
The Hidden Side of Dynamic Pricing:
Evidence from the Airline Market∗

Marco Alderighi
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1 Introduction

The definition of dynamic pricing (DP) in airline markets, both in the academic literature

and in the press, has been so far intrinsically related to the description of how fares on sale

evolve over time (McAfee and te Velde, 2007). Very little attention has been paid to how

DP is connected to the peculiar features of a carrier’s Revenue Management (RM) system

(McGill and Van Ryzin, 1999; Talluri and van Ryzin, 2004). In this article we show that

once this connection is made, the extant definition of DP in the literature is either lacking,

to the extent that it fails to consider cases of DP not involving an observable price variation,

or misleading, because it allows for instances of price variation inconsistent with DP.

More precisely, we argue that, to capture how DP operates, it is first essential to under-

stand a fundamental principle driving airlines’ price setting behaviour. We propose a novel

empirical approach based on the theoretical work by Dana (1999) and Gallego and van Ryzin

(1994), where we abandon the focus on a single fare so far used in the literature and replace

it with the analysis of a fare distribution. Loosely speaking, focussing on a fare distribution

implies that, during the booking period, the airline does not limit itself to define only the

fare of the seat on sale, but also of all the remaining seats on the flight. We document that

this corresponds indeed to the practice of many airlines, which, on their computer reservation

systems, post fares for all the seats available on a flight.

This study is the first in the literature to show how fare distributions are shaped in

practice. In all the 43,275 flights in our sample, they are found to be stepwise increasing: the

airline arranges seats into groups, denoted as ‘buckets’, each defined by an increasing price

tag and a variable number of seats. Through the characterization of such distributions at

a flight’s level, we can extend and better define DP in airline markets. Our assessment of

what constitutes DP is different from the one used so far in the literature. For instance, we

do not classify fare increases over time as DP when such increases arise from a movement

along the distribution; i.e., when a bucket is sold out, automatically the seats allocated to

the next higher bucket are put on sale, without causing any modification in the distribution.

Instead, we consider as an instance of DP only a situation involving an identifiable change

in the fare distribution; e.g., at least one seat’s fare is increased or decreased (i.e., the seat is

moved to a higher or lower bucket). None of these forms of DP in airline markets has been

previously considered in the literature. Thus, we can also gauge how frequently distributions

vary, finding that, on average, they remain unchanged for about 2-3 consecutive days.

In addition to showing that the use of a fare distribution is consistent with an airline’s

optimizing behavior, through our theoretical model we can tease out the role of two antag-

onistic effects, which are at work simultaneously to determine the fares of every seat. First,
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airlines sell a limited number of seats. Thus, fares should increase as the number of seats

reduces, that is, as scarcity increases (“capacity effect”) (Puller et al., 2009; Talluri and van

Ryzin, 2004). Second, airlines sell a highly perishable service. As pointed out by McAfee and

te Velde (2007) and Sweeting (2012), fares should decrease as the departure date approaches,

because so does the option value of a seat, i.e., the expected value of having an additional seat

in a period (“temporal effect”). Overall, the model extends the theoretical results in Dana

(1999), by allowing for the carrier’s possibility to modify its fare distribution in different, but

discrete, time intervals.

In an extension to the theoretical model, we investigate the role of a price discriminatory

motive as a counter-force to the temporal effect. Assuming that the proportion of consumers

with a higher willingness to pay (e.g., business-people) increases during the last few periods

prior to departure, our simulations indicate that the presence of a more heterogeneous cus-

tomer basis has a dampening impact on the intensity of the temporal effect. Thus, a stronger

incentive to pursue an inter-temporal price discrimination strategy operates across periods

by either slowing down the shift of seats from upper (higher-priced) to lower buckets, or by

moving seats from a lower to an upper bucket.

