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Abstract

This paper addresses whether non-uniqueness of equilibrium is a substan-

tive problem for policy analysis in New-Keynesian (NK) models. There would

be a substantive problem if there were no compelling way to select among

different equilibria that give different answers to critical policy questions. In

fact there is: stability-under-learning. We focus our analysis on the effi cacy

of fiscal policy when the economy is in the ZLB. We study a fully non-linear

NK model with Calvo-pricing frictions and argue that the model has a unique

stable-under-learning rational expectations equilibrium. In that equilibrium,
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the implications of the model for fiscal policy inherit all of the key properties

of linearized NK models. We also find that for empirically plausible cases,

linear approximations work quite well for assessing the size of the government

spending multiplier and the drop in GDP that occurs in the ZLB.

1. Introduction

New Keynesian (NK) models have been enormously influential in terms of their pol-

icy implications1. The models’implications for fiscal policy are particularly striking

when the zero lower bound (ZLB) on the nominal rate of interest is binding.2 Eg-

gertsson and Woodford (2003) (EW) and Eggertsson (2004) develop an elegant and

transparent framework for studying fiscal policy in the NK model at the ZLB.

The key results that emerge from the literature can be summarized as follows3.

First, when the ZLB binds, the fall in output is potentially very large. Second, the

output multiplier associated with government consumption is larger when the ZLB

binds than when it does not bind. Third, the more flexible are prices and the longer

is the expected duration of the ZLB is longer, the larger is the drop in output and

the larger is the government consumption multiplier.

These controversial results are based on literature that uses a linearized version

of the NK model, which has a unique solution. In fact, the non-linear NK models

have multiple equilibria, even if one restricts attention, as did EW, to minimum

state variable ZLB equilibria. As stressed by Mertens and Ravn (2015), policy pre-

scriptions can vary a great deal across those equilibria. At some ZLB equilibria, the

1For a classic exposition of the NK model see Woodford (2003.)
2It is widely understood that zero is not the critical lower bound. What is critical is that some

lower bound on the interest becomes binding on monetary policy.
3see, for example, EW, Eggertsson (2011) and Christiano, Eichenbaum and Rebelo (2011)

(CER),
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government consumption multiplier is small or even negative. In others, it is very

large. So, in principle, non-uniqueness of equilibria poses an enormous challenge for

policy analysis based on NK models.

This paper addresses a simple question: is non-uniqueness of equilibria a sub-

stantive problem for policy analysis in NK models? There would be a substantive

problem if there were no compelling way to select among different equilibria that give

different answers to critical policy questions. To be concrete we focus our analysis

on the impact of changes in government consumption when the economy is in the

ZLB.

Our argument starts from the presumption that the assumption of rational ex-

pectations is obviously wrong. But it can be a useful modeling strategy for thinking

about a world where the strong assumptions associated with rational expectations

aren’t literally satisfied. Indeed that is how Lucas viewed it.

“... the model describe above ’assumes’ that agents know a great deal about

the structure of the economy and perform some non-routine computations. It is in

order to ask, then: will an economy with agents armed with ‘sensible’rules-of-thumb,

revising these rules from time to time so as to claim observed rents, tend as time

passes to behave as described...”Lucas (1978)

In the spirit of the literature summarized by Evans and Honkapohja (2001), we

adopt the following selection criterion for rational expectations equilibria (REE).

Suppose agents make a ‘small’error in forming expectations about variables relative

to their values in a particular REE. Would the economy converge to a REE, if

agents form expectations using simple learning rules? If yes, then we say the REE is

stable-under-learning, or for short, learnable. From this perspective, stability-under-

learning is a necessary condition for an REE and the associated policy implications

to be empirically interesting. REE equilibria that aren’t learnable are best treated
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as mathematical curiosities.

We apply this stable-under-learning criterion to a standard fully non-linear NK

model with Calvo pricing frictions. Working with this model poses two interesting

challenges. First, unlike linearized NK models of the type considered by EW, the

ZLB REE can’t be characterized by a set of numbers. Because there is an endogenous

state variable (past price dispersion), the ZLB REE is a set of functions. Second, we

must think about how agents might learn about these functions.

Our basic results can be summarized as follows. First, consistent with Mertens

and Ravn (2015) we find that there are multiple REE, including sunspot equilibria.

When we consider fundamental shocks that trigger ZLB episodes, we find two min-

imum state variable ZLB equilibria. These equilibria converge to different inflation

rates if the ZLB episode lasts forever. Second, like Mertens and Ravn (2015), we find

that impact of government consumption can be very different in the different ZLB

equilibria. For example, there exist both sunspot and minimum state ZLB REE in

which the government consumption multiplier is actually negative. Third, we argue

that there exists a unique interior ZLB equilibrium in the non-linear Calvo model

that is stable-under-learning. Fourth, and most importantly, the controversial pre-

dictions of the linearized NK model about fiscal policy in the ZLB, including the

large size of the government consumption multiplier at the ZLB are satisfied at the

unique learnable ZLB REE. That equilibrium is the one that converges to a relatively

low ZLB deflation rate. Based on this analysis we conclude that the Calvo model

does not have a substantive uniqueness problem, as least for the analysis of fiscal

policy in the ZLB.

Many authors have used non-linear versions of the Rotemberg (1982) model of

nominal price rigidities to proxy for the Calvo model. In the Rotemberg model the

representative firm faces a quadratic cost of adjusting nominal prices. It is well
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known that linear approximations to the Calvo and the Rotemberg models give rise

to the same set of equations whose solution defines an REE. In contrast, non-linear

versions of the model are potentially very different. As it turns out some of the

non-linear properties of the Rotemberg model are very sensitive to the details of how

one formulates adjustment costs for prices. Specifically, we show that the number

of rational expectations ZLB equilibria and their stability properties depends on

whether and exactly how one scales adjustment costs for growth. Remarkably, we

still always find that there exists a unique ZLB REE that is stable-under-learning.

Moreover, all of the predictions of the log-linear NK for the impact of fiscal policy in

the ZLB hold at that equilibrium. Indeed, for our benchmark parametrizations, the

value of the government consumption multiplier in the linear and non-linear model

are remarkably similar.

As a by-product of our analysis, we use our non-linear model to assess the ro-

bustness of policy implications about fiscal policy at the ZLB that have been derived

using log linear approximations to the NK model. We find that linear approxima-

tions work quite well for assessing the size of the government spending multiplier and

the drop in GDP that occurs in the ZLB. Evidence that the quality of linear approx-

imations is poor rests on examples where output deviates by more than roughly 20

percent from its steady state, cases where no one would expect linear approximations

to work well. There is one interesting difference between the linear and non-linear

models. It is well know that for some parameters values, the multiplier in the linear

model shoots off to infinity, say as the expected length of the ZLB episode becomes

large or prices become very flexible (see for example CER (2011)). For the same

parameter values, these extreme results manifest themselves in a different way in the

non-linear Calvo model: a ZLB REE simply ceases to exist.

The Great Recession was a very unusual event. So the learning equilibrium
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underlying our stability calculations are of interest as a way of modeling how agents

behaved in the wake of a shock that pushes the economy into a prolonged ZLB

episode. So we analyze the impact of an increase in government consumption along

the learning equilibrium that converges to the stable ZLB REE. Our findings here

can be summarized as follows. First, the learning equilibrium is unique. Second,

the size of the multiplier is large in the learning equilibrium. The latter finding is

different than results reported in Mertens and Ravn (2015). As it turns out the main

reason for the difference in our results is that despite their backwards looking learning

rule, Mertens and Ravn change agents expectations about future consumption and

inflation when they change government consumption. We do not.

The remainder of this paper is organized as follows. In section 2 we discuss

multiplicity and learnability in the context of a standard flexible price model. We

do so in order to define learnability in a very simple environment and contrast it

with the notion of stability of a REE employed by Benhabib, Schmidt-Gorhe and

Uribe (2001). In section three we analyze ZLB REE in a nonlinear Calvo model. We

also assess the quality of linear approximations to the Calvo model in this section.

Section four contains our main results regarding stability-under-learning of different

ZLB REE. In section five we discuss learning equilibrium. Section six contains our

analysis of the non-linear Rotemberg model. Concluding remarks are contained in

section seven.

2. Equilibrium Selection in a Flexible Price Model

In this section we discuss multiplicity and learnability in the context of a standard

flexible price model. Our analysis is closely related to that of Evans, Guse, and

Honkapojha (EGH) (2008) who analyze similar issues in an New Keynesian (NK)
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model. Our primary objective is to define learnability in a very simple environment

and contrast it with the notion of stability employed by Benhabib, Schmidt-Gorhe

and Uribe (2001). Consistent with EGH (2008), we show analytically that there is

a unique learnable equilibrium in the model. As is well know, this equilibrium casts

doubt with neo-Fischerian interpretations of the low, post Great Recession, rate of

inflation.

