLB, we put all model equations except for the ZLB

constraint in semi-loglinear form. This allows us to derive closed-form results.

The equilibrium conditions of the private sector are given by the following two equations:

πt = κyt + βEtπt+1 (1)

yt = Etyt+1 − σ (it − Etπt+1 − rnt ) , (2)

where πt is the inflation rate between periods t − 1 and t, yt denotes the output gap, it is the

level of the nominal interest rate between periods t and t + 1, and rnt is the exogenous natural

real rate of interest. Equation (1) is a standard New Keynesian Phillips curve and equation (2)

is the consumption Euler equation. The parameters are defined as follows: β ∈ (0, 1) denotes

the representative household’s subjective discount factor, σ > 0 is the intertemporal elasticity of

reputation, and Billi (2013) and Nakata and Schmidt (2016) for alternative monetary policy delegation schemes.
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substitution in consumption, and κ represents the slope of the New Keynesian Phillips curve.7

We assume that the natural real rate follows a two-state Markov process. In particular, rnt takes

the value of either rnH or rnL where we refer to rnH > 0 as the high (non-crisis) state and rnL < 0 as

the low (crisis) state. The transition probabilities are given by

Prob(rnt+1 = rnL|rnt = rnH) = pH (3)

Prob(rnt+1 = rnL|rnt = rnL) = pL. (4)

pH is the probability of moving to the low state in the next period when the economy is in the

high state today and will be referred to as the frequency of the contractionary shocks. pL is the

probability of staying in the low state when the economy is in the low state today and will be

referred to as the persistence of the contractionary shocks.

2.2 Society’s objective and the central bank’s problem

We assume that society’s value, or welfare, at time t is given by the expected discounted sum of

future utility flows,

Vt = u(πt, yt) + βEtVt+1, (5)

where society’s contemporaneous utility function, u(·, ·), is given by the standard quadratic function

of inflation and the output gap,

u(π, y) = −1

2

(
π2 + λ̄y2

)
. (6)

This objective function can be motivated by a second-order approximation to the household’s

preferences. In such a case, λ̄ is a function of the structural parameters and is given by λ̄ = κ
θ .8

Monetary policy is delegated to a central bank. The value for the central bank is given by

V CB
t = uCB(πt, yt) + βEtV

CB
t+1 , (7)

where the central bank’s contemporaneous utility function, uCB(·, ·), is given by

uCB(π, y) = −1

2

(
π2 + λy2

)
. (8)

Note that, while the central bank’s objective function resembles the private sector’s, the relative

weight that it attaches to the stabilization of the output gap, λ ≥ 0, may differ from λ̄. We assume

that the central bank does not have a commitment technology. Each period t, the central bank

chooses the inflation rate, the output gap, and the nominal interest rate in order to maximize its

7κ is related to the structural parameters of the economy as follows: κ = (1−α)(1−αβ)
α(1+ηθ)

(
σ−1 + η

)
, where α ∈ (0, 1)

denotes the share of firms that cannot reoptimize their price in a given period, η > 0 is the inverse of the elasticity
of labor supply, and θ > 1 denotes the price elasticity of demand for differentiated goods.

8See Woodford (2003).
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objective function (7) subject to the behavioral constraints of the private sector (1)-(2) and the

ZLB constraint it ≥ 0, with the policy functions at time t+ 1 taken as given.

A Markov-Perfect equilibrium is defined as a set of time-invariant value and policy functions

{V CB(·), y(·), π(·), i(·)} that solves the central bank’s problem above, together with society’s

value function V (·), which is consistent with y(·) and π(·). As shown in the Appendix, there are

two Markov-Perfect equilibria in this economy: One fluctuates around a positive nominal interest

rate and zero inflation/output (the standard Markov-Perfect equilibrium), and the other fluctuates

around a zero nominal interest rate and negative inflation/output (the deflationary Markov-Perfect

equilibrium). We focus on the standard Markov-Perfect equilibrium in this paper.

The main exercise of the next section will be to examine the effects of λ on society’s welfare.

We quantify the welfare of an economy by the equivalent perpetual consumption transfer (as a

share of its steady state) that would make a household in the hypothetical economy without any

fluctuations indifferent to living in the economy,

W := (1− β)
θ

κ

(
σ−1 + η

)
E[V ], (9)

where the mathematical expectation is taken with respect to the unconditional distribution of rnt .9

3 Results

After providing conditions for the existence of the standard Markov-Perfect equilibrium, this section

shows how output and inflation in the two states depend on the central bank’s relative weight on

output stabilization λ and shows that λ = 0 is optimal.

Let xk denote the value of variable x in state k, where k ∈ {H,L}. The standard Markov-

Perfect equilibrium is then given by a vector {yH , πH , iH , yL, πL, iL} that satisfies the system of

linear equations and inequality constraints described in Appendix B.

Proposition 1: The standard Markov-Perfect equilibrium exists if and only if

pL ≤ p∗L(Θ(−pL)),

pH ≤ p∗H(Θ(−pH)),

where i) for any parameter x, Θ(−x) denotes the set of parameter values excluding x, and ii) the

cutoff values p∗L(Θ(−pL)) and p∗H(Θ(−pH)) are given in Appendix B.

See Appendix B for the proof.10 For a given parameterization of the model (including the transition

probabilities for the two-state shock) the standard Markov-perfect equilibrium exists if and only if

9For a derivation of the welfare-equivalent consumption transfer, see Appendix A.
10The conditions for the existence of the deflationary Markov-Perfect equilibrium turn out to be identical to those

for the existence of the standard Markov-Perfect equilibrium; see Appendix J.
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this parameterization satisfies both inequality conditions.11

When the conditions for the existence of the equilibrium hold, the signs of the endogenous

variables are unambiguously determined.

Proposition 2: For any λ ≥ 0, πH ≤ 0, yH > 0, iH < rnH , πL < 0, yL < 0, and iL = 0. With

λ = 0, πH = 0.

See Appendix B for the proof. In the low state, the ZLB constraint becomes binding, and output

and inflation are below target. In the high state, a positive probability of entering the low state in

the next period reduces expected marginal costs of production and leads firms to lower prices in

anticipation of future crises events. This raises the expected real rate faced by the representative

household and gives it an incentive to postpone consumption. The central bank chooses to lower

the nominal interest rate to mitigate these anticipation effects. In equilibrium, inflation and output

in the high state are negative and positive, respectively, and the non-crisis policy rate is below

the natural real interest rate. These analytical results are consistent with the numerical results

in the literature (see Nakov (2008), among others). In particular, negative inflation away from

the ZLB has been referred to as deflationary bias. This proposition provides the first analytical

underpinning for the deflation bias.

Notice that the first part of this proposition (πH ≤ 0, yH > 0, and iH < rnH) can be seen as

demonstrating the breakdown of the so-called divine coincidence. If there were no ZLB constraint,

then inflation and output gap in both states would be zero. Here, in the model with the ZLB

constraint, inflation and the output gap are not fully stabilized even in the high state when the ZLB

does not bind. This is because the possibility of future ZLB episodes reduces inflation expectations

in the high state, which can be thought of as a negative cost-push shock that shifts down the

intercept of the Phillips curve. In this regard, accounting for pH > 0 is essential for the analysis.

We now establish several results on how the degree of conservatism affects endogenous variables

in both states. In doing so, we assume that parameter values are such that the conditions for

equilibrium hold for a reasonable range of λ > 0.12

Proposition 3: For any λ ≥ 0, ∂πH
∂λ < 0, ∂πL

∂λ < 0, and ∂yL
∂λ < 0. For any λ ≥ 0, ∂yH

∂λ < 0 if and

only if βpH − (1− β)
(

1−pL
κσ (1− βpL + βpH)− pL

)
< 0.

See Appendix B for the proof. ∂πH
∂λ < 0 means that, as the central bank cares more about in-

flation, inflation in the high state is higher (i.e., the deflation bias in the high state is smaller).

Since a lower rate of deflation in the high state increases output and inflation in the low state via

expectations, inflation and output in the low state both increase with the degree of conservatism

11Richter and Throckmorton (2014) show numerically for a nonlinear New Keynesian model that the boundary
of the region of the parameter space where their solution algorithm converges to a minimum state variable solution
imposes a trade-off between the frequency and the persistence of ZLB events.

12p∗H and p∗L do depend on λ, but for values of λ between 0 and λ̄ the quantitative effect is negligible.
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(∂πL∂λ < 0 and ∂yL
∂λ < 0). The effect of conservatism on output in the high state is ambiguous. On

the one hand, a more conservative central bank is willing to tolerate a larger overshooting of output

given the same inflation expectations. On the other hand, higher inflation in both states improves

the trade-off between inflation and output stabilization implied by the Phillips curve, making it

possible to reduce the overshooting of output in the non-crisis state.

Proposition 4: Suppose that pL and pH are sufficiently low so that pL ≤ p∗L(Θ(−pL)) and

pH ≤ p∗H(Θ(−pH)) for all λ in [0, λ̄]. Then, welfare is maximized at λ = 0.

See Appendix B for the proof. As demonstrated in Proposition 3, deflation in the high state is

smaller and inflation and output decline less in the low state with a smaller λ. These forces work

to improve society’s welfare. If βpH − (1− β)
(

1−pL
κσ (1− βpL + βpH)− pL

)
> 0, then output in

the high state becomes smaller with a smaller λ and the optimality of zero weight is obvious. If

βpH − (1− β)
(

1−pL
κσ (1− βpL + βpH)− pL

)
< 0, then a smaller λ increases the already positive

output gap and thus has ambiguous effects on welfare. Proposition 4 demonstrates that, even in

this case, the beneficial effects of a smaller λ on πH , πL, and yL dominate the adverse effect on yH .

In Appendix D, we provide a numerical illustration of the aforementioned model properties.

4 Other institutional solutions

In this section, we compare the optimal inflation conservative central banker with four other insti-

tutional configurations that have been studied extensively in the context of the traditional inflation

bias problem of discretionary policy: a linear inflation/output gap contract (IC/OC), and an in-

flation/output gap target (IT/OT). To do so, we consider a modified version of the central bank’s

period objective function

uCB(πt, yt) = −1

2

[
(πt − fIT )2 + λ̄ (yt − fOT )2

]
+ fICπt + fOCyt, (10)

where fIT , fOT , fIC and fOC are parameters, and where the weight on the quadratic output gap

term in the central bank’s objective function is the same as in society’s period utility function.

Let j ∈ {IT,OT, IC,OC} denote a monetary policy regime that satisfies fj 6= 0 and fk = 0,

∀k ∈ {IT,OT, IC,OC}, k 6= j. The next proposition shows that the regimes IT, OT, IC and OC

are isomorphic to each other.

Proposition 5: Suppose the policy parameter fj in regime j equals some value f̂ 6= 0. Then

for each monetary policy regime m ∈ {IT,OT, IC,OC}, m 6= j, there exists a value for policy

parameter fm such that the equilibrium conditions under regimes j and m are the same.

See Appendix C for the proof. Hence, welfare (9) is the same under the optimized IT, OT, IC and

OC regimes, provided that an equilibrium exists. Without loss of generality, we therefore focus
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on the linear inflation contract for the remainder of this section and set fIT , fOT , fOC = 0. In

Appendix C, we show that the conditions for equilibrium existence provided in the previous section

are sufficient for all fIC ∈ [0, f̄IC), where f̄IC > −rL is a function of structural parameters. We

can then establish the following welfare results.