The econometric analysis gauges the impact on the shape of fare distributions induced by

both the capacity and the temporal effect, and the time-varying distribution of willingness to

pay (WTP). We find that the capacity effect plays a significant role in driving fares upwards:

on average, the sale of an extra seat (i.e., a move to the right in the fare distribution) is

accompanied by a fare increase of about 1.6-2.0 percent depending on specifications - see also

Alderighi et al. (2015) for the case of Ryanair. Furthermore, unlike McAfee and te Velde

(2007), the analysis provides strong empirical support in favor of the theoretical models,

including ours, predicting a declining temporal effect. Although a similar finding has been

shown in Sweeting (2012) for the second-hand market price of a single baseball ticket, the

focus on a fare distribution reveals that the temporal effect is a force that effectively pushes

downward all the seats in the distribution.

In sum, the analysis posits the central role of the fare distribution as the starting point

to investigate the presence of DP in airline markets and how it manifests itself in “hidden”

forms involving seats not directly on sale. It also emphasizes the intertwined relationship

involving a “standard” pricing approach in the industry, DP and price discrimination, to

suggest that the latter cannot be simply inferred by an inter-temporal price profile that is

increasing over time, due to the strong confounding impact of the capacity effect (Stavins,

2001). More generally, the study highlights the impact of both the capacity and the temporal

effect as fundamental drivers of airlines’ pricing behaviour.

The rest of the paper is structured as follows. The next section revises the main contri-
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butions of both theoretical and empirical literature. The collection of fare data is described

in Section 3, followed by real-world examples of fare distributions. The theoretical model in

Section 5 generalises the capacity and temporal effects, and highlights the moderating role

of inter-temporal price discrimination on the latter effect. Section 6 develops a descriptive

analysis on how distributions and dynamic pricing are related to the capacity and tempo-

ral effects. The econometric investigation testing the properties of the theoretical model’s

equilibrium solution is carried out in Section 7. Finally, Section 8 summarizes and concludes.

2 Literature review

In the economics literature, DP is associated to a price change that is directly linked to at

least one intervening factor or event that induces a revision of the pricing approach followed

by the firm. For instance, the decreasing prices of Major League Baseball tickets in secondary

markets in Sweeting (2012) constitute a clear indication of an active DP intervention by sellers

in the form of the decision to relist the ticket at a lower price.

In airline markets, the way fares are set plays a central role in any empirical analysis aimed

at defining and identifying DP; Borenstein and Rose (1994) distinguish between systematic

and stochastic peak-load pricing as sources of fare dispersion in the U.S. market. In the

former, the fare variation is based on foreseeable and anticipated changes in shadow costs

known before a flight is opened for booking, whereas the latter reflects a change during the

selling season in the probability that demand for a flight exceeds capacity. More importantly,

the systematic and stochastic peak-load pricing in Borenstein and Rose (1994) can be related

to carriers’ RM activity, intended broadly as a process of i) setting ticket classes, i.e., fare

levels and associated restrictions (refundability, advance purchase, business vs. economy,

etc.) and ii) defining the number of seats available at each fare (McGill and Van Ryzin,

1999; Talluri and van Ryzin, 2004).1 RM thus encompasses both a systematic and a dynamic

pricing component, where the former can be seen as the outcome of the process just before a

flight enters its booking period, and the latter represents subsequent changes over time to the

initial composition of ticket classes both in terms of fare levels and number of seats in each

class. In this sense, DP and stochastic peak-load pricing may be considered as synonymous.

As far as the systematic approach is concerned, Dana (1999) illustrates how, in a theo-

retical model with demand uncertainty and costly capacity, it is optimal for firms to commit

to an increasing fare distribution, where each fare reflects the fact that the shadow cost of

capacity is inversely related with a seat’s probability to be sold. Puller et al. (2009) refer to

this as “scarcity-based” pricing. The main ensuing testable prediction from Dana’s model

1RM involves a number of ancillary activities and techniques useful in the process.
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is that the fare charged should reflect the ranked position of the seat on sale in the fare

distribution. To implement such a test, it is therefore necessary to know a flight’s load factor

at the time a fare is either posted online or a ticket is sold. This issue has been empirically

tackled either by the use of web crawling methods (Alderighi et al., 2015), or of seat maps

posted by online travel agents (Clark and Vincent, 2012; Escobari, 2012; Williams, 2017).