2.1. Model Economy

As in BSGU (2001) we consider an endowment economy populated by a large number

of identical infinitely lived households with preferences defined over consumption and

real balances. For simplicity we assume that these preferences are separable between

consumption and real balances. The representative household maximizes

∞∑
j=0

βj
[
u(Ct+j) + v

(
Mt+j

Pt+j

)]
.

The household receives a constant endowment of the consumption good and faces

the budget constraint

Ct + τ t +
Bt

Pt
+
Mt

Pt
≤ (1 +Rt−1)

Bt−1

Pt
+ Y +

Mt−1

Pt
.

Here Pt, Ct, τ t and Y denote the price level, consumption, lump-sump taxes and the

endowment at time t. The variables Bt and Mt denote the end of time t holdings of

one-period nominal bonds and money, respectively which Rt−1is the nominal interest

on a bond held at the end of time t− 1.

The household chooses paths for consumption, real money balances, and bond

holding so that the following optimality conditions hold
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u′ (Ct) = v′
(
Mt

Pt

)
+ β

u′ (Ct+1)

πt+1

u′ (Ct) = β
Rt

πt+1
u′ (Ct+1)

In equilibrium, Ct = Y , so that we obtain:

1 =
v′
(
Mt

Pt

)
u′(Y )

+
β

πt+1

1 = β
Rt

πt+1

Monetary policy given by a Taylor, subject to a ZLB constraint on the nominal

interest rate:

Rt = R (πt) = max

{
1,
π∗

β
+ α (πt − π∗)

}
. (2.1)

Here π∗ is monetary authority’s target rate of inflation. We assume α > 1 so that

the so-called Taylor principle is satisfied. The presence of the max operator reflects

the ZLB.

There is a block-recursive structure to the equilibrium in which one can solve for

πt and Rt and Mt/Pt is determined according to agents’demand for real balances.

Specifically, we first use the consumption Euler equation to solve for a sequence of

inflation rates, given π0, that satisfy

πt+1 = βR (πt) (2.2)

We then solve for Rt using (2.1). Finally, given the sequence of equilibrium inflation

rates we solve for the sequence of real money balances that makes the following
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equilibrium condition hold4

v′
(
Mt

Pt

)
= u′(Y )

[
β
R (πt)

πt+1
− β

πt+1

]
. (2.3)

It is well known that in this type of model the equilibrium value of π0 is indetermi-

nate. But given an assumed value for π0, the remainder of the equilibrium can be

constructed as discussed.

BSGU note if α > 1
β
, then there are two steady states to the system. The first

steady state, which we refer to as the high-inflation steady state, has the property

that πt = π∗. The second steady state, which we refer to as the low-inflation steady

state, has the property that πt = β.

2.2. Stability in BSGU (2001)

BSGU study the stability properties of these steady states and argue that only low-

inflation state is stable. By stability they mean the following. Suppose that πt close

to but not exactly equal to either π∗ or β. A steady state is stable if the economy

converges back to it. In a rational expectations equilibrium, agents’beliefs about

future inflation coincide with actual inflation rates. So BSGU iterate equation (2.2)

forward, and analyze to which, if any steady state, the economy converges to.

There are three cases to consider. In the first case, π0 <
β−π∗
αβ

+ π∗. Equation

(2.2) implies that

π1 = max {β, π∗ + αβ (π0 − π∗)} = β.

and πt = β for t > 1. In the second case, β−π
∗

αβ
+ π∗ < π0 < π∗. Then equation (2.2)

4We assume that v(·) has whatever properties are required for there to exist a sequence of real
money balances that satisfy (2.3).
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implies that

π1 = max {β, π∗ + αβ (π0 − π∗)} < π0.

It follows that πt ≤ max {β, π∗ + (αβ)t(π0 − π∗)} which in turn implies that πt → β.

In the third case, π0 > π∗, so that

π1 = π∗ + αβ (π0 − π∗) .

It follows that πt ≥ π∗ + (αβ)t (π0 − π∗) which in turn implies that πt →∞. In this

simple model, there is no reason to rule out explosive inflation paths.5

Two key observations follow from the previous analysis. First, the high-inflation

steady state is not stable, in the sense that BSGU use that term. That is, for small

deviations of π0 from π∗, the equilibrium path for πt either converges to β or ∞.

Second, the low-inflation steady state is stable as long as the initial rate of inflation

does not exceed π∗.

The previous stability results have been used to justify a neo-Fisherian view of

monetary policy. Specifically, authors like Bullard (2013, 2015) use the stability of

the negative-inflation steady state to argue that at a commitment to a low nominal

interest rate leads to a low inflation rate.6 Here the term ‘lower’refers to the relative

values of a variable across steady states. The stability argument can also be viewed as

an argument for why many advanced economies have experienced low inflation for so

long (see Bullard (2015)). The idea is that, since the high-inflation rate steady state

equilibrium isn’t stable, a small deviation from it could lead countries like Japan into

the stable low inflation steady state.

5There exist various modifications to the simple interest-rate rule considered here that can rule
out some of these equilibria. See for example Christiano and Rostagno (2001) and Atkeson, Chari,
and Kehoe (2010).

6Bullard (2013) makes the argument in a simple NK model.
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2.3. Stability-under-learning

We now contrast the stability in the BSGU sense, with stability-under-learning.

Suppose that in a neighborhood of a steady state, agents have expectations about

future inflation that aren’t equal to the steady value of inflation. Denote by πt+1|t

agents’time t belief about the value of πt+1. We assume agents update their beliefs

according to a well defined learning rule. A learning equilibrium is the sequence of

prices and quantities that obtains under that learning rule. A rational expectations

equilibrium is said to be stable-under learning if the learning equilibrium converges

back to the RE equilibrium.

In what follows we assume that agents update their beliefs according to the

adaptive learning rule7

πt+1|t = πt−1.

We solve for the learning equilibrium in the following way. For a given belief, πt+1|t,

inflation in the current period is determined so that the household Euler equation

holds and the monetary policy rule is satisfied:

πt+1|t = βR (πt) = max {β, π∗ + αβ (πt − π∗)} .

For an initial belief, π1|0, that is close to, but not equal to, π∗

π0 = π∗ +
π1|0 − π∗
αβ

meaning that

|π1 − π∗| < |π1|0 − π∗|.
7Our results are robust to allowing for constant gain learning or least squares learning.
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Given the assumed learning process, π2|1 = π0. For every t > 0, we then have

that |πt − π∗| < |πt−1 − π∗| and that that πt → π∗. So the high-inflation rational

expectations equilibrium is stable under learning.

Consider an initial belief, π1|0, that is close to, but slightly larger than β. Then

π0 = π∗ +
π1|0 − π∗
αβ

meaning that π1 > β and that

|π1 − π∗| < |π1|0 − π∗|.

Given the assumed learning process, π2|1 = π0. For every t > 0, we then have

that |πt − π∗| < |πt−1 − π∗| and that that πt → π∗. So the low-inflation rational

expectations equilibrium is not stable under learning. Given the lower bound on

nominal interest rates, the household Euler equations implies that a belief about

inflation in the next period that has πt+1|t < β cannot be rationalized so we do not

consider this case.

The previous discussion illustrates the sharp contrast between stability under

learning and stability in the BSGU sense. We reach exactly the opposite conclusions

about the “stability” of the two steady state equilibria. The low-inflation steady

state equilibrium is unique stable steady state in the BSGU sense. The high-inflation

steady state equilibrium is the unique stable steady state under learning. Given this

result, our view is that only the high inflation steady state is empirically interesting.

Finally, note that the learning equilibrium leading to the high inflation steady state

is unique.

From the learning perspective, the low-inflation steady state is empirically unin-
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teresting. It seems incredible to think about the US or Japan about being in the low

inflation steady state when any perturbation of beliefs would have sent the economy

away from that point. We use stability-under-learning as the equilibrium selection

device.

3. Fiscal Policy in the ZLB

In this section we assess the implications of the NKmodel for fiscal policy at the ZLB.