Proposition 6: (i) There exists a linear inflation contract with fIC = f0
IC , where 0 < f0

IC <

f̄IC , that replicates the discretionary equilibrium under the optimal inflation conservative central

banker. (ii) Welfare under the optimal linear inflation contract is strictly larger than welfare un-

der the optimal inflation-conservatism regime, and the optimized contract parameter f∗IC satisfies

f0
IC < f∗IC < f̄IC . (iii) The discretionary equilibrium under the optimal linear inflation contract

features strictly positive inflation in the high state, πH > 0.

See Appendix C for the proof. Proposition 5 and Proposition 6 together imply that also the optimal

IT, OT and OC regimes lead to better welfare outcomes than the optimal inflation-conservatism

regime. A key feature of the optimal IT, OT, IC and OC regimes is that, unlike under the optimal

conservatism regime where inflation in the high state is zero, they stabilize inflation in the high state

at a level strictly above zero.13 Positive inflation in the high state mitigates the decline of output

and inflation in the low state via expectations and consequently further improves the stabilization

trade-off in the high state.14

5 A quantitative model

In this section, we consider a more elaborate continuous-state model that allows us to quantify

the welfare effects of inflation conservatism and other institutional configurations in an empirically

motivated framework. The model features price and wage rigidities as in Erceg, Henderson, and

Levin (2000), and non-reoptimized prices and wages may be partially indexed to past inflation. The

economy is buffeted by preference shocks to the household’s discount factor and by price mark-up

shocks.15

13See Appendix D for a numerical illustration.
14Whether a marginal increase in fj raises or lowers output in the high state is determined by the same condition

that determines whether a marginal increase in λ raises or lowers output in the high state under inflation conservatism.
15In Appendix H we consider a model variant with wage mark-up shocks.
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5.1 The private sector and the central bank

Aggregate private sector behavior is summarized by the following system of semi-loglinear equations

πt − τpπt−1 = κp

(
γ

1− γ
yt + wt

)
+ β(Etπt+1 − τpπt) + ut, (11)

πWt − τwπt−1 = κw

((
σ−1 +

η

1− γ

)
yt − wt

)
+ β(Etπ

W
t+1 − τwπt), (12)

πWt = wt − wt−1 + πt, (13)

yt = Etyt+1 − σ (it − Etπt+1 − rnt ) . (14)

Equation (11) captures the price setting behavior of firms, where wt is the composite real wage rate

and ut is a price mark-up shock. Equation (12) summarizes the nominal wage setting behavior of

households, where πWt denotes nominal wage inflation between periods t− 1 and t. Parameters τp

and τw represent the degree of indexation of prices and wages to past inflation. Equation (13) relates

nominal wage inflation to the change in the real wage rate and the price inflation rate, and equation

(14) is the familiar consumption Euler equation. Parameters satisfy κp = (1−α)(1−αβ)
α

1−γ
1−γ+γθ , and

κw = (1−αW )(1−βαW )
αW (1+ηθW ) , where γ ∈ (0, 1) is the capital elasticity of output, αW ∈ (0, 1) denotes the

share of households that cannot reoptimize their nominal wage in a given period and θW > 1 is the

wage elasticity of demand for differentiated labor services. The two external disturbances follow

stationary autoregressive processes

rnt = ρrr
n
t−1 + (1− ρr) rn + εrt ,

ut = ρuut−1 + εut ,

where εxt , x ∈ {r, u}, are i.i.d. N(0,σ2
x) innovations, and where the process for the preference shock

is written in terms of the natural real rate of interest.

As before, society’s welfare at time t is given by the expected discounted sum of future utility

flows. In the quantitative model, society’s contemporaneous utility function u(·) is given by the

following second-order approximation to the household’s utility, assuming that deterministic steady

state distortions are eliminated by appropriate subsidies16

u(πt, yt, π
W
t , πt−1, π

W
t−1) = −1

2

[
(πt − τpπt−1)2 + λ̄y2

t + λ̄W (πWt − τwπt−1))2
]
, (15)

where the relative weights are functions of the structural parameters.17

As before, the central bank acts under discretion. We consider four monetary policy regimes:

the benchmark regime where the central bank has the same objective function as society, inflation

conservatism, a linear inflation contract and wage inflation conservatism.18 A wage inflation con-

16See Giannoni and Woodford (2004).
17Specifically, λ̄ = κp

(
σ−1 + η+γ

1−γ

)
1
θ

and λ̄W = λ̄ (1−γ)θW
κw(σ−1+(η+γ)/(1−γ))

.
18The inflation contract regime is isomorphic to several other regimes, including an output contract, a wage inflation
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servative central banker is a natural institutional reform candidate in our quantitative model since

the presence of nominal wage rigidities implies that society cares about wage inflation stability.

Nesting these four regimes, the central bank’s contemporaneous utility function u(·)CB is given by

uCB(πt, yt, π
W
t , πt−1, π

W
t−1) = −1

2

[
λπ(πt − τpπt−1)2 + λy2

t + λ̄W (πWt − τwπt−1)2
]

+ fπt, (16)

where λπ, λ and f are policy parameters. For λπ = 1, λ = λ̄ and f = 0, the central bank’s objective

function collapses to society’s objective function. Appendix E describes the optimization problem

of a generic discretionary policymaker and lists the first order conditions.

5.2 Calibration and model solution

The model is calibrated to the U.S. economy following the parameterization in Schmidt (2016),

and is summarized in Table 1. The period length is one quarter. While the baseline calibration

sets the indexation parameters τp and τw to zero, this assumption is relaxed later on. The implied

Table 1: Baseline calibration of quantitative model

β 0.9938 θ 9 αW 0.72 τw 0 ρu 0
σ−1 1.22 θW 9 γ 0.3 ρr 0.8 σu 0.17
η 1.69 α 0.72 τp 0 σr 0.363

values for the parameters in society’s objective function are λ̄ = 0.0103 and λ̄W = 2.3361. We use a

projection method with finite elements to solve the model numerically, as described in Appendix F.

This method allows for an accurate treatment of expectation terms. The calibrated model matches

the observed volatility of inflation, short-term interest rates, and real GDP growth in the United

States over the previous two decades quite well. Under the benchmark monetary policy regime

where the central bank has the same preferences as society, the unconditional standard deviations

of annualized inflation, the annualized short-term nominal interest rate, and annualized quarterly

real GDP growth are 0.63, 2.36 and 2.07, respectively. In the data, for the period from 1995-Q1

until 2015-Q4 the standard deviation of annualized quarterly U.S. inflation as measured by the CPI

less food and energy is 0.61, the standard deviation of the quarterly short-term nominal interest

rate as measured by the effective federal funds rate is 2.37 (annualized), and the standard deviation

of the annualized quarterly real GDP growth rate is 2.54.

5.3 Optimal institutional configurations

As before, we quantify the effects of alternative monetary policy regimes on society’s welfare by the

perpetual consumption transfer (as a share of its steady state) that would make a household in the

contract, an inflation target, an output target and a wage inflation target.
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artificial economy without any fluctuations indifferent to living in the economy. In the quantitative

model, this welfare-equivalent consumption transfer is given by

W := (1− β)
θ

κ

(
σ−1 +

η + γ

1− γ

)
E[V ]. (17)

Table 2 reports the optimized cental bank objective function parameters, welfare (17), and the

frequency of ZLB events for the four alternative regimes.19

Table 2: Results for the quantitative model - baseline calibration

Regime Optimized policy Welfare Welfare gain over ZLB frequency
parameter (benchmark) (in %) benchmark (%) (in %)

Benchmark discretion - -0.101 0 31
Inflation conservatism λ = 0.002 (0.01) -0.074 27 33
Inflation contract f = 0.19 (0) -0.062 39 24
Wage inflation conserv. λπ = 0.35 (1) -0.070 31 31

Note: The non-optimized policy parameters have the following values. Benchmark discretion: λπ = 1, λ = 0.010,

f = 0. Inflation conservatism: λπ = 1, f = 0. Inflation contract: λπ = 1, λ = 0.010. Wage inflation conservatism:

λ = 0.002, f = 0.

Under the benchmark regime, society’s welfare loss amounts to a permanent reduction in con-

sumption of 0.1% of its deterministic steady state and the ZLB binds in 31% of the simulated

periods. Under optimal inflation conservatism, the weight on output gap stabilization in the central

bank’s objective function is strictly positive—reflecting the presence of price mark-up shocks—but

considerably smaller than the weight that society puts on the output gap term. Society’s welfare is

27% higher than under the benchmark regime. These welfare gains from inflation conservatism are

closely linked to the ZLB. Without the ZLB, appointing an inflation conservative central banker in

this model would not be welfare-improving. The effect of inflation conservatism on the frequency

of ZLB events is ambiguous. On the one hand, an inflation conservative central banker responds

more elastically to variations in inflation than the benchmark central banker does, thereby increas-

ing the frequency of ZLB events. On the other hand, inflation conservatism improves stabilization

outcomes at the ZLB, as discussed in Section 3. This mitigates the deflationary bias and thereby

reduces the frequency of ZLB events. For our baseline calibration, the former channel is slightly

stronger than the latter, leading to a two percentage points increase in the frequency of ZLB events.

The optimal linear inflation contract leads to a slightly higher welfare level than the conservatism

regime. This goes hand-in-hand with a 7 percentage points reduction in the frequency of ZLB

events compared to the benchmark regime. Finally, to explore the desirability of wage inflation

19Results are based on 2000 simulations with a length of 1050 periods each, where the first 50 periods are discarded
as burn-in periods. For each regime candidate, we calculate the average of the discounted welfare loss across the
simulations. Appendix H presents results from sensitivity analyses. Appendix I compares inflation targeting to
price-level targeting.

12



conservatism, we fix the central bank’s relative weight on output gap stabilization at the optimized

value and ask whether there are additional gains from assigning a weight on inflation stabilization

λπ that deviates from the weight of unity in society’s objective. For the baseline calibration, assign-

ing a lower weight on the price inflation term in the central bank’s objective function is associated

with some small additional welfare gains. Such a regime can be characterized as wage inflation

conservative in the sense that it puts a higher weight on wage inflation stability relative to price

inflation and output gap stability than society does.20

Previous work by Adam and Billi (2007) suggests that the welfare costs of purely discretionary

policymaking in the presence of the ZLB can be very large when current inflation is partly driven

by past inflation rates. To investigate the effects of this form of endogenous inflation inertia on

the optimal institutional configurations and welfare, we next consider a model variant where non-

reoptimized prices and wages are partially indexed to past inflation. To economize on the number

of state variables, we abstract from the price mark-up shock and drop ut from equation (11). Table

3 reports the optimized policy delegation parameters, welfare as measured by equation (17), and

the frequency of ZLB events for the case where τ = τW = 0.2. Without the ZLB, the discretionary

Table 3: Results for the quantitative model with partial indexation

Regime Optimized policy Welfare Welfare gain over ZLB frequency
parameter (benchmark) (in %) benchmark (%) (in %)

Benchmark discretion - -0.096 0 40
Inflation conservatism λ = 0 (0.01) -0.018 81 31
Inflation contract f = 0.16 (0) -0.018 81 23
Wage inflation conserv. λπ = 5 (1) -0.012 87 31

Note: The non-optimized policy parameters have the following values. Benchmark discretion: λπ = 1, λ = 0.010,

f = 0. Inflation conservatism: λπ = 1, f = 0. Inflation contract: λπ = 1, λ = 0.010. Wage inflation conservatism:

λ = 0, f = 0.

policymaker would be able to replicate the efficient equilibrium in this model variant where natural

real rate shocks are the only source of uncertainty. Hence, in this model welfare losses are directly

linked to the presence of the ZLB. In spite of the rather modest degree of price and wage indexation,

the costs of discretionary policymaking without delegation are quite high, being tantamount to a

permanent reduction in consumption of almost 0.1% of deterministic steady state consumption.