All these works provide evidence in support to the hypothesis of fares increasing as a flight

fills up. Interestingly, Alderighi et al. (2015) derive their results by using two fares, the seat

on sale and the last seat in the distribution; their approach is further extended in the present

work, where we model the fare for all the seats in the fare distribution.

Because in Dana (1999) firms cannot change the initial distribution they set, the model

cannot provide any theoretical prediction on how firms would modify the fare distribution

over time. That is, would all fares start low and then increase or start high and then

decrease? The question of the optimal temporal profile of fares is generally addressed in the

operational research literature surveyed in Talluri and van Ryzin (2004) and in McAfee and

te Velde (2007). A drawback in this literature is that, unlike Dana (1999), either fares or

seat inventory levels are treated as exogenous. In fare-setting models the focus is on the

opportunity cost of selling one unit of capacity, i.e., the expected value of holding the unit

in the next period. As shown in Sweeting (2012), under standard conditions common to

most models, the opportunity cost not to sell a ticket is expected to fall over time, leading

to a similar prediction for fares. However, because such a prediction arises from models

that treat seat inventory as exogenous, it is not possible to extend it directly to the case

where the airlines adopt a pricing system based on the definition of a fare distribution over

capacity units. In this article’s theoretical model, we show that if airlines can revise the

fare distribution more than once, then under standard assumptions of demand, customers’

evaluations and arrival rates being constant over time, the fares of all the seats are expected

to decline over time (temporal effect).

Various reasons explain why fares could increase over time. First, offering advance-

purchase discounts can be an optimal strategy when both individual and/or aggregate de-

mand is uncertain (i.e., individuals learn their need to travel at different points in time and

airlines cannot predict which flight will enjoy peak demand), and consumers have heteroge-

nous valuations (e.g., they either incur different “waiting costs” if they take a flight that does

not leave at their ideal time or they simply value the flight differently).2 Second, the RM

models that predict a declining option value assume a constant distribution of WTP, and

therefore do not account for the fact that business travelers tend to book at a later stage

2See Gale and Holmes (1993), Dana (1998) and Möller and Watanabe (2010).
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(Alderighi et al., 2016). Third, those models assume an exogenous demand process and thus

abstract from the presence of strategic buyers, i.e., those who maximize long-run utility by

considering whether to postpone their purchases hoping to obtain a lower fare. In a model

characterized by uncertainty, advance production and inter-temporal substitutability in de-

mand induced by strategic behavior, Deneckere and Peck (2012) predict that the prices set

by competitive firms are martingales, i.e., they do not follow a predictable pattern. An often

observed approach to discourage strategic waiting is to commit to a nondecreasing price tem-

poral path (Li et al., 2014). The present work finds a positive, but somewhat limited, impact

of fare hikes introduced a few days before departure; instead, it makes the novel point that

the capacity effect is the driving force pushing the fare of the seat on sale upward, although

with occasional markdowns consistent with the prediction in Deneckere and Peck (2012).

More generally, this is the first article to analyse and model simultaneously the joint im-

pact of the capacity and the temporal effect together with the mediating role on the latter by

the inter-temporal price discriminatory motive. Pang et al. (2015) also consider both effects

in a model that predicts bid prices to be first increasing and then decreasing, once a certain

level of capacity is reached. They do not allow for customer heterogeneity and, hence, for a

possible discriminatory motive. Furthermore, they do not put their theoretical prediction to

an empirical test. Williams (2017, p.36) develops an empirical structural model based on the

assumption that DP is generated by two broad rationales: segmentation of consumers (i.e.,

intertemporal price discrimination) and changes in scarcity. That is, the temporal effect, and

its interplay with price discrimination, is not considered, despite the relevance it has received

in the literature (McAfee and te Velde, 2007). There are many methodological differences