The goal of our analysis is to assess whether the model has robust implications for

fiscal multipliers once we impose stability under learning as an equilibrium selection

device. We conduct our analysis in a non-linear version of the NK model. In this

paper, we restrict ourselves to minimum-state-variable (MSV) equilibria (the type of

equilibria considered in EW). We conduct our analysis using a fully non-linear ver-

sion of the NK model in which firms face Calvo price setting frictions. Authors like

Christiano and Eichenbaum (2012) and Braun, Boneva, and Waki (2015) interpret

the price frictions in their nonlinear analysis of the NK model as stemming from

adjustment costs as proposed by Rotemberg (1982). This interpretation is interest-

ing because it implies the same linearized equations that EW study. The advantage

of adopting Rotemberg adjustment costs is analytic simplicity. The Calvo approach

injects an endogenous state variable (past price dispersion), while there is no endoge-

nous state variable in the Rotemberg approach. However, as we show in Section 6,

there are some important pitfalls associated with using the Rotemberg model that

arise from its sensitivity to how the costs of adjusting prices is formulated.
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3.1. Model Economy

A representative household maximizes

E0

∞∑
t=0

dt

[
log (Ct)−

χ

2
h2t

]
where Ct denotes consumption, ht denotes hours work, and

dt =

t∏
j=0

(
1

1 + rj−1

)
.

As in EW, we assume that rt can take on two values: r and r`, where r` < 0. The

stochastic process for rt is given by

Pr
[
rt+1 = r`|rt = r`

]
= p, Pr

[
rt+1 = r|rt = r`

]
= 1− p, Pr

[
rt+1 = r`|rt = r

]
= 0.

We assume that rt is known at time t. The household faces the budget constraint

PtCt +Bt ≤ (1 +Rt−1)Bt−1 +Wtht + Πt.

Here Pt is the price of the consumption good, Bt denotes the household’s nominal

risk-free bond holdings, Rt−1 is the gross nominal interest rate paid on bonds held

from period t− 1 to period t, Wt is the nominal wage, and Πt represents lump-sum

profits net of lump-sum government taxes.

The two first order necessary conditions associated with an interior solution to

the household’s problem are:

χhtCt =
Wt

Pt
(3.1)
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1

1 +Rt

=
1

1 + rt
Et

PtCt
Pt+1Ct+1

. (3.2)

A final homogeneous good, Yt, is produced by competitive and identical firms

using the following technology:

Yt =

[∫ 1

0

(Yj,t)
ε

ε−1 dj

] ε−1
ε

, (3.3)

where ε > 1. The representative firm chooses specialized inputs, Yj,t, to maximize

profits:

PtYt −
∫ 1

0

Pj,tYj,tdj,

subject to the production function (3.3). The firm’s first order condition for the jth

input is:

Yj,t = (Pt/Pj,t)
−ε Yt. (3.4)

The jth input good in (3.3) is produced by a firm j who is a monopolist in the prod-

uct market and is competitive in factor markets. Monopolist j has the production

function:

Yj,t = hj,t. (3.5)

Here hj,t is the quantity of labor used by the jth monopolist. The monopolist maxi-

mizes

Et

∞∑
k=0

βkλt+k

(
(1 + υ)P̃t − Pt+kst+k

)
Yj,t+k (3.6)

by choosing P̃t. Here υ is a subsidy designed to remove steady state distortions owing

to monopoly power. The jth retailer sets its price, Pj,t, subject to the demand curve,
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(3.4), and the following Calvo sticky price friction (3.7):

Pj,t =

 Pj,t−1 with probability θ

P̃t with probability 1− θ
. (3.7)

The firm satisfies whatever demand occurs at its posted price. The real marginal

cost facing each monopolist is given by:

st ≡
Wt

Pt
= χhtCt. (3.8)

The first order condition of monopolist j can be written as

p̃t = πt
Kt

Ft

where p̃t ≡ P̃t
Pt−1

,

Kt =
Yt
Ct
st + θ

1

1 + rt
Etπ

ε
t+1Kt+1

and

Ft =
Yt
Ct

+ θ
1

1 + rt
Etπ

ε−1
t+1Ft+1.

Here πt denotes the gross rate of inflation.

It is well known that aggregate output can be written as8

Yt = p∗tht

8See for example Woodford (2003).
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where p∗t is a measure of price dispersion, which evolves according to

p∗t =

[
(1− θ)

[
1− θπε−1t

1− θ

] −ε
1−ε

+ θπεt(p
∗
t−1)

−1

]−1
.

The aggregate resource constraint is given by

Ct +Gt ≤ Yt. (3.9)

In equilibrium, this constraint is satisfied as an equality because households and gov-

ernment go to the boundary of their budget constraints. Government consumption

is an exogenous process discussed below.

Monetary policy rule is given by

Rt = max {1, 1 + r + α (πt − 1)} (3.10)

As above, the max operator reflects the zero lower bound constraint on nominal

interest rates and α is assumed to be larger than 1 + r.

We assume that r0 = r`. To complete our specification of the environment, we

note that there are no other shocks to the model. We consider two scenarios. In the

first, the government does not respond to the discount—rate shock. In the second, Gt

increases by one percent of steady state output as long as rt = r`.

3.2. Solving the Non-Linear Calvo Model

The price dispersion term, p∗t−1 is the only state variable in our system other than the

exogenous discount factor shock. It is convenient to collect the equilibrium conditions
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of the model:

p∗t =

[
(1− θ)

[
1− θπε−1t

1− θ

] ε
ε−1

+ θπεt(p
∗
t−1)

−1

]−1
(3.11)

1

Yt −Gt

=
1

1 + rt
max (1, 1 + r + α (πt − 1))Et

1

Yt+1 −Gt+1

1

πt+1

Ft =
Yt

Yt −Gt

+ θ
1

1 + rt
Etπ

ε−1
t+1Ft+1

Ft

[
1− θπε−1t

1− θ

] 1
1−ε

=χ
Y 2
t

p∗t
+ θ

1

1 + rt
Etπ

ε
t+1Ft+1

[
1− θπε−1t+1

1− θ

] 1
1−ε

A solution to the model is a set of functions Y (p∗t−1, rt), π(p∗t−1, rt), F (p∗t−1, rt),

p∗(p∗t−1, rt) which satisfy the four equilibrium conditions (3.11).

In the first stage we solve for the equilibrium functions that obtain when rt = r,

i.e. after the economy has exited the ZLB. As in Bizer and Judd (1989) we begin

with a conjectured set of equilibrium functions, Ỹ (·), π̃(·), F̃ (·), p̃∗ (·), for the time

t+ 1 variables that appear in (3.11). The equilibrium conditions give us a mapping

[
Y (·) , π (·) , F (·) , p∗ (·)

]
= T

[
Ỹ (·), π̃(·), F̃ (·), p̃∗ (·)

]
.

At a rational expectations equilibrium

[
Y (·) , π (·) , F (·) , p∗ (·)

]
= T [Y (·), π(·), F (·), p∗ (·)] .

We approximate these functions using finite elements methods on a grid defined

over p∗t−1. Given a value of p
∗
t−1, and the conjectured set of equilibrium functions,

(3.11) reduces to a systems of four equations in four unknowns, Yt, πt, Ft and p∗t .

We solve these equations for all of the values of p∗t−1 in the grid. In this way we

constructs a function from the state variable, p∗t−1 to the equilibrium quantities. If the
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functions that are produced are the same as the conjectured equilibrium functions,

then we have found an equilibrium. If they aren’t the same, then we use the newly

computed functions as conjectured equilibrium functions and repeat the process until

the approximating functions converge.

In a second stage, we solve for the equilibrium functions that obtain when rt is

equal to r`. Define

Y`(p
∗
t−1) = Y (p∗t−1, r`), p

∗
`(p
∗
t−1) = p∗(p∗t−1, r`),

F`(p
∗
t−1) = F (p∗t−1, r`), π`(p

∗
t−1) = π(p∗t−1, r`).

In the ZLB, we can write (3.11) as

p∗`(p
∗
t−1) =

[
(1− θ)

[
1− θπ`(p∗t−1)ε−1

1− θ

] ε
ε−1

+ θ
π`(p

∗
t−1)

ε

p∗t−1

]−1

1

Y`(p∗t−1)−G`

=
1

1 + rl
max

(
1 + r + α

(
π`(p

∗
t−1)− 1

)
, 1
) [
p

1

Y`(p∗t )−G`

1

π`(p∗t )

+ (1− p) 1

Y (p∗t )−G
1

π(p∗t )

]

F`(p
∗
t−1) =

Y`(p
∗
t−1)

Y`(p∗t−1)−G`

+ θ
1

1 + rl
[
pπ`(p

∗
t )
ε−1F`(p

∗
t ) + pπ(p∗t )

ε−1F (p∗t )
]
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F`(p
∗
t−1)

[
1− θπ`(p∗t−1)ε−1

1− θ

] 1
1−ε

=χY`(p
∗
t−1)(Y`(p

∗
t−1)/p

∗
`(p
∗
t−1))

+ θ
1

1 + rl
pπ`(p

∗
t )
−εF`(p

∗
t )

[
1− θπ`(p∗t )ε−1

1− θ

] 1
1−ε

+ θ
1

1 + rl
(1− p)π(p∗t )

−εF (p∗t )

[
1− θπ(p∗t )

ε−1

1− θ

] 1
1−ε

We solve for the equilibrium functions Y`(p∗t−1), π`(p
∗
t−1), F`(p

∗
t−1) and p

∗
`(p
∗
t−1) using

the same algorithm used in the first stage.