Optimal inflation conservatism reduces the welfare costs considerably to about one-fifth of those

observed under the benchmark regime. In the absence of mark-up shocks, the optimal relative

weight on the output gap term in the central bank’s objective function is zero, as in the simple two-

state model.21 Unlike under the baseline calibration, appointing an inflation conservative central

banker reduces the frequency of ZLB events. The optimal linear inflation contract performs as

20This result is sensitive to the type of mark-up shock that enters the model. In Appendix H, we show that if the
price mark-up shock is replaced with a wage mark-up shock, then it becomes optimal to choose a λπ > 1.

21In this model variant, welfare could be increased further by allowing for negative values of λ. For instance, if
λ = −0.001, which is the smallest value of λ for which our computational algorithm converges, then society’s welfare
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well as inflation conservatism and further reduces the frequency of ZLB events. Finally, unlike in

the baseline model with price mark-up shocks, in this model variant welfare under a conservative

central bank can be increased further by assigning more, not less, weight on the price inflation

stability objective relative to the output and wage inflation stability objectives.22

In Appendix G, we show how the choice of the monetary policy regime affects the behavior of

the economy in a temporary liquidity trap scenario.

6 Conclusion

We have demonstrated, both analytically and numerically, that an economy that experiences occa-

sional ZLB episodes can improve welfare by appointing a conservative central banker who is more

concerned with inflation stabilization relative to output stabilization than society is. In the absence

of policy commitment, optimal monetary policy suffers from a deflationary bias. Inflation stays

below target even when the policy rate is positive because households and firms anticipate that

the ZLB can be binding in the future. Subdued inflation rates away from the ZLB in turn exac-

erbate the decline in output and inflation when the economy is in a liquidity trap. A conservative

central banker counteracts this vicious cycle by mitigating the deflationary bias away from the

ZLB, thereby improving stabilization outcomes at and away from the ZLB. The welfare gains from

inflation conservatism are particularly large in models where current inflation and nominal wage

growth are partly determined by past inflation rates.
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Appendix

A Welfare measure for the simple model of Section 2

We quantify the welfare of an economy by the equivalent perpetual consumption transfer (as a

share of its steady state) that would make a household in the hypothetical economy without any

fluctuations indifferent to living in the actual economy. The welfare measure can be derived as

follows.

A permanent reduction in private consumption C by a share W in the hypothetical econ-

omy without fluctuations reduces lifetime utility of the representative agent in this economy by∑∞
j=0 β

jUCCW = 1
1−βUCCW , where UC is the marginal utility of consumption evaluated at the

deterministic steady state.

The second-order approximation to the unconditional expected lifetime utility in the actual

economy equals UCC
θ
κ(σ−1 + η)E[V ].23

Equalizing the two terms and solving for W , we obtain the following expression for the welfare-

equivalent permanent consumption transfer

W = (1− β)
θ

κ
(σ−1 + η)E[V ].

B Proofs related to Section 3

In this section, we will provide details of the proofs for the propositions stated in Section 3 in the

main text. Since the proofs are algebraically intensive, we will have to omit some details in this

section.

B.1 Proof of Proposition 1

The standard Markov-Perfect equilibrium is given by a vector {yH , πH , iH , yL, πL, iL} that solves

the following system of linear equations

yH =
[
(1− pH)yH + pHyL

]
+ σ

[
(1− pH)πH + pHπL − iH + rnH

]
, (B.1)

πH = κyH + β
[
(1− pH)πH + pHπL

]
, (B.2)

0 = λyH + κπH , (B.3)

yL =
[
(1− pL)yH + pLyL

]
+ σ

[
(1− pL)πH + pLπL − iL + rnL

]
, (B.4)

πL = κyL + β
[
(1− pL)πH + pLπL

]
, (B.5)

iL = 0, (B.6)

23See, for instance, Gali (2008).
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and satisfies the following two inequality constraints:

iH > 0, (B.7)

φL < 0. (B.8)

φL denotes the Lagrangean multiplier on the ZLB constraint in the low state:

φL := λyL + κπL. (B.9)

We first prove four preliminary propositions (Propositions 1.A–1.D), then use them to prove

the main proposition (Proposition 1) on the necessary and sufficient conditions for the existence of

the standard Markov Perfect equilibrium.

Let

A(λ) := −βλpH , (B.10)

B(λ) := κ2 + λ(1− β(1− pH)), (B.11)

C :=
(1− pL)

σκ
(1− βpL + βpH)− pL, (B.12)

D := −(1− pL)

σκ
(1− βpL + βpH)− (1− pL) = −1− C, (B.13)

and

E(λ) := A(λ)D −B(λ)C. (B.14)

Assumption 1.A: E(λ) 6= 0.

Throughout the proof, we will assume that Assumption 1.A holds.

Proposition 1.A: There exists a vector {yH , πH , iH , yL, πL, iL} that solves (B.1)–(B.6).

Proof :

Rearranging the system of equations (B.1)–(B.6) and eliminating yH and yL, we obtain two

unknowns for πH and πL in two equations:

[
A(λ) B(λ)

C D

][
πL

πH

]
=

[
0

rnL

]

⇒

[
πL

πH

]
=

1

A(λ)D −B(λ)C

[
D −B(λ)

−C A(λ)

][
0

rnL

]
. (B.15)

Thus,
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πH =
A(λ)

E(λ)
rnL (B.16)

and

πL =
−B(λ)

E(λ)
rnL. (B.17)

From the Phillips curves in both states, we obtain

yH =
βκpH
E(λ)

rnL (B.18)

and

yL = −(1− βpL)κ2 + (1− β)(1 + βpH − βpL)λ

κE(λ)
rnL. (B.19)

Proposition 1.B: Suppose (B.1)–(B.6) are satisfied. Then φL < 0 if and only if E(λ) < 0.

Proof: Notice that

φL = −λ(1− βpL)κ2 + (1− β)(1 + βpH − βpL)λ

κE(λ)
rnL + κ

−B(λ)

E(λ)
rnL

= −
[
λ

κ

[
(1− βpL)κ2 + (1− β)(1 + βpH − βpL)λ

]
+ κB(λ)

]
rnL
E(λ)

. (B.20)

Notice also that rnL < 0, (1− βpL)κ2 > 0, (1− β)(1 + βpH − βpL)λ ≥ 0, and κB(λ) > 0. Thus, if

φL < 0, then E(λ) < 0. Similarly, if E(λ) < 0, then φL < 0.

Corollary 1: E(λ) < 0 implies C > 0 and D < 0.

Proof: Substitute equations (B.10), (B.11), and (B.13) into equation (B.14) to obtain

E(λ) = βλpH −
(
κ2 + λ(1− β)

)
C. (B.21)

Hence, C > 0 is a necessary condition for E(λ) < 0. Finally, from equation (B.13) it becomes

clear that C > 0 implies D < 0.

Proposition 1.C: E(λ) < 0 if and only if pL < p∗L(Θ−pL).

Proof: It is convenient to view E(·) as a function of pH and pL instead of λ for a moment.
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E(pH , pL) = βλpH − Γ

[
1− pL
σκ

(1− βpL + βpH)− pL
]

= βλpH − Γ

[
1

σκ
(1− βpL + βpH − pL + βp2

L − βpHpL)− pL
]

= −Γ
1

σκ
βp2

L + Γ

[
1

σκ
(1 + β + βpH) + 1

]
pL + βλpH − Γ

1

σκ
(1 + βpH)

:= q2p
2
L + q1pL + q0, (B.22)

where Γ := κ2 + λ(1− β) and

q0 := βλpH − Γ
1

σκ
(1 + βpH), (B.23)

q1 := Γ
[ 1

σκ
(1 + β + βpH) + 1

]
> 0, (B.24)

q2 := −Γ
1

σκ
β < 0. (B.25)

This function, E(·, ·), has the following properties.

Property 1: E(pH , 1) > 0 for any 0 ≤ pH ≤ 1.

Proof:

E(pH , 1) = −Γ
1

σκ
β + Γ

[
1

σκ
(1 + β + βpH) + 1

]
+βλpH − Γ

1

σκ
(1 + βpH)

= Γ + βλpH > 0 (B.26)

Property 2: E(pH , pL) is maximized at pL > 1 for any 0 ≤ pH ≤ 1.

Proof:

∂E(pH , pL)

∂pL
= 2q2p

∗
L + q1 = 0

⇔ p∗L = − q1

2q2

=
Γ
[

1
σκ(1 + β + βpH) + 1

]
2Γ 1

σκβ

=

[
1
σκ(2β + (1− β) + βpH) + 1

]
2 1
σκβ

> 1. (B.27)
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These two properties imply i) one root of E(·, pL) is below 1 and ii) E(·, pL) < 0 below this root.

Let’s call this root p∗L(Θ−pL). p∗L(Θ−pL) is given by

p∗L(Θ−pL) :=
−q1 +

√
q2

1 − 4q2q0

2q2
. (B.28)

If E(λ) < 0, then pL < p∗L(Θ−pL). Similarly, if pL < p∗L(Θ−pL), then E(λ) < 0. This completes

the proof of Proposition 1.C. Note that Proposition 1.C holds independently of whether the system

of linear equations (B.1)–(B.6) is satisfied or not.

Proposition 1.D: Suppose (B.1)–(B.6) are satisfied and E(λ) < 0. Then iH > 0 if and

only if pH < p∗H(Θ−pH ).

Proof:

First, notice that iH is given by

iH =rnH +
1

σ

[
−pHyH + pHyL

]
+
[
(1− pH)πH + pHπL

]
=rnH +

1

σ
pH
−(1− βpL)κ− (1− β)(1 + βpH − βpL)λ/κ− βκpH

E(λ)
rnL

+ (1− pH)
A(λ)

E(λ)
rnL + pH

−B(λ)

E(λ)
rnL

=−
rnL
E(λ)

βΓ

σκ
p2
H −

rnL
E(λ)

[
(1− βpL)Γ

σκ
+ κ2 + λ

]
pH + rnH . (B.29)

Since E(λ) < 0, iH > 0 requires

rnL
βΓ

σκ
p2
H + rnL

(
(1− βpL)Γ

σκ
+ κ2 + λ

)
pH − rnHE(λ) > 0

⇔ rnL
βΓ

σκ
p2
H +

[
rnL

(
(1− βpL)Γ

σκ
+ κ2 + λ

)
− rnHβλ+ rnHΓβ

1− pL
σκ

]
pH

+rnHΓ

(
1− pL
σκ

(1− βpL)− pL
)
> 0. (B.30)

Dividing both sides by Γ and by −rnL, we obtain
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− β

σκ
p2
H −

(1− βpL) + (1− pL)β
rnH
rnL

σκ
+
κ2 + (1− β r

n
H
rnL

)λ

Γ

 pH
−
[

1− pL
σκ

(1− βpL)− pL
]
rnH
rnL

> 0.