One important feature of the solution, as pointed out by Mertens and Ravn

(2015), is the limit as t → ∞ when the economy stays in the ZLB. In this case,

p∗t converges to a number, p̂, for any interior equilibrium. At such a limiting point,

the above system of equations collapses to a system of equations in four unknowns,

π`(p̂), Y`(p̂), p∗`(p̂), and F`(p̂). We refer to the set of the limiting equilibrium values

of prices and quantities as the steady-state ZLB equilibrium.

We solve for a steady-state ZLB equilibrium as follows. Conjecture a guess for

π`(p̂). Then calculate the implied value of p̂ from the first equation, calculate C`(p̂)

from the second equation and compute F`(p̂) from the third equation. Then check if

the final equation holds with equality. If it holds, π`(p̂) is a steady-state ZLB equi-

librium value of inflation. If it doesn’t hold, search for another π`(p̂). Employing this

algorithm, we make the equations defining an interior steady-state ZLB equilibrium

collapse into one equation one unknown

f(π`) = 0. (3.12)

In a slight abuse of notation we have dropped the explicit dependence of π` on p̂.

If this condition did not hold, then π` couldn’t be the steady-state ZLB equilibrium
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Figure 3.1: Steady State ZLB Equilibrium Function
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value of inflation. So, a necessary condition for the ZLB equilibrium to be unique is

that there is a unique solution to (3.12).

In our experiments we use following baseline parameterization of the model:

ε = 7.0, β = 0.99, α = 2.0, p = 0.75, (3.13)

r` = −0.02/4, θ = 0.85, ηg = 0.2.

Steady state output is normalized to 1 by setting χ = 1.25.

21



Figure 3.2: RE Equilibrium Paths In ZLB

5 10 15 20 25

Period In ZLB
0.93

0.94

0.95

0.96

0.97

0.98

0.99

In
fl
a
ti

o
n

High-Inflation ZLB REE

Low-Inflation ZLB REE

5 10 15 20 25

Period In ZLB
0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

C
o
n
su

m
p
ti

o
n High-Inflation ZLB REE

Low-Inflation ZLB REE

3.3. Baseline RE Equilibria Results

Recall that the equation defining an interior steady-state ZLB equilibrium is given

by (3.12). Figure 3.1, displays f(π`) as a function of π`. The solid line is calculated

assuming that G is equal to its steady state value, 0.20. Note that f (π`) has an

inverted U shape. It follows that there are either two interior steady-state ZLB

equilibria or no such equilibria. Given our assumed parameter values, there are two

steady-state ZLB equilibria which we refer to as the high and low inflation steady

state ZLB equilibria. In practice we find that the number of ZLB equilibria coincides

with the number of steady state ZLB equilibria. To be clear, this is a numerical

result, not a theorem

The dotted lines of the panels of Figure 3.2 displays the dynamic response of

inflation and consumption, respectively, to the discount rate shock when the economy

converges to the high and low inflation steady-state ZLB equilibrium. We refer to

these paths as the high and low inflation ZLB equilibria. A number of features

are worth noting. First, along the high inflation ZLB equilibrium path, quarterly
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Figure 3.3: RE Multiplier In ZLB
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inflation and consumption drop in the impact period of the shock by 1.5 and −6.35

percentage points, respectively. After about 5 quarters these declines stabilize at

−1.3 and −6.3 percentage points, respectively. Second, along the low inflation ZLB

equilibrium path, quarterly inflation and consumption drop in the impact period of

the shock by−7.25 and−23.5 percentage points, respectively. After about 5 quarters

these declines stabilize at −6.0 and −23.3 percentage points, respectively.

To derive values for the multiplier we assume that G` = 1.05×Gh, i.e. when the

economy is in the ZLB, G rises by 1 percentage of steady state output. We define

the multiplier in the first period to be

G`

(C`(p∗t−1) +G`)

∆
(
C`(p∗t−1) +G`

)
∆G`

.

We compute this ratio assuming that if the economy is in the high inflation (low

inflation) ZLB equilibrium for a low value of G, it is in the high inflation (low infla-

tion) ZLB equilibrium for the high value of G.9 The two panels of Figure 3.3 display

9This assumption is non-trivial because one can easily instruct examples in which G serves as a
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the government spending multiplier in the high inflation and low inflation ZLB equi-

librium as a function of time. Notice that the multiplier in the high inflation ZLB

equilibrium is large, exceeding two over the time period displayed. In contrast, the

multiplier is actually negative in the low inflation ZLB equilibrium. To understand

this result, note that an increase in G` shifts f upwards (see Figure 3.1). This shift

implies that the effect of an increase in G depends on which equilibrium we focus

on. This change in sign is a dramatic illustration of the basic result in Mertens and

Raven (2011) where the multiplier is much lower in the analog to our low inflation

ZLB equilibrium.

3.3.1. Comparisons to linearized version of the model

Table 3.1 summarizes our results regarding the impact of changes in G for the non-

linear and linear versions of the Calvo model. We report the response of inflation,

output and the multiplier in the impact period of a shock to the discount rate ac-

companied by a rise in G. Notice that the equilibrium response of the linearized

model are similar to the high-inflation ZLB equilibrium. For example, the impact

multiplier in the linear model is 1.63 while it is 2.24 in the high-inflation ZLB equi-

librium. While the magnitudes of the two multipliers are different, both deserve the

adjective, ‘large’. The initial percent drop in GDP in the linear and high-inflation

ZLB equilibrium model is −2.18% and −2.84%,respectively. Again, while the num-

bers are different, the decline in output is large in both cases. In stark contrast, the

properties of the low-inflation ZLB equilibrium are very different than those of the

linear model. For example the impact multiplier is −0.35% and the initial drop in

sunspot inducing a switch form one equilibrium to the other. For example one could from the high
inflation ZLB equilibrium associated with the initial level of G to the low inflation ZLB equilibrium
associated with the high level of G. As in Mertens and Raven (2015), we abstract from this issue.
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Table 3.1: Effect of rt Shock

Model Output Inflation Multiplier
Linear -2.18 -0.0066 1.63
Nonlinear, high-inflation -2.84 -0.0093 2.24
Nonlinear, low-inflation -17.87 -0.0734 -0.35

GDP is 17.87%.

The size of the multiplier associated with the high-inflation ZLB equilibrium

increases as p rises or θ falls, i.e. as the expected duration of the ZLB rises or

as prices become more flexible. These results are consistent with the intuition in

CER (2011) and EW. In contrast, the size of the multiplier associated with the low-

inflation ZLB equilibrium become more negative as the multiplier increases as p rises

or θ falls.

We found that increases in p and declines in θ have the effect of shifting the f(π`)

function down. At some point it does not intersect zero at any of the values of π`

considered. So the non-existence of an interior equilibrium in the non-linear models

leads to an effective bounds on the multiplier. In practice we found that the upper

and lower bounds associated with high and low inflation ZLB equilibria were 4.3 and

−2.5 percent respectively.

The multiplier in the linear multiplier is inversely related

∆ = (1− p)(1− θp)− p(2− ηg)
(1− θ)(1− βθ)

θ
.

It is evident that the multiplier is strictly increasing in p and θ. See CER (2015) for

the intuition underlying this result. Note that the high-inflation ZLB equilibrium of

the non linear model is consistent with the comparative dynamics of the log linear
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model. The latter’s implication for the effects of greater price flexibility and a longer

lasting ZLB episode (in expectation) are qualitatively correct. Carlstrom, Fuerst and

Paustian (2014) prove that the linear model does not have an interior equilibrium

when ∆ is negative. Before ∆ turns negative, the multiplier can be arbitrarily large.

So in contrast to the non-linear model, there is no upper bound to the multiplier.

To summarize, the basic qualitative results reported in CER using a log-linear

approximation hold up when we consider the nonlinear solution and focus attention

on the high-inflation ZLB equilibrium. In particular, (i) the government spending

multiplier can be considerably bigger than unity when the ZLB binds, (ii) as the

expected duration of the ZLB increases or the degree of flexibility of prices increases,

then both the severity of the output collapse in the ZLB and the government spend-

ing multiplier are larger, (iii) for parameterizations in which the output collapse is

large, then the government spending multiplier is large too. The implications of the

linear approximation become increasingly distorted as parameter values are chosen

for which ∆ approaches zero and turns negative.