(B.31)

Let

P (pH) := φ2p
2
H + φ1pH + φ0, (B.32)

where

φ0 := −
[

1− pL
σκ

(1− βpL)− pL
]
rnH
rnL
, (B.33)

φ1 := −
(1− βpL) + (1− pL)β

rnH
rnL

σκ
−
κ2 + (1− β r

n
H
rnL

)λ

Γ
, (B.34)

φ2 := − β

σκ
< 0. (B.35)

Property 1: φ0 > 0

Proof: Notice that iH = rnH > 0 when pH = 0. Since E(λ) < 0, the sign of iH is the same as the

sign of φ2p
2
H + φ1pH + φ0. Thus, φ0 > 0. This completes the proof of Property 1.

φ0 > 0 and φ2 < 0 imply that one root of (B.32) is non-negative and iH > 0 if and only if pH is

below this non-negative root, given by

p∗H(Θ−pH ) :=
−φ1 −

√
φ2

1 − 4φ0φ2

2φ2
. (B.36)

This completes the proof of Proposition 1.D.

With these four preliminary propositions (1.A–1.D), we are ready to prove our Proposition 1.

Proposition 1: There exists a vector {yH , πH , iH , yL, πL, iL} that solves the system of

linear equations (B.1)–(B.6) and satisfies φL < 0 and iH > 0 if and only if pL < p∗L(Θ−pL)

and pH < p∗H(Θ−pH ).

Proof of “if” part: Suppose that pL < p∗L(Θ−pL) and pH < p∗H(Θ−pH ). According to Proposition

1.A there exists a vector {yH , πH , iH , yL, πL, iL} that solves (B.1)–(B.6). According to Propositions
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1.B and 1.C, E(λ) < 0 and φL < 0. According to Proposition 1.D and the fact that E(λ) < 0,

iH > 0. This completes the proof of the “if” part.

Proof of “only if” part: Suppose that φL < 0 and iH > 0. According to Proposition 1.A there

exists a vector {yH , πH , iH , yL, πL, iL} that solves (B.1)–(B.6). According to Propositions 1.B and

1.C, E(λ) < 0 and pL < p∗L(Θ−pL). According to Proposition 1.D and the fact that E(λ) < 0,

pH < p∗H(Θ−pH ). This completes the proof of the “only if” part.

B.2 Proof of Proposition 2

Proposition 2 characterizes the sign of inflation and output in both states. Using i) the restriction

on E(λ) (i.e. E(λ) < 0), ii) rnL < 0, and iii) inequalities on A(λ), B(λ), C, and D given by equations

(B.10)–(B.13), it is straightforward to check that:

πH =
A(λ)

E(λ)
rnL ≤ 0, (B.37)

πL =
−B(λ)

E(λ)
rnL < 0, (B.38)

yH =
βκpH
E(λ)

rnL > 0, (B.39)

and

yL = −(1− βpL)κ2 + (1− β)(1 + βpH − βpL)λ

κE(λ)
rnL < 0. (B.40)

Inflation and output are negative in the low state. Inflation in the high state is negative, which is

what we call deflation bias. Positive output in the high state is consistent with negative inflation

in the high state and the optimality condition of the central bank.

B.3 Proof of Proposition 3

Proposition 3 characterizes how λ affects inflation and output in both states. In so doing, we make

use of Corollary 1.
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∂πH
∂λ

=
A′(λ)E(λ)−A(λ)E′(λ)

E(λ)2
rnL

=
A(λ)B′(λ)−A′(λ)B(λ)

E(λ)2
CrnL

=
−βpHλ (1− β + βpH) + βpH

(
κ2 + (1− β + βpH)λ

)
E(λ)2

CrnL

=
βpHκ

2

E(λ)2
CrnL < 0, (B.41)

where A′(λ) and B′(λ) denote the partial derivatives of A(·) and B(·) with respect to λ.

∂πL
∂λ

=
−B′(λ)E(λ) +B(λ)E′(λ)

E(λ)2
rnL

=
A′(λ)B(λ)−A(λ)B′(λ)

E(λ)2
DrnL

= −βpHκ
2

E(λ)2
DrnL < 0 (B.42)

∂yH
∂λ

=
−βκpHE′(λ)

E(λ)2
rnL

= −βκpH (A′(λ)D −B′(λ)C)

E(λ)2
rnL

= − βκpH
E(λ)2

[βpH − (1− β)C] rnL

= − βκpH
E(λ)2

[
βpH − (1− β)

(
1− pL
κσ

(1− βpL + βpH)− pL
)]

rnL (B.43)

∂yL
∂λ

= −
(1− β)(1− βpL + βpH)E(λ)−

(
(1− βpL)κ2 + (1− β)(1− βpL + βpH)λ

)
E′(λ)

κE(λ)2
rnL

= −
[

(1− β)(1− βpL + βpH)(A(λ)D −B(λ)C)

κE(λ)2

−
(
(1− βpL)κ2 + (1− β)(1− βpL + βpH)λ

)
(A′(λ)D −B′(λ)C)

κE(λ)2

]
rnL

=
βκpH
E(λ)2

[(1− β)C + (1− βpL)] rnL < 0 (B.44)
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B.4 Proof of Proposition 4

Proposition 4 states that welfare is maximized at λ = 0.

Society’s unconditional expected value is given by

EV (λ) =
1

1− β

[
1− pL

1− pL + pH
u(πH , yH) +

pH
1− pL + pH

u(πL, yL)

]
. (B.45)

To show that E[V (λ)] is maximized at λ = 0, we show that

∂EV (λ)

∂λ
< 0 (B.46)

for all λ ≥ 0.

The derivative of the unconditional expected value is given by

∂EV

∂λ
=

1

1− β

[
1− pL

1− pL + pH

∂u(πH , yH)

∂λ
+

pH
1− pL + pH

∂u(πL, yL)

∂λ

]
. (B.47)

The partial derivatives of society’s utility are given by

∂u(πH , yH)

∂λ
:=

∂

∂λ

[
−1

2
(λ̄yH(λ)2 + πH(λ)2)

]
= −

(
λ̄
βκpH
E(λ)

rnL

(
−βκpHE

′(λ)

E(λ)2
rnL

)
+
A(λ)

E(λ)
rnL
A′(λ)E(λ)−A(λ)E′(λ)

E(λ)2
rnL

)
= −

λ̄β2κ2p2
HE
′(λ) + λβ2p2

HE(λ)− λ2β2p2
HE
′(λ)

E(λ)3
(rnL)2

=
β2κ2p2

H

E(λ)3

(
λ̄E′(λ) + λC

)
(rnL)2

=
β2κ2p2

H

E(λ)3

[
λ̄ (βpH − (1− β)C) + λC

]
(rnL)2. (B.48)

Note that we have already shown that the sign of the first term in square brackets, βpH − (1−β)C,

determines the sign of ∂yH
∂λ . If βpH − (1 − β)C > 0, then ∂yH

∂λ > 0 and, applying Corollary 1, we

have ∂u(πH ,yH)
∂λ < 0. If instead βpH − (1− β)C < 0, then the sign of ∂u(πH ,yH)

∂λ is ambiguous.

∂u(πL, yL)

∂λ
:=

∂

∂λ

[
−1

2
(λ̄yL(λ)2 + πL(λ)2)

]
=

βpH
E(λ)3

(
λ̄
[
(1− βpL)κ2 + (1− β)(1 + βpH − βpL)λ

][
(1− β)C + (1− βpL)

]
+ κ2

[
κ2 + λ(1− β(1− pH))

]
(1 + C)

)
(rnL)2

:=
βpH
E(λ)3

(
λ̄Φ1(λ) + Φ2(λ)

)
(rnL)2 < 0, (B.49)

where
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Φ1(λ) := Φ1,1 + Φ1,2λ, (B.50)

Φ2(λ) := Φ2,1 + Φ2,2λ, (B.51)

and

Φ1,1 := (1− βpL)κ2
[
(1− β)C + (1− βpL)

]
> 0, (B.52)

Φ1,2 :=
[
(1− β)C + (1− βpL)

]
(1− β)(1 + βpH − βpL) > 0, (B.53)

Φ2,1 := κ4(1 + C) > 0, (B.54)

Φ2,2 := κ2(1− β(1− pH))(1 + C) > 0. (B.55)

Hence,

∂EV

∂λ
=

(1− β)−1(rnL)2

1− pL + pH

(
(1− pL)

β2κ2p2
H

E(λ)3

[
λ̄ (βpH − (1− β)C) + λC

]
+ pH

βpH
E(λ)3

(
λ̄Φ1(λ) + Φ2(λ)

))
=

(1− β)−1βp2
H(rnL)2

(1− pL + pH)E(λ)3

(
βκ2(1− pL)

[
λ̄ (βpH − (1− β)C) + λC

]
+
(
λ̄Φ1(λ) + Φ2(λ)

))
. (B.56)

Let

Ω(λ) := βκ2(1− pL)(βpH − (1− β)C)λ̄+ βκ2(1− pL)Cλ+ λ̄(Φ1,1 + Φ1,2λ) + Φ2,1 + Φ2,2λ. (B.57)

If Ω(λ) > 0 for all λ ≥ 0, then ∂EV (λ)
∂λ < 0 for all λ ≥ 0. Notice that Ω′(λ) is positive since the

coefficients on λ are all positive. Thus, we only need to show Ω(0) > 0 to show that Ω(λ) > 0 for

all λ ≥ 0.

Ω(0) = βκ2(1− pL)
[
βpH − (1− β)C

]
λ̄+ λ̄Φ1,1 + Φ2,1

=
[
βκ2(1− pL)

[
βpH − (1− β)C

]
+ Φ1,1

]
λ̄+ Φ2,1

=
[
β2κ2(1− pL)pH + (1− β)2κ2C + (1− βpL)2κ2

]
λ̄+ κ4(1 + C) > 0, (B.58)

given that C > 0 for the equilibrium to exist (see Corollary 1) and λ̄ > 0. This completes the proof.

C Proofs related to Section 4

In this section, we will provide details of the proofs for the propositions stated in Section 4 in the

main text.
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C.1 Proof of Proposition 5

If the central bank’s objective function is modified to allow for a constant output gap/inflation

target and/or for a constant linear output gap/inflation contract

uCB(πt, yt) = −1

2

[
(πt − fIT )2 + λ̄ (yt − fOT )2

]
+ fICπt + fOCyt (C.1)

then the system of equilibrium conditions under optimal discretionary policy is given by

πt = κyt + βEtπt+1 (C.2)

yt = Etyt+1 − σ (it − Etπt+1 − rnt ) (C.3)

0 = it
(
λ̄yt + κπt − ω

)
(C.4)

it ≥ 0 (C.5)

0 ≥ λ̄yt + κπt − ω, (C.6)

where ω := κfIT + λ̄fOT + κfIC + fOC . Let ω be equal to some ω̄ ≥ 0. It is straightforward

to verify that the four regimes (fIT = ω̄/κ; fOT , fIC , fOC = 0), (fOT = ω̄/λ̄; fIT , fIC , fOC = 0),

(fIC = ω̄/κ; fIT , fOT , fOC = 0) and (fOC = ω̄; fIT , fOT , fIC = 0) are isomorphic to each other.

C.2 Existence of standard Markov-Perfect equilibrium under a constant linear

inflation contract

If the monetary authority’s mandate is modified to include a constant linear inflation contract, the

central bank’s period objective function is given by

uCB(πt, yt) = −1

2

(
π2
t + λ̄y2

t

)
+ fICπt (C.7)

where fIC ≥ 0 is a parameter characterizing the linear inflation contract.

The standard Markov-Perfect equilibrium is given by a vector {yH , πH , iH , yL, πL, iL} that solves

the following system of linear equations

yH =
[
(1− pH)yH + pHyL

]
+ σ

[
(1− pH)πH + pHπL − iH + rnH

]
, (C.8)

πH = κyH + β
[
(1− pH)πH + pHπL

]
, (C.9)

0 = λ̄yH + κ (πH − fIC) , (C.10)

yL =
[
(1− pL)yH + pLyL

]
+ σ

[
(1− pL)πH + pLπL − iL + rnL

]
, (C.11)

πL = κyL + β
[
(1− pL)πH + pLπL

]
, (C.12)

iL = 0, (C.13)

and satisfies the following two inequality constraints:
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iH > 0, (C.14)

φL < 0. (C.15)

φL denotes the Lagrangean multiplier on the ZLB constraint in the low state:

φL := λ̄yL + κ (πL − fIC) . (C.16)

Proposition: There exists a vector {yH , πH , iH , yL, πL, iL} that solves the system of lin-

ear equations (C.8)–(C.13) and satisfies φL < 0 and iH > 0 for any fIC ∈ [0, f̄IC) if

pL < p∗L(Θ−pL) and pH < p∗H(Θ−pH ), where f̄IC = −
(

1 + (1− β) λ̄
κ2

)
rnL > −rnL.

This proposition states that the equilibrium existence conditions provided for the case fIC = 0 are

sufficient for any fIC ∈ [0, f̄IC).

Proof :

Rearranging the system of equations (C.8)–(C.13) and eliminating yH and yL, we obtain two

unknowns for πH and πL in two equations:

[
A(λ̄) B(λ̄)

C D

][
πL

πH

]
=

[
κ2fIC

rnL

]

⇒

[
πL

πH

]
=

1

E(λ̄)

[
D −B(λ̄)

−C A(λ̄)

][
κ2fIC

rnL

]
, (C.17)

where A(·), B(·), C,D and E(·) are defined in Equations (B.10) - (B.14).

Thus,

πH = − C

E(λ̄)
κ2fIC +

A(λ̄)

E(λ̄)
rnL (C.18)

and

πL =
D

E(λ̄)
κ2fIC −

B(λ̄)

E(λ̄)
rnL. (C.19)

From the Phillips curves in both states, we obtain

yH =
βpH − (1− β)C

E(λ̄)
κfIC +

βκpH
E(λ̄)

rnL (C.20)

and

yL =
βpL − 1− (1− β)C

E(λ̄)
κfIC −

(1− βpL)κ2 + (1− β)(1 + βpH − βpL)λ̄

κE(λ̄)
rnL. (C.21)

Suppose (C.8)–(C.13) hold. Consider φL :
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φL = −κ
2 + (1− βpL + βpH)λ̄

E(λ̄)
fIC −

(
κ2 + (1− βpL + βpH)λ̄

) (
κ2 + (1− β)λ̄

)
κ2E(λ̄)

rnL (C.22)

Notice that rnL < 0 and, from Proposition 1, E(λ̄) < 0. Thus, φL < 0 if and only if fIC < f̄IC .

Finally, notice that from Proposition 1.C E(λ̄) < 0 if and only if p∗L < (Θ−pL).

Next, consider iH . We know from Proposition 1.D that given fIC = 0 and E(λ̄) < 0, iH > 0 if and

only if pH < p∗H(Θ−pH ).

iH = rnH−
C + pH
E(λ̄)

κ2fIC−
κ2 + λ̄

E(λ̄)
rnL−

pH
σ

1− βpL + βpH
E(λ̄)

κfIC−
pH
σ

(κ2 + (1− β)λ̄)(1− βpL + βpH)

κE(λ̄)
rnL

(C.23)

Notice that
∂iH
∂fIC

= −
(
C + pH
E(λ̄)

κ2 +
pH
σ

1− βpL + βpH
E(λ̄)

κ

)
> 0. (C.24)

Hence, iH > 0 if pH < p∗H(Θ−pH ) for all fIC ∈ [0, f̄IC).

C.3 Proof of Proposition 6

(i) There exists a linear inflation contract with fIC = f0
IC , where 0 < f0

IC < f̄IC , that replicates

the discretionary equilibrium under the optimal inflation conservative central banker.

Proof :

Let f0
IC =: {fIC |πH = 0}. Using Equation (C.18), one obtains f0

IC = −βλ̄pH
Cκ2

rnL > 0.

Substituting f0
IC for fIC into (C.19), (C.20), (C.21), we obtain πL = 1

C r
n
L, yH = −βpH

κC r
n
L, and

yL = 1−βpL
κC rnL. It is then straightforward to verify that these policy functions are identical to those

under the optimal inflation conservative central banker.

Finally, in (ii) we show that f0
IC < f∗IC < f̄IC and therefore f0

IC < f̄IC .

(ii) Welfare under the optimal linear inflation contract is strictly larger than welfare under the

optimal inflation-conservatism regime, and the optimized contract parameter f∗IC satisfies f0
IC <

f∗IC < f̄IC .

Proof :

We first show that the welfare measure E(V ) improves for a marginal increase in fIC conditional

on fIC = f0
IC :
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∂E(V )

∂fIC
|(fIC = f0

IC)

=
(1− β)−1

1− pL + pH

((
κ2 + λ̄(1− β)2

)
pHC +

(
κ2 + β2(1− pL)pH λ̄+ (1− βpL)2λ̄

)
pH
) rnL
CE(λ̄)

> 0.

(C.25)

The optimal linear inflation contract satisfies

∂E(V )

∂fIC
=

1

1− β

[
1− pL

1− pL + pH

∂uCBH
∂fIC

+
pH

1− pL + pH

∂uCBL
∂fIC

]
= 0. (C.26)

Solving for the optimal contract parameter f∗IC

f∗IC = −f
∗
num

f∗den
rnL (C.27)

where

f∗num =

(
κ2 + (1− β)2λ̄

) (
κ2 + (1− βpL + βpH)λ̄

)
κ2

pHC

+

(
κ2 + (1− β)λ̄

) (
κ2 + (1− βpL + βpH)(1− βpL)λ̄

)
κ2

pH + β2p2
H λ̄, (C.28)

f∗den =
(
κ2 + (1− β)2λ̄

)
(2pH + (1− pL + pH)C)C +

(
κ2 + (1− βpL + βpH)(1− βpL)λ̄

)
pH

− (1− β)βp2
H λ̄. (C.29)

In order to show that f∗IC < f̄IC , note that

1 > f∗IC/f̄IC ⇔
(
κ2 + (1− β)λ̄

)
f∗den − κ2f∗num > 0.

After some algebra:

(
κ2 + (1− β)λ̄

)
f∗den − κ2f∗num = −

(
κ2 + (1− β)2λ̄

)
(pH + (1− pL + pH)C)E(λ̄) > 0. (C.30)

(iii) The discretionary equilibrium under the optimal linear inflation contract features strictly pos-

itive inflation in the high state, πH > 0.

Proof :

Note that

∂πH
∂fIC

= − C

E(λ̄)
κ2 > 0 (C.31)
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for all fIC . Since πH = 0 for fIC = f0
IC , πH > 0 for any fIC > f0

IC . This completes the proof.

C.4 Comparative statics

We have already shown that ∂πH
∂fIC

> 0. Furthermore,

∂πL
∂fIC

= −C + 1

E(λ̄)
κ2 > 0, (C.32)

∂yH
∂fIC

=
βpH − (1− β)C

E(λ̄)
κ, (C.33)

∂yL
∂fIC

=
βpL − 1− (1− β)C

E(λ̄)
κ > 0, (C.34)

where ∂yH
∂fIC

> 0 if and only if βpH − (1−β)C < 0. This is the same condition that is necessary and

sufficient to ensure that under inflation conservatism a marginal reduction in the central bank’s

relative weight on output stabilization λ raises output in the high state.

D Numerical illustration for the two-state model

Table 4: Parameterization (Two-state shock model)

Parameter Value Economic interpretation

β 0.99 Subjective discount factor
σ 0.5 Intertemporal elasticity of substitution in consumption
η 0.47 Inverse labor supply elasticity
θ 10 Price elasticity of demand
α 0.8106 Share of firms per period keeping prices unchanged
rnH × 400 4.04 Natural real rate in the high state
rnL × 400 -5.00 Natural real rate in the low state
pH 0.02 Frequency of contractionary demand shock
pL 0.875 Persistence of contractionary demand shock

This section provides a numerical illustration of the analytically derived properties of the two

state model using specific parameter values. The exercise is not meant to assess the quantitative

relevance of the analytical results established in sections 3 and 4 of the main manuscript but merely

aims at visualizing them. The structural parameters are calibrated using the parameter values from

Eggertsson and Woodford (2003), as listed in Table 4. The frequency of the crisis shock is chosen

so that the ZLB episode occurs once every 12 years, on average. In the majority of the papers who

have adopted this framework, pH is assumed to be zero. The persistence of 0.875 means that the

expected duration of the crisis is two years.
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Figure 1: Inflation conservatism - Output gap, inflation, and nominal interest rate
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Note: The figure displays how the output gap, the inflation rate, and the nominal interest rate in both states vary

with λ. The dash-dotted vertical lines indicate society’s weight, λ̄.
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Figure 1 shows how the output gap, inflation, and the nominal interest rate in both states vary

with the weight on output stabilization λ when the inflation contract parameter fIC is set equal

to zero. The dash-dotted vertical lines show society’s weight, λ̄. Consistent with Proposition 2,

output and inflation in the high state are positive and negative, respectively, for any λ. The nominal

interest rate is below the natural rate of interest, which is 4 percent. In the low state, output and

inflation are negative, and the nominal interest rate is zero. Consistent with Proposition 3, as λ

decreases (i.e., as the central bank becomes more conservative), the deflation bias in the high state

is reduced. This comes at the cost of a higher positive output gap in the high state, but a smaller

deflation bias in the high state mitigates the decline in inflation and output in the low state.

Figure 2: Welfare effects of inflation conservatism
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Note: The figure displays how welfare varies with λ in the two-state shock model. The dash-dotted vertical lines

indicate society’s weight, λ̄.

The benefits of the smaller rate of deflation in the high state and larger output and inflation

in the low state dominate the negative effect of a larger output gap in the high state. Accordingly,

welfare increases with the degree of conservatism, as shown in Figure 2. Consistent with Proposition

4, the optimal weight is zero.

Next, we apply the numerical example to the linear inflation contract. Figure 3 shows how

the output gap, inflation, and the nominal interest rate in both states vary with the contract

parameter fIC when the central bank’s weight on output stabilization λ is set equal to society’s

weight on output stabilization λ̄. The dashed vertical lines indicate f0
IC , the value of the inflation

contract parameter for which the contract replicates the optimal conservative central banker. The

solid vertical lines indicate f∗IC , the optimal value for the contract parameter. Consistent with
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Figure 3: Inflation contract - Output gap, inflation, and nominal interest rate

0 0.1 0.2 0.3 0.4
1

1.1

1.2

1.3
High State

O
ut

pu
t G

ap
(%

)

fIC
0 0.1 0.2 0.3 0.4

−9

−8

−7

−6

−5
Low State

fIC

0 0.1 0.2 0.3 0.4
−1

0

1

2

In
fla

tio
n

(A
nn

ua
liz

ed
 %

)

fIC
0 0.1 0.2 0.3 0.4

−6

−5

−4

−3

−2

fIC

0 0.1 0.2 0.3 0.4
1

2

3

4

5

N
om

in
al

 In
te

re
st

 R
at

e
(A

nn
ua

liz
ed

 %
)

fIC
0 0.1 0.2 0.3 0.4

−1

0

1

fIC

Note: The figure displays how the output gap, the inflation rate, and the nominal interest rate in both states vary

with fIC . The dashed vertical lines indicate the inflation contract parameter f0
IC for which the contract replicates

the the conservatism regime with λ = 0. The solid vertical lines indicate the inflation contract parameter f∗IC for

which society’s welfare is maximized.
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Proposition 6, inflation in the high state is strictly positive under the optimal linear inflation

contract. Consistent with Appendix B, output and inflation in both states are strictly increasing in

fIC .24 Finally, Figure 4 illustrates how society’s welfare varies with fIC . The dashed vertical line

earmarks the contract parameter value f0
IC for which the contract replicates the the conservatism

regime with λ = 0, and the solid vertical line earmarks the contract parameter value f∗IC for which

society’s welfare is maximized. Consistent with Proposition 6, f∗IC > f0
IC .