3.4. Sunspot Equilibria

Above, we assumed that a fundamental shock to preferences makes the ZLB bind.

It is useful to also consider a scenario in which the ZLB binds because of a non-

fundamental shock. This case is the one considered by Mertens and Ravn (2015).

We assume that at the beginning of time t = 0, before any agent has made a decision,

the economy is in the high-inflation steady state equilibrium. Each firms observes a

sunspot. Conditional on the sunspot firms can either believe that other firms behave

as in they did in the high inflation steady state or they set their prices suffi ciently low

to make the ZLB bind. With probability p firms continue to hold this belief. With

26



Figure 3.4: Steady State Sunspot Equilibrium Function
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probability (1−p), firms believe that other firms will set their prices suffi ciently high

to make the ZLB non-binding and behave as they did in high inflation steady state.

The latter belief is an absorbing state.

Figure 3.4 displays the f(π`) function. Notice that there are two points at which

it equals zero: the initial high inflation steady state and the low inflation ZLB

equilibrium.

As stressed in Mertens and Ravn (2015), the sunspot equilibrium can be charac-

terized as a situation in which the shock driving the economy into a binding ZLB is a

loss in confidence. Agents anticipate deflation, creating the perception that the real

interest rate is high. Households respond with a reduction in expenditures and thus
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Figure 3.5: Sunspot Multipliers
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drive the economy into a recession. The reduced level of economic activity results

in a drop in marginal cost as the wage rate falls with the lower demand for labor.

Reduced marginal costs create downward pressure on the price level. This pressure

is manifested in the form of a sustained fall in the price level over time because of

the presence of price-setting frictions. In this way, the initial fear of deflation is

self-fulfilling. Mertens and Ravn (2015) propose this non-fundamental ‘loss of confi-

dence’shock as an alternative to a fundamental shock that drives the economy into

the ZLB.

Now consider the effect of a rise in G when the sunspot occurs. Depending on

beliefs, the economy will either in the high inflation steady state equilibrium or it
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could be in the low inflation ZLB equilibrium. We compute the multiplier assuming

that the economy initially in the high inflation steady state and agents think the

economy will go back there when the ZLB ends. Figure 3.5 displays the multiplier

as a function of time for the case where the economy is in the ZLB and the case

where the economy remains in the high inflation steady state equilibrium after the

sunspot is operative. As might be anticipated, the multiplier at the ZLB can be

larger or smaller than in the steady state, depending on parameter values. The

robust result is that the multiplier is quite small: (0.56) in the ZLB and (0.79) at the

steady state. The steady state multiplier is small because of the normal crowding of

private consumption when the monetary induces a rise in the real rate in response

to inflation.

4. Stability Under Learning at the ZLB

In this section we investigate the stability under learning of the high and low inflation

ZLB equilibria. To determine what happens when agents don’t know the precise

equilibrium functions for the variables whose values they must forecast, we must

make assumptions about how their beliefs evolve over time.

4.1. The benchmark case

Once we depart from the assumption of rational expectations, we must confront the

following issue. In the Calvo model, intermediate good firms choose their price level,

Pj,t, based in part on the value of the aggregate price level, Pt. But, the aggregate

price level is a function of firms’collective price decisions. Clearly, these firms cannot

actually ‘know’the current aggregate price level when they choose their own price,

in the sense of actually observing it. The standard assumption is that these firms
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form a ‘belief’about Pt when they make their decision. In a rational expectations

equilibrium that belief is correct. In a world where firms don’t necessarily have

rational expectations it is not natural to assume that firms actually see Pt when

their collective actions simultaneously determine Pt. But if firms don’t actually see

Pt they also don’t see Ct when they make their time t decisions.

So for firms to solve their problem they must have a view about the equilibrium

functions for current and future aggregate inflation and consumption. At time t firms

make their decisions given the state variable p∗t−1 and these views about the equilib-

rium functions. We assume that firms believe they are in a stationary environment

so they think that the equilibrium functions won’t change over time.

Denote by xe,f` (p∗t−1, t− 1) the firms’belief, formed using information up to time

t − 1, about the equilibrium function for x`. The only argument of the function is

the state variable p∗t−1. While the firm knows the actual value of p∗t−1, we attribute

to it beliefs about the entire equilibrium function for x`. We do this for the following

reasons. To make its time t decision, firms must forecast the values of future variables

as p∗t evolves. Put differently the firm’s first order conditions involve objects like

xe,f` (p∗t−1, t − 1) and xe,f` (p∗t+j, t − 1) for j ≥ 0. It follows that the firms must have

views about the entire function. The fact that all these functions have time t − 1

as argument summarizes our assumption that firms think they are in a stationary

environment.

Over time, firms observe data which cause their beliefs about the equilibrium

functions to evolve. We assume that these beliefs evolve according to

xe,f` (p∗t , t) = ωx`(p
∗
t−1, t− 1) + (1− ω)xe,f` (p∗t−1, t− 1). (4.1)

For ω > 0, this formulation assumes that agents know the time t − 1 equilibrium
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function for x`. While this assumption is clearly heroic, we also investigate what

happens we see that firms just assume that the value of variables that they have

to forecast are equal to their current value. As an aside, it is worth noting that in

Rotemberg model, discussed in Section 6, there are no state variables in the ZLB. So

we can replace (4.1) with the assumption that agents’expectations about the values

of future variables evolve according to a simple constant gain algorithm.

When households make their time t consumption decisions, firms’actions have

already determined aggregate inflation. Given this information, the households can

compute the time t equilibrium function for inflation.10 Denote by πe,h` (p∗t−1, t) house-

holds’belief, at time t, about the equilibrium function for π`. Absent any new in-

formation, households believe that this equilibrium function will be in effect forever.

Given new information, households beliefs evolve according to

πe,h` (p∗t , t+ 1) = ωπ`(p
∗
t−1, t) + (1− ω)πe,h` (p∗t−1, t). (4.2)

The first-order condition of the firm when rt = r` can be written as

P̃`,t
Pt−1

=
Pt
Pt−1

Ke,f
`,t

F e,f
`,t

(4.3)

where

Ke,f
`,t = χ

(Y e,f
`,t )2

p∗t
+ θ

1

1 + r`
(πe,f`,t+1)

ε
[
pKe,f

`,t+1 + (1− p)Ke,f
n,t+1

]
(4.4)

and

F e,f
`,t =

Y e,f
`,t

Ce,f
`,t

+ θ
1

1 + r`
(πe,f`,t+1)

ε−1
[
pF e,f

`,t+1 + (1− p)F e,f
n,t+1

]
. (4.5)

10They can do so under the further heroic that they can just solve the problem that the firm
solved.
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Here, F e,f
`,t , K

e,f
`,t , Y

e,f
`,t , C

e,f
`,t , and π

e,f
`,t denote firms’beliefs about Ft, Kt, Yt, Ct,

and πt when while rt = r`. Similarly, F
e,f
n,t , K

e,f
n,t , Y

e,f
n,t , C

e,f
n,t , and π

e,f
n,t denote firms’

beliefs about Ft, Kt, Yt, Ct, and πt when while rt = r. Here, the superscript,

’e’, indicates the firms’belief about the value of the corresponding variable. Note

that there is a superscript, e, on the current period value of aggregate inflation and

aggregate consumption and output. Firms form these beliefs based on their beliefs

about equilibrium functions for aggregate variables, which evolve according to (4.1).

While rt = r`, households make their labor supply decision so that

χC`,th`,t =
W`,t

P`,t
(4.6)

They determine consumption so that

1

C`,t
=

1

1 + r`
max {1, 1 + r + α(π`,t − 1)}

[
p

Ce,h
`,t+1π

e,h
`,t+1

+
1− p

Ce,h
n,t+1π

e,h
n,t+1

]
(4.7)

where C`,t, h`,t, R`,t, and
W`,t

P`,t
are the realized values of consumption, labor supply,

the nominal interest rate, and the real wage. Household beliefs about future inflation

are determined by (4.2). Households believe that the function mapping the state p∗t−1

to the household consumption decision is the same in the subsequent period.

A learning ZLB equilibrium is a sequence of functions π`,t(·), C`,t(·), h`,t(·), W`,t

Pt
(·),

P̃t
Pt−1

(·), and R`,t(·) that satisfy the resource constraint, the monetary policy rule, and

the household and firm optimality conditions for all t, given an initial set of beliefs

πe,f` (·, 0), Ce,f
` (·, 0), and πe,h` (·, 0) that evolve according to (4.1) and (4.2). Note that

we are taking the functions while rt = r as known by households and firms.

We define stability-under-learning in this economy as follows. Suppose that in

a neighborhood of a ZLB steady state, either xe,f` (·, t − 1) is not equal to x`(·) or
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πe,h` (·, t) is not equal to π`(·). Here π`(·) and x`(·) are the rational expectations law of

motion for x` and π` in a steady state ZLB equilibrium. A rational expectations ZLB

equilibrium is said to be stable-under learning if a learning equilibrium with initial

beliefs close to, but not equal to, the rational expectations equilibrium functions,

converges back to the rational expectations ZLB equilibrium. If the economy stays

in the ZLB forever, it will converge to the steady state ZLB equilibrium. The learning

equilibrium must also approach that steady state ZLB REE if the initial ZLB REE

is stable-under-learning. This fact is very useful because it allows us to eliminate all

of the RE ZLB equilibria that lead to the low inflation ZLB steady state equilibrium

as not being stable-under-learning.

Consider a firm that believes that the steady inflation rate is πe,f` and that the

economy is in the steady state corresponding to that rate of inflation. Also, assume

that p∗t−1 is consistent with this belief. The belief π
e,f
` is not a rational expectations

belief so that the steady state associated with it (including p∗t−) is not a steady state

ZLB REE. It follows that f(πe,f` ) is not equal to zero.

Note that there is an equivalence between the belief πe,f` and the value of p̃e,f` that

will be chosen by firms who can update their price. So we use the function f(πe,f` )

to define a new function

f̃ (p̃e`) (4.8)

that must be equal to zero at a steady state ZLB RE equilibrium.

Combining (4.3)-(4.5), using the aggregate resource (3.9) and the household Euler

equation (4.7) we represent the first order condition of the firm under consideration

as

F̃
(
p̃t, p̃

e,f
`

)
= 0. (4.9)
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Define the best-response function

p̃t = g(p̃e,f` ).

This function has the property,

F̃
(
g(p̃e,f` ), p̃e,f`

)
= 0. (4.10)

Note that in a steady state RE ZLB equilibrium

p̃t = p̃e,f` (4.11)

If all firms behave like the firm under consideration, then time t inflation is given by

πt =
(
θ + (1− θ)(p̃t)1−ε

) 1
1−ε , (4.12)

which will coincide with the typical firm’s belief about the current aggregate inflation,

given by

πe,f` =
(
θ + (1− θ)(p̃e,f` )1−ε

) 1
1−ε

. (4.13)

Figure 4.1 plots the typical firm’s best response function, i.e. p̃t as a function of

p̃e,f` . The two steady state RE ZLB equilibria correspond to the two points where

the best response function intersects the 45 degree line. Notice that given any belief,

p̃e,f` , between the RE steady state beliefs, the best response g(p̃e,f` ) is greater than

p̃e,f` . It follows that realized inflation will exceed beliefs about inflation. So the

learning equilibriumwill move towards the high inflation ZLBREE steady state. Now

consider any belief, p̃e,f` , that exceeds the high inflation RE steady state of inflation.
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Figure 4.1: Best Response Function
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Here the best response function g(p̃e,f` ) is less than p̃e,f` . So realized inflation will be

lower than beliefs about inflation and the learning equilibrium will move towards

the high inflation RE steady state. Finally, consider any belief, p̃e,f` , that is less

than the low inflation RE steady state of inflation. Here the best response function

g(p̃e,f` ) is less than p̃e,f` . It follows that realized inflation will be lower than beliefs

about inflation. So the learning equilibrium will move away from the low inflation

RE steady state.

The previous result discussion focused on the limiting point of RE ZLB equilibria.

To be stable-under-learning, the functions defining a learning equilibrium must con-

verge point wise to the functions defining a RE ZLB equilibrium for every possible

for p∗t , including the steady state value of p
∗
` . The previous discussion establishes

that any RE ZLB equilibrium that converges to the low inflation RE ZLB steady

state does not satisfy this condition, and is therefor not stable-under-learning.

It does not establish that a RE ZLB equilibrium that converges to the high

inflation RE ZLB steady state does satisfy this condition and is therefore stable

under learning. We must examine this issue numerically. Recall that we parameterize

the RE ZLB equilibrium functions with a finite number of parameters, zt. The

learning algorithm specified above defines a mapping from the current values of

those parameters to the values that they take in the subsequent period

zt+1 = s (zt) . (4.14)

Define

S(z̃) =

[
dsi (z)

dzj

]
|z̃, (4.15)

for all i, j < N where N is the number of parameters. When we evaluate S for the
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Figure 4.2: Learning Equilibria Near Steady State ZLB
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parameters of the the high inflation ZLB RE equilibrium, we find that the maximum

eigenvalue is less than one in absolute value. This establishes that, locally, functions

in the neighborhood of the high-inflation ZLB RE equilibrium will converge to the

RE equilibrium functions in a learning equilibrium. By contrast, when we evaluate

S for the parameters of the low-inflation ZLB RE equilibrium, we find that the

maximum eigenvalue is greater than one in absolute value, meaning that functions

in the neighborhood of the low-inflation ZLB RE equilibrium will diverge from the

RE equilibrium functions in a learning equilibrium.

To illustrate the process of convergence and divergence, suppose that at time −1

the economy is in the high inflation ZLB steady state where p∗−1 = p`. Then at time

0, for reasons unexplained, (i) xe,f` (p∗−1,−1) = x`(p
∗
−1) + x̄`,where x̄` is a positive

constant, and (ii) all agents think that if the ZLB ends, the economy will be in a

RE equilibrium that converges to the high inflation steady state.11 For simplicity we

assume that the parameter ω in (4.1) and (4.2) is equal to one.

11We obtain virtually identical results regardless of whether x̄` is applied to firms’beliefs about
only inflation, only consumption or both.

37



The first panel of Figure 4.2 displays the evolution of realized inflation for x̄`=

(-.02,-.01, 0, 0.01, 0.02). The red line corresponding to x̄` = 0.0 is the inflation rate

in the high inflation steady state RE ZLB equilibrium. From the Figure we see that,

regardless of the value of x̄`, inflation converges to the high inflation steady state

ZLB equilibrium. This result established that the equilibrium defining a learning

equilibrium converges to equilibrium function defining an RE equilibrium when eval-

uated at the p∗` . The second panel is the analog to the first, where we begin from

the low inflation steady state RE ZLB equilibrium. Notice that inflation diverges

from that equilibrium in the learning equilibrium. For positive values of x̄`, inflation

converges to the high inflation steady state ZLB RE equilibrium. Interestingly for

x̄` < 0, there does not exist interior ZLB learning equilibrium.

Until now we supposed that agents belief that once the ZLB is over, the economy

will go to an RE equilibrium that converges to the high inflation steady state. It is

natural to ask what happens if agents assume that when the ZLB is over, the economy

will go to an RE equilibrium that converges to the low inflation steady state. Figure

4.3 is the analog to Figure 3.1 for this alternative assumption. Notice that the curve

is shifted to the left, meaning that there are two steady state ZLB equilibria, and

their inflation rates are lower than under our standard assumptions. The reason the

curve is shifted to the left is that agents expect a lower rate of inflation after the ZLB

is over. This effect means that the real interest in the ZLB is higher which lowers

consumption.

It is still the case that RE equilibria which converge to the low inflation steady

state are not stable-under-learning. It is also still the case that the maximum eigen-

value associated with the matrix in (4.15) is less than one in absolute value. So

regardless of which assumption we make about agents beliefs about the post ZLB

period the high inflation ZLB RE equilibrium is stable-under-learning and the low
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Figure 4.3: Steady State ZLB Equilibrium Function, Alternative SS Expectations
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inflation ZLB RE equilibrium is not.

We conclude by noting, that there may be multiple RE ZLB equilibria that con-

verge to the high inflation steady state ZLB equilibrium. But as a practical matter

we could find not any of those equilibria. As it turns out, this potential ambiguity

does is resolved once we consider return to the Rotemberg model.

5. Fiscal Policy in the Learning Equilibrium

In the previous section we discussed the government multiplier in RE ZLB equilibria

that converge to the high and low inflation steady states. The effect of learning

dynamics and fiscal policy is interesting because the Great Recession was such an

unusual event. Under such circumstances, it may questionable to assume that people

had rational expectations about all aspects of the episode.

5.1. Fiscal policy under benchmark learning scheme

In what follows we analyze the value of government spending multipliers in the

learning equilibrium. We initially assume that agents think that when the ZLB

episode is over, the economy reverts to the high inflation SS. Later we assess the

robustness of our results to this assumption.