Figure 4: Welfare effects of the inflation contract
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Note: The figure displays how welfare varies with fIC in the two-state shock model. The dashed vertical line indicates

the inflation contract parameter f0
IC for which the contract replicates the the conservatism regime with λ = 0. The

solid vertical line indicates the inflation contract parameter f∗IC for which society’s welfare is maximized.

E Policy problem in the quantitative model

Each period t, the generic discretionary central banker maximizes his objective function from period

t onwards, taking the decision rules of the private sector and of future central bankers as given.

We consider stationary Markov-perfect equilibria. In the baseline variant of the model, the vector

of state variables st consists of the natural real rate shock rnt , the price mark-up shock ut, the

composite real wage rate of the previous period wt−1 and the inflation rate in the previous period

πt−1. The policy problem reads

24Note that the parameter calibration satisfies the necessary and sufficient condition which implies that output in
the high state is strictly increasing in fIC , βpH − (1− β)

(
1−pL
κσ

(1− βpL + βpH)− pL
)
< 0.
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V CB(st) = max−1

2

[
λπ(πt − τpπt−1)2 + λy2

t + λ̄W (πWt − τwπt−1)2
]

+ fπt + βEtV
CB(st+1)

+ φPCPt

[
πt − τpπt−1 − κp

(
γ

1− γ
yt + wt

)
− β(Etπ(st+1)− τpπt)− ut

]
+ φPCWt

[
πWt − τwπt−1 − κw

((
σ−1 +

η

1− γ

)
yt − wt

)
− β(Etπ

W (st+1)− τwπt)
]

+ φwt
[
πWt − (wt − wt−1)− πt

]
+ φISt [yt − Ety(st+1) + σ (it − Etπ(st+1)− rnt )]

+ φZLBt it,

taking into account the laws of motion of the exogenous shocks. The functions V CB(st+1), π(st+1),

πW (st+1) and y(st+1) are the central banker’s continuation value, the rate of price inflation, the

rate of wage inflation and the output gap that the central banker expects to be realized in period

t+ 1 in equilibrium, contingent on the realizations of the exogenous shocks in period t+ 1.

The consolidated first-order conditions are

πt − τpπt−1 − f − τpβ(Etπ(st+1)− τpπt) + τpβEtφ
PCP (st+1)− τwβEtφw(st+1)

−
(

1 + τpβ − β
∂Etπ(st+1)

∂πt

)
φPCPt +

(
∂Ety(st+1)

∂πt
+ σ

∂Etπ(st+1)

∂πt

)
φISt

−
(
τwβ − β

∂Etπ
W (st+1)

∂πt

)(
λ̄W (πWt − τwπWt−1)− φwt

)
+ φwt = 0, (E.1)

βEtφ
w(st+1)−

(
κp + β

∂Etπ(st+1)

∂wt

)
φPCPt −

(
∂Ety(st+1)

∂wt
+ σ

∂Etπ(st+1)

∂wt

)
φISt

+

(
κw − β

∂Etπ
W (st+1)

∂wt

)(
λ̄W (πWt − τwπWt−1)− φwt

)
− φwt = 0, (E.2)

λyt + κp
γ

1− γ
φPCPt + κw

(
σ−1 +

η

1− γ

)(
λ̄W (πWt − τwπWt−1)− φwt

)
= φISt , (E.3)

φISt it = 0, (E.4)

it ≥ 0, (E.5)

φISt ≤ 0, (E.6)

and the behavioral constraints of the private sector.

F Computational algorithm to solve the quantitative model

We approximate the policy functions with a finite elements method using collocation. For the basis

functions we use cubic splines. The algorithm proceeds in the following steps:

1. Construct the collocation nodes. The nodes are chosen such that they coincide with the
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spline breakpoints. Use a Gaussian quadrature scheme to discretize the normally distributed

innovations to the exogenous shocks.

2. Start with a guess for the basis coefficients.

3. Use the current guess for the basis coefficients to approximate the partial derivatives of the

expectation terms with respect to the endogenous state variables evaluated at the collocation

nodes.

4. Approximate the expectation functions for price inflation, wage inflation, output, and the

Lagrange multipliers on the New Keynesian price Phillips curve and the equation relating

price and wage inflation, using the same quadrature scheme as in step 3.

5. Solve the system of equilibrium conditions for price inflation, wage inflation, output, the real

wage rate, the policy rate and the two Lagrange multipliers at the collocation nodes, assuming

that the zero lower bound is not binding. For those nodes where the zero bound constraint

is violated solve the system of equilibrium conditions associated with a binding zero bound

constraint.

6. Update the guess for the basis coefficients. If the new guess is sufficiently close to the old

one, proceed with step 7. Otherwise, go back to step 4.

7. Check whether the new set of partial derivatives based on the updated basis coefficients is

sufficiently close to the previous ones. If this is the case, you are done. Otherwise, go back

to step 3.

We use MATLAB routines from the CompEcon toolbox of Miranda and Fackler (2002) to obtain

the Gaussian quadrature approximations of the innovations and to evaluate the spline functions.

For a more detailed exposition of the computational algorithm see Schmidt (2016), Appendix

D.

G A liquidity trap scenario in the quantitative model

This section shows how the choice of the monetary policy regime affects the behavior of the economy

in a liquidity trap situation. Figure 5 depicts the equilibrium dynamics in the baseline version of the

quantitative model when the economy is buffeted by a large negative natural real rate shock that

temporarily drives it away from the risky steady state. We consider the benchmark discretionary

regime (solid black lines), the optimal inflation conservatism regime (blue dashed lines) and the

optimal inflation contract regime (red dash-dotted lines). Under all regimes the central bank lowers

the policy rate to zero where it stays for several quarters. At the same time, there is a pronounced

increase in the gap between the real interest rate and the natural real rate. This gap acts as

a drag on aggregate demand and pushes down output, price inflation and wage inflation. The

decline in output and inflation is most severe under the benchmark discretionary regime. Inflation
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Figure 5: Liquidity trap scenario in the baseline quantitative model
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Note: The figure displays impulse responses to a negative natural real rate shock for the baseline quantitative model.

Inflation rates and interest rates are expressed in annualized percentage terms. Output and the real wage rate are

expressed in percentage deviations from the deterministic steady state. The real interest rate gap is defined as the

discrepancy between the real interest rate and the natural real rate of interest.

conservatism improves stabilization outcomes in the liquidity trap situation. Interestingly, the

conservative central bank keeps the policy rate at its zero floor for longer than the benchmark

central bank does, reflecting the fact that inflation conservatism makes the policy rate more elastic.

Importantly, the deflationary bias away from the ZLB is smaller if the central bank is conservative

than if the central bank has the same preferences as society. The private sector’s anticipation of

a more muted deflationary bias under the conservative central bank results in a smaller ex-ante

real interest rate gap at the ZLB and, consequently, less severe declines in output and inflation.

The drop in output and inflation at the ZLB is even smaller under the optimal inflation contract

regime. The latter aims to stabilize inflation at a strictly positive level, which further improves

private sector expectations.

Figure 5 shows the equilibrium dynamics for the same liquidity trap scenario in the quantita-

tive model with partial indexation of prices and nominal wages to past inflation. The decline in

output, price inflation and nominal wage growth in response to the natural real rate shock is more

severe than in the baseline model variant, and the differences in stabilization outcomes between the

benchmark discretionary regime and the two delegation regimes becomes more distinct. In contrast

to the baseline model, in the model with partial indexation the inflation conservative central bank

lifts the policy rate from the lower bound three quarters earlier than the benchmark central bank,

that is, the positive general equilibrium effects that lead to a smaller deflationary bias more than

offset the effect of the higher policy rate elasticity on the equilibrium policy rate path.
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Figure 6: Liquidity trap scenario in the quantitative model with partial indexation
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Note: The figure displays impulse responses to a negative natural real rate shock for the model variant with partial

price and wage indexation. Inflation rates and interest rates are expressed in annualized percentage terms. Output

and the real wage rate are expressed in percentage deviations from the deterministic steady state. The real interest

rate gap is defined as the discrepancy between the real interest rate and the natural real rate of interest.

H Robustness analysis for the quantitative model

H.1 Parameters

This section examines the sensitivity of the welfare results obtained for the baseline model with

natural real rate and price mark-up shocks to some key parameters: the subjective discount factor

β, the interest rate elasticity of consumption σ, and the degree of nominal price and wage rigidities

α and αW . All other parameters are calibrated according to the baseline parameterization of the

quantitative model. We focus on the comparison between the benchmark discretionary regime and

the optimal conservative regime. Table 5 reports the results.

Table 5: Inflation conservatism vs. benchmark regime for alternative parameter values

Baseline Lower β Higher σ Lower α, αW
Parameter value(s) 0.9932 1 0.68
λ̄ 0.0103 0.0103 0.0097 0.0142
Optimized λ 0.002 0.003 0.0015 0.001
Welfare gain (in %) 27 13 43 48

Lowering the discount factor to 0.9932 increases the annualized deterministic steady state real

interest rate to 2.74%. The larger steady state buffer to the ZLB implies that the ZLB constraint is

ceteris paribus binding less often. Consequently, the welfare gains from inflation conservatism are
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smaller than for the baseline calibration. A higher interest rate elasticity of output σ increases the

contractionary effect of a given positive gap between the actual real interest rate and the natural

real rate. Increasing σ from 1/1.22 to 1 thus raises the welfare gains from inflation conservatism and

reduces the optimal weight in the central bank’s objective function on the output gap term. Finally,

more flexible prices and nominal wages ceteris paribus heighten the decline in output and inflation

in a liquidity trap (e.g. Werning, 2012) and increase the deflationary bias in those states where

the ZLB is not binding. Therefore, the welfare gains from inflation conservatism increase with the

degree of price and wage flexibility, and the optimal relative weight on output gap stabilization in

the central bank’s objective function becomes smaller.

H.2 Model with wage mark-up shocks

This section reports results on optimized delegation parameters, welfare, and the frequency of ZLB

events for the quantitative model when the price mark-up shock is replaced with a wage mark-

up shock. Specifically, ut is dropped from the New Keynesian price Phillips curve and the New

Keynesian wage Phillips curve is augmented with an i.i.d. shock et

πWt − τwπt−1 = κw

((
σ−1 +

η

1− γ

)
yt − wt

)
+ β(Etπ

W
t+1 − τwπt) + et, (H.1)

where the standard deviation of et is set to 0.05. All other parameters are calibrated according

to the baseline parameterization of the quantitative model. Table 6 reports the results for the

alternative monetary policy regimes.