We imagine that the economy begins in the high inflation steady. At time 0,

p∗−1 = 1, r falls to r` and obeys the law of motion above. Agents initially believe that

equilibrium functions correspond their rational expectations, where agents thought

rt would be r forever. Firms’and households beliefs about equilibrium functions

evolve according to (4.1) and (4.2).

Figure 5.1 displays the paths of consumption, inflation, and the government

spending multiplier in the learning equilibrium (the blue lines), as well as the high-
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Figure 5.1: Learning Equilibrium, Starting from Steady State
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Figure 5.2: Learning Equilibrium, Starting Near Low-Inflation RE ZLB Equilibrium
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inflation RE ZLB paths (the green lines). The paths for inflation and consumption

are computed holding government consumption at its steady state value (0.20). No-

tice that consumption and inflation converge to high inflation RE ZLB equilibrium

from above. The reason that they initially take on higher values is that expectations

about higher future inflation and consumption spur demand in the present. As expec-

tations adjust downward with realized inflation and consumption, they push inflation

and consumption down further. The multiplier starts out low because the ZLB is not

binding in the first few periods. Once the ZLB starts to bind, the multiplier quickly

rises above 1.

An alternative experiment is to imagine that after the shock to rt, firms and
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household have beliefs near the low-inflation RE ZLB equilibrium. Figure 5.2 dis-

plays the paths of consumption, inflation, and the government spending multiplier in

the learning equilibrium (the blue lines), as well as the high-inflation RE ZLB paths

(the green lines). As before, the paths for inflation and consumption are computed

holding government consumption at its steady state value (0.20). Notice that con-

sumption and inflation converge to high inflation RE ZLB equilibrium from below.

The reason that they initially take on lower values is that expectations about low

future inflation and consumption depress demand in the present. The multiplier

starts out around 1 and then rises after that. The reason the multiplier rises is that

the fiscal expansion helps quickly move expectations toward the high-inflation RE

ZLB equilibrium expectations. Without the change in government spending, expec-

tations remain close to the low-inflation RE ZLB equilibrium for some time. Notably,

the multiplier continues to rise for some time. After many periods, the multiplier

eventually approaches the high-inflation RE ZLB steady-state equilibrium value.

5.2. Sensitivity Analysis

Of course, the learning setup that we have specified implies that while rt = r`

households and firms learn about the mapping from p∗t−1 to equilibrium prices and

quantities. This ascribes to them a large amount of sophistication. Perhaps it is more

reasonable to assume that households and firms expect that tomorrow’s inflation rate

and consumption will be equal to the observed value today, so long as rt remains

low. In this simple learning equilibrium setup, households and firms ignore the state

variable p∗t−1 while rt = r` and form expectations is a way that is consistent with

rational expectations only at the steady state RE ZLB equilibrium point.

In the previous section we assumed that agents update their beliefs about equilib-
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rium functions. Here, we assess the robustness of our results to assuming that agents

update about their beliefs about the values of variables that they must forecast. In

particular we assume that firms’beliefs evolve according to the constant-gain-rule

Zf,`
t+j|t = ωZt−1 + (1− ω)Zf,`

t|t−1 for all j ≥ 0. (5.1)

Here Zf,`
t+j|t denotes the expectations that the firm has about the values at time t+ j

of consumption and inflation based on their time t information set. The superscript

` denotes that agents are forecasting the value of variables in the ZLB. In the special

case of ω = 1, firms just assume that variables are martingales. This assumption is

correct in the rational expectations steady state ZLB equilibrium.

We assume that household expectations about the time t + j value of inflation

evolves according to

πh,lt+j|t = ωπt + (1− ω)πh,lt|t−1 for all j ≥ 1. (5.2)

Analogous to Figure 5.1, in Figure 5.3 we assume that households and firms think

that consumption and inflation will remain at their steady state values in the period

that rt falls to r`. The blue lines plot the learning equilibrium holding g at its steady

state value and the green dashed lines plot the learning equilibrium with g equal

to 1.05 times its steady state value. Even under our simple learning setup that

ignores the state variable p∗t−1, consumption and inflation quickly approach their

high-inflation steady state RE ZLB values. Moreover, the multiplier rises above 1

as soon as the ZLB begins to bind and then approaches the steady state RE ZLB

equilibrium value.

Analogous to Figure 5.2, in Figure 5.4 we assume that households and firms think
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Figure 5.3: Simple Learning Equilibrium, Starting With Expectations at SS
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Figure 5.4: Simple Learning Equilibrium, Starting With Expectations near Low
Inflation SS RE ZLB
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that consumption and inflation will be near the low-inflation steady state RE ZLB

equilibrium in the period that rt falls to r`. As in the previous figure, the blue lines

plot the learning equilibrium holding g at its steady state value and the green dashed

lines plot the learning equilibrium with g equal to 1.05 times its steady state value.

Again, consumption and inflation approach their high-inflation steady state RE ZLB

values. Moreover, the multiplier begins above 1 and rises for some time thereafter

before approaching the steady state RE ZLB equilibrium value from above.

In both experiments, ignoring the state variable causes the speed of convergence to

the high-inflation RE ZLB equilibrium to increase dramatically. The robust predic-

tion from our learning experiments is that while rt = r`, the paths for consumption
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and inflation converge to the high-inflation steady state ZLB REE value, and the

multiplier is large along this path, so long as they do not start too far away. We

have never found paths that converge to the low-inflation steady state ZLB REE.

Finally, in the appendix we show that none of our results regarding stability are

affected if we have households and firms learn as in Evans and Honkapohja (2001)

or which values of ω > 0 that we use. What is affected is the speed of converge

to a stable equilibrium and speed of divergence from an unstable equilibrium. In

sum, our sensitivity analysis corroborates our basic finding that the high-inflation

ZLB REE is stable under learning. The analog low-inflation equilibrium is not and

is therefore not empirically interesting.

5.3. Reconciling with Mertens and Ravn (2015)

Mertens and Ravn (2015) report that the fiscal multiplier is small when they analyze

a learning equilibrium near the low inflation steady state RE ZLB equilibrium. This

result contrasts sharply with our result that the multiplier is very large when start

near the same ZLB equilibrium. There are four differences our analysis and theirs’.

First, they work with a linearized Calvo model when they study the learning equi-

librium. Second, they assume that firms who choose prices at time t, see the time

t aggregate price level when they choose prices. Third, Mertens and Ravn suppose

that households and firms learn as in Evans and Honkapohja (2001). In contrast

we suppose that households believe that the function mapping the state p∗t−1 to the

household consumption decision is the same in the subsequent period. Fourth, the

experiment that underlies their multiplier calculation is subtly but very significantly

than ours. When we calculate the multiplier we initially consider an economy in

which agents initial expectations about inflation differ by επ from the low inflation
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steady state ZLB REE. We then consider a separate economy with shocks that set r

to r` and a shock to G. Expectations start in the same place for the two economies.

We then use the difference in output between the two economies to calculate the

multiplier. Mertens and Ravn (2015) proceed in the same way with one crucial dif-

ference that is best explained as follows. When G increases, the rate of inflation in

the ZLB REE falls by ε′π. When the Mertens and Ravn raise G in the learning equi-

librium, they also decrease agents’expectations about inflation by ε′π. Notice that as

discussed above, in and of itself this fall in inflation reduces output in the ZLB.

In the Appendix we show that first three differences between our analysis and

Mertens and Ravn (2015) do not play a large role in the fully non-linear Calvo

model with our benchmark learning scheme.12 In contrast the fourth difference is

very important. Figure 5.5 displays what the multiplier as a function of time if we

adopt the assumption of Mertens and Ravn (2015) about how expectations about

inflation change when G increases. Notice that we obtain a negative multiplier that

persists for roughly 10 years. This results reflects that, in this example, the change

in expectations is quantitatively much more important than the increase in G. Our

own view is that their experiment confounds two shocks in the learning equilibrium.

6. The Rotemberg Model

A number of authors have studied the behavior of the economy in the ZLB inter-

preting the price frictions in the EW analysis as stemming from adjustment costs

as proposed by Rotemberg (1982). A prominent example in this literature is Braun,

Boneva and Waki (2015) who study the accuracy of linear approximations to the

12With the simple learning scheme, adopting Mertens and Ravn assumption about households
(the third difference) results in a slower rate of convergence to the high inflation steady state ZLB
equilibrium.
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Figure 5.5: Multiplier with Shock to Expectations
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model.13 This interpretation of the Calvo model is interesting because it implies

the same linearized equations that EW study. An alternative approach which also

implies the linearized equations studied by EW is based on the price setting fric-

tions proposed by Calvo. The advantage of adopting Rotemberg adjustment costs

here is analytic simplicity. The Calvo approach injects an endogenous state variable

(past price dispersion), while there is no endogenous state variable in the Rotemberg

approach. In this section we highlight an important potential shortcoming of using

Rotemberg adjustment costs when studying multiplicity and learnability issues.

With once exception, the Rotemberg model is identical to the Calvo model dis-

cussed above. The exception is that instead of (3.6) - (3.7) we assume that the

monopolist who produces the jth good has the following objective:

Et

∞∑
k=0

βkλt+k[(1 + ν)
Pj,t+k
Pt+k

Yj,t+k − st+kYj,t+k − Φt+k

(
Pj,t+k
Pj,t+k−1

− 1

)2
]. (6.1)

The variable Φt denotes a potentially state dependent function that scales the firm’s

costs of adjusting prices. In the classic Rotemberg model,

Φt = φ (6.2)

To accommodate growth, Christiano and Eichenbaum (2012) assume

Φt =
φ

2
(Ct +Gt). (6.3)

In contrast, authors like Braun et. al. (2015) and Gust, Herbst, Lopez-Salido and

13Braun, Boneva, and Waki (2015) paper was first written in 2012. As best as we can tell, it
is the first paper to analyze the accuracy of the linearized EW model of the ZLB relative to the
underlying nonlinear model.
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Smith (2015), assume

Φt =
φ

2
Yt. (6.4)

As it turns out, existence and learnability of equilibria in the Rotemberg model

depend on exactly which specification of Φt one adopt.

In the Appendix we show that an interior minimum state variable equilibrium

for all three versions of the Rotemberg model is a set of eight numbers:

π,C,R, h, π`, C`, R`, h`,

that, when rt = r`, satisfy:

R` = max

{
1,

1

β
+ α (π` − 1)

}
(6.5)

1

R`

=
1

1 + r`

[
p
C`
π`C`

+ (1− p) C`
πC

]
(6.6)

h` = C` +G` + Φ` (π` − 1)2 (6.7)

(π` − 1) π` =
1

2Φ`

ε (χh`C` − 1)
[
C` +G` + Φ` (π` − 1)2

]
(6.8)

+
1

1 + r`

[
p (π` − 1)π` + (1− p) (π − 1)π

C`
C

Φ

Φ`

]

Subscript ` denotes the value of a variable when rt = r` and no subscript denotes

the value of a variable after rt = r.

A key difference between this model and the Calvo is the absence of any state

variable in the ZLB. We solve these equations as follows. Conjecture a value for

π`. Use (6.5) to solve for R`. Since we know the values of all variables outside the

ZLB (variables with no subscript), we use (6.6) to determine C`. Equation (6.7) the
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Figure 6.1: f(π`) in Rotemberg Model
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determines h`. We then check whether (6.8) holds. If it does, we have a ZLB REE.

If not we choose a different value for π`.

The equations defining a RE equilibrium collapse into one equation in one un-

known, π`,

f(π`) = 0. (6.9)

This equation is analogous (3.12) in the Calvo model. The key difference is that the

latter is an equation that determines the steady state ZLB REE. Since there is no

state variable in the Rotemberg model, (6.9) determines the ZLB equilibrium values

so long as rt = r`.

The two panels of Figure 6.1 plot f(π`) for Φt given by (6.2) and (6.3). In all cases

we use the benchmark parameters given in (3.13). The parameter φ is chosen so that

the log-linearized implies the same system of equations implied by the log-linearized

Calvo mode, respectively.14 The domain of admissible values of π` is restricted by

14Given our normalization that steady state output is one, this requirement implies that φ satisfies
(ε− 1)φ = (1−θ)(1−βθ)

θ .
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Figure 6.2: f(π`) in Rotemberg Model
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the conditions that C` > 0 and Y` > 0. In the Appendix we detail the different

domains for the different specifications of Φt.

Two features of the figures are worth noting. First, the plots of f(π`) are very

similar when Φt is given by (6.2) or (6.3). Second, there are two ZLB equilibria, both

of which feature deflation. Note that the curve looks very similar to the analogous

curve that determines the two steady state ZLB REE in the non-linear Calvo model.

The two panels of Figure 6.2 display, for different parameter values, f(π`) for Φt

given by (6.4). The first panel pertains to our benchmark values. Notice that the plot

of f(π`) looks very different than the cases when Φt is given by (6.2) or (6.3). There

is in fact a unique ZLB equilibrium which has an extremely similar level of inflation

to the relatively low deflation ZLB equilibria displayed in Figure 6.1. Interestingly

there is also a unique non-ZLB equilibrium when rt = r` that is associated with a

substantial amount of inflation.

The second of Figure 6.2 is the analog to the first except that we consider different
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values of the model’s parameters:

ε = 7.0, β = 0.99, α = 2.0, p = 0.83,

r` = −0.0001, φ = 200, ηg = 0.2, g` = 0.23

Strikingly there are now two ZLB equilibria and two non-ZLB equilibria when

rt = r`. This example is consistent with results in Braun et. al. (2015). A striking

feature of both panels in Figure 6.2 is that f(π`) has two asymptotes, at quarterly

rates of deflation and inflation of 10%. At these rates of inflation, the costs of

adjustment consume all of output so that consumption can no longer be non-negative.

It is easy to characterize which ZLB equilibria are stable under learning for the

Rotemberg model. Going from left to right in the plots, whenever f(π`) crosses from

above, the equilibrium is stable under learning. From figure 6.1, when Φt is given

by (6.2) or (6.3) there is a unique equilibrium that’s is stable under learning. That

equilibrium is the one with less deflation. When Φt is given by (6.4) and we work with

the benchmark parameter values there is only one ZLB equilibrium. Notably, the

non-ZLB equilibrium is not stable when adjustment costs are given by (6.4). Even

with two ZLB equilibria, as in the second panel of 6.2, there is only one that’s stable

under learning. Interestingly, that equilibrium is the one that has more deflation.

However, we are unable to find any similar situation when adjustment costs are scaled

by (6.2) or (6.3), or in the Calvo model.

Unlike the Calvo model, the multiplier in the ZLB for the Rotemberg model

is constant. Table 6.1 summarizes the values of the multiplier for the equilibria

in Figures 6.1 and 6.2 that are stable. The multipliers in the stable equilibria are

remarkably similar and to the multiplier in the linear Calvo model (1.63). Recall

that the impact value of the ZLB multiplier in the unique learnable non linear Calvo

54



Table 6.1: Multipliers in the Rotemberg Model

Adj. Cost Stable Equilibrium Unstable Equilibrium
Φt = φ

2
1.56 0.98

Φt = φ
2

(Ct +Gt) 1.70 0.36
Φt = φ

2
Yt 1.65 1.07

model was 2.24. Viewed our results strongly support the view that once we focus on

learnable equilibria, the implications of the NK model for multipliers in the ZLB are

very robust: the multiplier is large and increasing the more binding is the ZLB.

When adjustment costs are scaled by (6.2) or (6.3), we are able to find sunspot

equilibria similar to the equilibria studied by Mertens and Ravn (2015). However,

when adjustment costs are scaled by (6.4), there is no such ZLB equilibrium under our

baseline parameterization. Instead, the sunspot equilibrium exhibits high inflation.

Again, we find that the sunspot equilibrium is not stable under learning.

Overall, we conclude that the scaling term of price-adjustment costs in the Rotem-

berg model can have a large effect on the properties of the equilibria that we find that

are not stable under learning. This is true even though the models have identical

linearizations. If adjustment costs are scaled by (6.2) or (6.3), then the equilibria

we studied in the Calvo model also exist in the Rotemberg model, and they have

similar properties. Under our baseline parameterization, for all of the specifications

of adjustment costs that we consider in the Rotemberg model, there always exists an

equilibrium that has properties similar to the equilibrium in the Calvo model that is

stable under learning.
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7. Conclusion

In this paper we analyze whether the non-uniqueness of equilibria in NKmodels poses

a substantive challenge to the key conclusions in the literature about the effi cacy of

fiscal policy in ZLB episodes. We argue that it does not. This conclusion rests on our

view that if an REE is not stable-under learning, then it is simply too fragile to be

taken seriously as a description of the data. We make our argument using particular

models of learning. While we have explored alternative learning mechanisms, it is

certainly possible that there exist alternative learning models for which our results

do not go through. Still we believe our results are very supportive of the view

that the key properties of linearized NK models regarding the impact of changes in

government consumption in the ZLB are robust and should be taken seriously.
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