Table 6: Results for the quantitative model with wage mark-up shocks

Regime Optimized policy Welfare Welfare gain over ZLB frequency
parameter (benchmark) (in %) benchmark (%) (in %)

Benchmark discretion - -0.073 0 30
Inflation conservatism λ = 0.003 (0.01) -0.050 32 34
Inflation contract f = 0.20 (0) -0.027 63 25
Wage inflation conserv. λπ = 5 (1) -0.030 59 31

Note: The non-optimized policy parameters have the following values. Benchmark discretion: λπ = 1, λ = 0.010,

f = 0. Inflation conservatism: λπ = 1, f = 0. Inflation contract: λπ = 1, λ = 0.010. Wage inflation conservatism:

λ = 0.003, f = 0.

The results are qualitatively very similar to those obtained for the baseline model with price

mark-up shocks. The only exception is the wage inflation conservatism regime (3rd row of the

table). In the baseline model with price mark-up shocks it is desirable to reduce the relative weight

on price inflation stability in the central bank’s objective function conditional on setting the relative

weight on output gap stability equal to its optimized value. Instead, in the model with wage mark-

up shocks it is desirable to increase the relative weight on price inflation stability in the central
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bank’s objective.25 Hence, the desirability of wage inflation conservatism observed for the baseline

model is sensitive to the type of shocks buffeting the economy.

I Comparison of inflation conservatism to price-level targeting

In the main manuscript, we have focused our analysis on institutional configurations of the central

bank’s objective that prevail the (flexible) inflation-targeting framework currently common to all

major central banks in practice. This section compares the inflation conservative central banker to a

central banker who aims to stabilize the price level pt ≡ pt−1 +πt. Eggertsson and Woodford (2003)

have shown that a central bank that can commit to a targeting rule that requires to stabilize a

weighted sum of the price level and the output gap (subject to the ZLB constraint) achieves a welfare

level that is close to the one obtained under the optimal commitment policy. Here, we consider the

desirability of price-level targeting (PLT) in the context of optimal discretionary policies. We use the

quantitative model, where the parameters are calibrated according to the baseline parameterization

of the model summarized in Table 1 of the main manuscript. To economize on the number of state

variables, we abstract from price mark-up shocks and drop ut from the New Keynesian Phillips

curve.

The objective function of a discretionary central bank with a price-level target reads as follows

V CB
t = −1

2

[
(1− λp)

(
π2
t + λ̄y2

t + λ̄W (πWt )2
)

+ λpp
2
t

]
+ βEtV

CB
t+1 , (I.1)

where λp ∈ [0, 1]. For λp = 0, the central bank’s objective is identical to society’s objective. For

λp = 1, the central bank is only concerned with the stabilization of the expected discounted sum

of current and future price levels. Table 7 summarizes the results.

Table 7: Results for inflation conservatism vs. price-level targeting

Regime Optimized policy Welfare ZLB frequency
parameter (in %) (in %)

Benchmark discretion - -0.052 31
Inflation conservatism λ = 0 -0.015 31
Price-level targeting µ = 1 -0.003 17

Strict PLT, i.e. λp = 1, turns out to be the optimal configuration. Welfare under the strict

PLT regime is higher than under the inflation conservatism regime. In light of the analysis by

Eggertsson and Woodford (2003) this result is not too surprising. Augmenting the objective of a

discretionary central bank with a price-level target induces a desirable form of history dependence

into the policymaking process. In particular, if today’s inflation rate is too low and the price level

falls below its target then the central bank needs to engineer higher inflation in the future to bring

25The optimal value for λπ reported in Table 6 is a corner solution since we put an upper bound of 5 on the grid
for λπ.
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the price level back to its target path. Forward-looking agents thus anticipate that a liquidity trap

event with low inflation will be followed by a transitory inflationary boom. Expectations of high

inflation in the future lower the ex-ante real interest rate and mitigate the decline in output and

inflation at the ZLB.

This is illustrated in Figure 7 which shows impulse responses to a large negative natural real rate

shock when the economy is initially at the risky steady state. Under strict PLT (red dash-dotted

Figure 7: Impulse responses to a contractionary natural real rate shock
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Note: The figure displays impulse responses to a negative natural real rate shock. Inflation rates and interest rates
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rate and the natural real rate of interest.

lines), output, price inflation and wage inflation fall much less than under the benchmark regime

(black solid lines) and the inflation conservative regime (blue dashed lines), and the downturn is

followed by a temporary boom in output and inflation. Similar to the inflation conservative central

banker that focuses only on inflation stabilization, PLT eliminates the deflationary bias away from

the ZLB.

J Existence of other Markov-Perfect equilibria in the two-state

model

While the paper focuses on the standard Markov-Perfect equilibrium in which the ZLB constraint

binds in the low state but not in the high state, there are potentially three other types of Markov-

Perfect equilibria: i) one in which the ZLB constraint binds in both states (the deflationary Markov-

Perfect equilibrium), ii) one in which the ZLB constraint does not bind in both states (the ZLB-free

Markov-Perfect equilibrium), and iii) one in which the ZLB binds in the high state but not in the
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low state (the topsy-turvy Markov-Perfect equilibrium). In this section, we examine whether and

under what conditions any of these other types of Markov-Perfert equilibria exist. Our main results

are that i) the conditions for the existence of the deflationary Markov-Perfect equilibrium are the

same as those for the existence of the standard Markov-Perfect equilibrium and ii) the other two

types do not exist under any parameter configurations.26

J.1 Existence of the deflationary Markov-Perfect equilibrium

The deflationary Markov-Perfect equilibrium is given by a vector {yH , πH , iH , yL, πL, iL} that solves

the following system of linear equations

yH =
[
(1− pH)yH + pHyL

]
+ σ

[
(1− pH)πH + pHπL − iH + rnH

]
, (J.1)

πH = κyH + β
[
(1− pH)πH + pHπL

]
, (J.2)

iH = 0, (J.3)

yL =
[
(1− pL)yH + pLyL

]
+ σ

[
(1− pL)πH + pLπL − iL + rnL

]
, (J.4)

πL = κyL + β
[
(1− pL)πH + pLπL

]
, (J.5)

iL = 0, (J.6)

and satisfies the following two inequality constraints:

φH < 0, (J.7)

φL < 0. (J.8)

φH and φL denote the Lagrangean multipliers on the ZLB constraint in the high state and in the

low state:

φH := λyH + κπH , (J.9)

φL := λyL + κπL. (J.10)

The following proposition states that the conditions for the existence of the deflationary Markov-

Perfect equilibrium are identical to the conditions for the existence of the standard Markov-Perfect

equilibrium.

Proposition 7: The deflationary Markov-Perfect equilibrium exists if and only if

pL ≤ p∗L(Θ(−pL)),

pH ≤ p∗H(Θ(−pH)),

26There is a continuum of sunspot equilibria which may randomly move between the standard and deflationary
Markov-Perfect equilibria. Characterizing the conditions for the existence of such sunspot equilibria is outside the
scope of the paper.
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where the cutoff values p∗L(Θ(−pL)) and p∗H(Θ(−pH)) are defined by (B.28) and (B.36) in Appendix

A. We first prove six preliminary propositions, then use them to prove Proposition 7.

Let

Ã := −
(pH
σκ

(1− βpL + βpH) + pH

)
, (J.11)

B̃ := −Ã− 1, (J.12)

and

Ẽ := ÃD − B̃C

= −Ã+ C, (J.13)

where C and D < 0 are defined in (B.12) and (B.13).

Assumption 7.A: Ẽ 6= 0.

Throughout the proof, we will assume that Assumption 7.A holds.

Proposition 7.A: There exists a vector {yH , πH , iH , yL, πL, iL} that solves (J.1)–(J.6).

Proof :

Rearranging the system of equations (J.1)–(J.6) and eliminating yH and yL, we obtain two

unknowns for πH and πL in two equations:

[
Ã B̃

C D

][
πL

πH

]
=

[
rnH
rnL

]

⇒

[
πL

πH

]
=

1

Ẽ

[
D −B̃
−C Ã

][
rnH
rnL

]
. (J.14)

Thus,

πH :=
Ã

Ẽ
rnL −

C

Ẽ
rnH (J.15)

and

πL :=
−B̃
Ẽ
rnL +

D

Ẽ
rnH . (J.16)

From the Phillips curves in both states, we obtain

yH =
(1− β)Ã− βpH

κẼ
rnL −

(1− β)C − βpH
κẼ

rnH (J.17)
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and

yL =
(1− β)Ã+ (1− βpL)

κẼ
rnL −

(1− β)C + (1− βpL)

κẼ
rnH . (J.18)

Proposition 7.B: Suppose (J.1)–(J.6) are satisfied. Then φL < 0 only if Ẽ > 0.

Proof by contradiction:

First, notice that

φL =
1

Ẽ

[
−(1 + C)κrnH − (1− β)C

λ

κ
rnH − (1− βpL)

λ

κ
rnH + (1 + Ã)κrnL +

λ

κ
(1− β)ÃrnL +

λ

κ
(1− βpL)rnL

]
.

(J.19)

Suppose that Ẽ < 0. From the equation above we know that, given Ẽ < 0, φL < 0 if and only

if

−(1+C)κrnH−(1−β)C
λ

κ
rnH−(1−βpL)

λ

κ
rnH+(1+Ã)κrnL+

λ

κ
(1−β)ÃrnL+

λ

κ
(1−βpL)rnL > 0. (J.20)

Collecting terms, this condition can be simplified to(
κ+

λ

κ
(1− βpL)

)
[(1 +A)rnL − (1 + C)rnH ] > 0. (J.21)

From (J.13), we know that Ẽ < 0 if and only if C < Ã, where Ã < 0. Furthermore, from (B.12)

we know that C > −1. Suppose C → −; then A > −1, which proves that (J.21) cannot hold.

Proposition 7.C: Suppose (J.1)-(J.6) are satisfied and Ẽ > 0. Then φL < 0 if φH < 0.

Proof : This follows directly from noticing that

φL = φH +
κ2 + λ

κẼ
(rnL − rnH) . (J.22)

Proposition 7.D: Suppose (J.1)–(J.6) are satisfied and Ẽ > 0. Then φH < 0 if and only

if pH < p∗H(Θ−pH ).

Proof :

First, notice that
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φH =
1

Ẽ

(
[−Cκ− (1− β)

λ

κ
C + β

λ

κ
pH ]rnH + [κÃ+ (1− β)

λ

κ
Ã− βλ

κ
pH ]rnL

)
. (J.23)

Since Ẽ > 0, φH < 0 requires

−Cκ− (1− β)
λ

κ
C + β

λ

κ
pH ]rnH + [κÃ+ (1− β)

λ

κ
Ã− βλ

κ
pH ]rnL < 0. (J.24)

Multiplying both sides by κ
Γ

1
rnL

and collecting terms, we get

− β

σκ
p2
H −

(1− βpL) + (1− pL)β
rnH
rnL

σκ
+
κ2 + (1− β r

n
H
rnL

)λ

Γ

 pH

−
(

1− pL
σκ

(1− βpL)− pL
)
rnH
rnL

> 0. (J.25)

Let

P (pH) := φ2p
2
H + φ1pH + φ0 : (J.26)

where

φ0 := −
[

1− pL
σκ

(1− βpL)− pL
]
rnH
rnL

φ1 := −
(1− βpL) + (1− pL)β

rnH
rnL

σκ
−
κ2 + (1− β r

n
H
rnL

)λ

Γ

φ2 := − β

σκ
< 0, (J.27)

which is similar to the definition in Appendix A. φ0 > 0 and φ2 < 0 imply that one root of (J.26)

is non-negative and φH < 0 if and only if pH is below this non-negative root, given by

p∗H(Θ−pH ) :=
−φ1 −

√
φ2

1 − 4φ0φ2

2φ2
. (J.28)

This completes the proof of Proposition 7.D.

Proposition 7.E: Ẽ > 0 and pH < p∗H(Θ−pH ) only if E(λ) < 0.

Proof :

Suppose that Ẽ > 0 and pH < p∗H(Θ−pH ). Then Ẽ + P (pH) > 0.
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Ẽ + P (pH) =
β

σκ
p2
H +

(
1 +

(1− βpL) + (1− pL)β

σκ

)
pH +

(
1− pL
σκ

(1− βpL)− pL
)

− β

σκ
p2
H −

(1− βpL) + (1− pL)β
rnH
rnL

σκ
+
κ2 + (1− β r

n
H
rnL

)λ

Γ

 pH

−
(

1− pL
σκ

(1− βpL)− pL
)
rnH
rnL

=

[
β
λ

Γ
pH − β

1− pL
σκ

pH −
(

1− pL
σκ

(1− βpL)− pL
)](

rnH
rnL
− 1

)
. (J.29)

Since
(
rnH
rnL
− 1
)
< 0, the following condition has to hold:

β
λ

Γ
pH − β

1− pL
σκ

pH −
(

1− pL
σκ

(1− βpL)− pL
)
< 0. (J.30)

Collecting terms, we get

−Γ
1

σκ
βp2

L + Γ

[
1

σκ
(1 + β + βpH) + 1

]
pL + βλpH − Γ

1

σκ
(1 + βpH) = E(λ) < 0. (J.31)

This completes the proof of Proposition 7.E. Note that Proposition 7.E holds independently of

whether the system of linear equations (J.1)–(J.6) is satisfied or not.

Proposition 7.F: E(λ) < 0 only if Ẽ > 0.

Proof : This follows directly from noticing that

Ẽ = −E(λ)

Γ
+
βλ

Γ
pH +

1

σκ
(βpH + 1 + β(1− pL)) pH . (J.32)

Note that Proposition 7.F holds independently of whether the system of linear equations (J.1)–(J.6)

is satisfied or not.

With these six preliminary propositions (7.A–7.F), we are ready to prove Proposition 7.

Proposition 7: There exists a vector {yH , πH , iH , yL, πL, iL} that solves the system of

linear equations (J.1)–(J.6) and satisfies φL < 0 and φH < 0 if and only if pL < p∗L(Θ−pL)

and pH < p∗H(Θ−pH ).

Proof of “if” part: According to Proposition 7.A, there exists a vector {yH , πH , iH , yL, πL, iL} that

solves (J.1)–(J.6). Suppose that pL < p∗L(Θ−pL) and pH < p∗H(Θ−pH ). According to Proposition

1.C (which does not rely on the system of linear equations), E(λ) < 0. According to Proposition
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7.F, then Ẽ > 0. According to Proposition 7.D, this implies φH < 0. Finally, according to Propo-

sition 7.C, this implies φL < 0. This completes the proof of “if” part.

Proof of “only if” part: According to Proposition 7.A, there exists a vector {yH , πH , iH , yL, πL, iL}
that solves (J.1)–(J.6). Suppose that φL < 0 and φH < 0. According to Proposition 7.B, Ẽ > 0.

According to Proposition 7.D, then pH < p∗H(Θ−pH ). According to Proposition 7.E, this implies

E(λ) < 0. According to Proposition 1.C (which does not rely on the system of linear equations),

pL < p∗L(Θ−pL). This completes the proof of the “only if” part.

J.2 Nonexistence of the topsy-turvy Markov-Perfect equilibrium

The topsy-turvy Markov-Perfect equilibrium is given by a vector {yH , πH , iH , yL, πL, iL} that solves

the following system of linear equations

yH =
[
(1− pH)yH + pHyL

]
+ σ

[
(1− pH)πH + pHπL − iH + rnH

]
, (J.33)

πH = κyH + β
[
(1− pH)πH + pHπL

]
, (J.34)

iH = 0, (J.35)

yL =
[
(1− pL)yH + pLyL

]
+ σ

[
(1− pL)πH + pLπL − iL + rnL

]
, (J.36)

πL = κyL + β
[
(1− pL)πH + pLπL

]
, (J.37)

0 = λyL + κπL, (J.38)

and satisfies the following two inequality constraints:

φH < 0, (J.39)

iL > 0. (J.40)

φH denotes the Lagrangean multiplier on the ZLB constraint in the high state:

φH := λyH + κπH . (J.41)

Proposition 8: The topsy-turvy Markov-Perfect equilibrium does not exist.

We first prove three preliminary propositions, then use them to prove Proposition 8.
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Let

Ĉ(λ) := κ2 + λ (1− βpL) , (J.42)

D̂(λ) := −βλ (1− pL) , (J.43)

and

Ê(λ) := ÃD̂(λ)− B̃Ĉ(λ), (J.44)

where Ã and B̃ are defined in (J.11) and (J.12).

Assumption 8.A: Ê(λ) 6= 0.

Throughout the proof, we will assume that Assumption 8.A holds.

Proposition 8.A: There exists a vector {yH , πH , iH , yL, πL, iL} that solves (J.33)–(J.38).

Proof :

Rearranging the system of equations (J.33)–(J.38) and eliminating yH and yL, we obtain two

unknowns for πH and πL in two equations:

[
Ã B̃

Ĉ(λ) D̂(λ)

][
πL

πH

]
=

[
rnH
0

]

⇒

[
πL

πH

]
=

1

Ê(λ)

[
D̂(λ) −B̃
−Ĉ(λ) Ã

][
rnH
0

]
. (J.45)

Thus,

πH := − Ĉ(λ)

Ê(λ)
rnH (J.46)

and

πL :=
D̂(λ)

Ê(λ)
rnH . (J.47)

From the Phillips Curves in both states, we obtain

yH = −(1− β)Ĉ(λ) + βpHΓ

κÊ(λ)
rnH (J.48)

and

yL = −(1− βpL)D̂(λ) + (1− pL)βĈ(λ)

κÊ(λ)
rnH . (J.49)
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Proposition 8.B: Suppose (J.33)–(J.38) are satisfied. Then φH < 0 if and only if

Ê(λ) > 0.

Proof :

Notice that

φH = − 1

κÊ(λ)

(
(κ2 + (1− β))Ĉ(λ) + βpHΓ

)
rnH , (J.50)

where (κ2 + (1− β))Ĉ(λ) + βpHΓ > 0 and rnH > 0. Hence, φH < 0 if and only if Ê(λ) > 0.

Proposition 8.C: Suppose (J.33)–(J.38) are satisfied. Then iL > 0 only if Ê(λ) < 0.

Proof :

Notice that

iL = rnL −
1

κÊ(λ)

[
−κpLD̂(λ) + κ(1− pL)Ĉ(λ) +

1

σ
(1− pL)(

(1− β)Ĉ(λ) + βpHΓ + (1− βpL)D̂(λ) + (1− pL)βĈ(λ)
)]
rnH , (J.51)

= rnL −
1

κÊ(λ)

[
−κpLD̂(λ) + κ(1− pL)Ĉ(λ) +

1

σ
(1− pL)(

(1− βpL)Ĉ(λ) + βpHΓ + (1− βpL)D̂(λ)
)]
, (J.52)

= rnL −
1

κÊ(λ)

[
−κpLD̂(λ) + κ(1− pL)Ĉ(λ) +

1

σ
(1− pL) (βpH + (1− βpL)) Γ

]
rnH , (J.53)

where −κpLD̂(λ)+κ(1−pL)Ĉ(λ)+ 1
σ (1−pL) (βpH + (1− βpL)) Γ > 0, rnH > 0, and rnL < 0. Hence,

iL > 0 only if Ê(λ) < 0.

With these three preliminary propositions (8.A-8.C), we are ready to prove Proposition 8.

Proposition 8: There exists no vector {yH , πH , iH , yL, πL, iL} that solves the system of

linear equations (J.33)–(J.38) and satisfies iL > 0, φH < 0.

Proof by contradiction: According to Proposition 8.A, there exists a vector {yH , πH , iH , yL, πL, iL}
that solves (J.33)–(J.38). Suppose that φH < 0 and iL > 0. According to Proposition 8.B, φH < 0

implies Ê(λ) > 0. According to Proposition 8.C, iL > 0 implies Ê(λ) < 0, which contradicts

(iL > 0, φH < 0).
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J.3 Nonexistence of the ZLB-free Markov-Perfect equilibrium

The ZLB-free Markov-Perfect equilibrium is given by a vector {yH , πH , iH , yL, πL, iL} that solves

the following system of linear equations

yH =
[
(1− pH)yH + pHyL

]
+ σ

[
(1− pH)πH + pHπL − iH + rnH

]
, (J.54)

πH = κyH + β
[
(1− pH)πH + pHπL

]
, (J.55)

0 = λyH + κπH , (J.56)

yL =
[
(1− pL)yH + pLyL

]
+ σ

[
(1− pL)πH + pLπL − iL + rnL

]
, (J.57)

πL = κyL + β
[
(1− pL)πH + pLπL

]
, (J.58)

0 = λyL + κπL, (J.59)

and satisfies the following two inequality constraints:

iH > 0, (J.60)

iL > 0. (J.61)

Proposition 9: The ZLB-free Markov-Perfect equilibrium does not exist.

Proof :

Let

Ê =
[
1− β(1− pH) +

κ2

λ

]
(1− βpL +

κ2

λ
)− β2pH(1− pL). (J.62)

Assumption 9.A: Ê 6= 0.

Throughout the proof, we will assume that Assumption 9.A holds.

Notice that iH and iL only appear in the consumption Euler equations. Thus, we can first find

a vector of {yH , πH , yL, πL} that satisfies the Phillips curves and the government’s optimality con-

dition in both states, then use the two consumption Euler equations to find iH and iL. Rearranging

the system of equations (J.55), (J.56), (J.58), and (J.59) and eliminating yH and yL, we obtain two

unknowns for πH and πL in two equations:

πH = −κ
2

λ
πH + β

[
(1− pH)πH + pHπL

]
(J.63)
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and

πL = −κ
2

λ
πL + β

[
(1− pL)πH + pLπL

]
(J.64)

⇒

[
1− β(1− pH) + κ2

λ −βpH
−β(1− pL) 1− βpL + κ2

λ

][
πH

πL

]
=

[
0

0

]
(J.65)

⇒

[
πH

πL

]
=

1

Ê

[
1− βpL + κ2

λ β(1− pL)

βpH 1− β(1− pH) + κ2

λ

][
0

0

]
=

[
0

0

]
. (J.66)

From the Phillips curves in both states, we obtain

yH = 0 (J.67)

and

yL = 0. (J.68)

From the consumption Euler equations in both states, we obtain

iH = rnH > 0 (J.69)

and

iL = rnL < 0. (J.70)

These two inequalities hold because we assume that rnH > 0 and rnL < 0. Thus, the inequality

condition for the policy rate in the low state is violated. Accordingly, there is no vector that solves

(J.54)–(J.59) and satsifies both iH > 0 and iL > 0.
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