between William’s approach and the one we develop in this article. His theoretical model

disregards the crucial practical and institutional role of fare distributions, by assuming an

airline that offers a single price to all customers (Williams, 2017, p.13). In addition, his

analysis focuses entirely on the monopoly case, and does not extend to consider other mar-

ket structures. Furthermore, unlike the present study where the information on capacity

and fares is retrieved simultaneously from the airline’s website, Williams (2017) merges data

from an aggregator travel agent, Kayak, for the fares and an industry consultancy site for

sales (expertflyer.com), thus raising two types of concerns: one, there may be a temporal

mismatch between the fares posted on the travel agent and on the airlines’ website; two, for

each single flight and point in time, the number of available seats reported on a seat map

may again be outdated or imprecisely measured.3

3The controls discussed in William’s article refer to values aggregated on a monthly basis, a procedure
that does not correct for possible measurement imprecisions arising at a single daily flight’s level.
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3 Data

The data collection employed a web crawler, as widely used in the literature.4 Every day, the

crawler automatically connected to the website of easyJet, the second largest European LCC,

and issued queries specifying the route, the date of departure and the number of seats to be

booked. Because European LCCs charge each leg independently and there is no pricing-in-

network considerations to account for, to double the data size, the query was for a return

flight, with a return date 4 days after the first leg; fares are all denoted in British Pounds as

the first leg originated in a British airport (Gaggero and Piga, 2011).5

For each departure date, the data collection started about four months in advance; it was

then repeated at 10-days intervals until 30 days before departure, and subsequently at more

frequent intervals (21, 14, 10, 7, 4 and 1) to get a better understanding of the price evolution

as the date of departure nears. In total, we surveyed 43,275 daily flights scheduled to depart

during the period May 2014 - June 2015, covering 67 European bi-directional routes. The

website’s response to the query included, for each leg, flight information for three different

dates: the set date, the day before and after. Overall, each query allowed the saving of three

consecutive days’ information for each leg. For each flight, the crawler saved the dates of

departure and of the query (to calculate the number of days separating the query date from

take-off), the time of the day the flight was due to depart and arrive, the departure and arrival

airports (the route), the price for the number of seats specified in the query. The crawler

also saved an important information published by the carrier: the number of seats available

at a given posted fare. This is central for the validation of the data treatment implemented

to derive the price distributions from the posted fares, as illustrated in the Appendix.6

To the best of our knowledge, the empirical literature on airline pricing focuses on the fare

of one seat, namely, the seat being on sale at the time of the query. A central contribution of

this article is to show that this is not sufficient to test the implications of theoretical models

4For the airline market, see Li et al. (2014), Gaggero and Piga (2011), Clark and Vincent (2012), Ober-
meyer et al. (2013), Escobari (2012), Bilotkach et al. (2015), Alderighi et al. (2015) and Alderighi et al.
(2016), amongst others. Cavallo (2017) compares online and offline prices in multi-channel retailers, whereas
Cavallo et al. (2014) use online prices posted by international retailers to investigate deviations from the Law
of One Price across countries with different currency regimes.

5As in the case of Ryanair in Alderighi et al. (2015), easyJet offers seats where the buyer’s name and dates
can be changed only by paying a fixed fee which is often as high as the fare itself. The carrier also offers
a “Flexi” fare, corresponding to the basic fare we retrieve plus a set of add-ons (extra luggage, cancelation
refunds etc), which however can also be bought independently.

6The possibility that posted fares could be affected by the number of queries executed was managed as
follows. First, the cookie folder was cleaned every day; second, we checked a sample of fares retrieved by the
computers in our university office with queries made on the same day from computers outside that university.
No noticeable differences between the queries made from different computers could be found, consistent with
the case in Cavallo (2017) where web scraping does not generate dynamic pricing.
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of DP in airline markets. Based on the model presented in Section 5, our data collection

incorporates an experimental design explicitly aimed at recovering a flight’s fare distribution,

as it is actually stored on the carriers’ web reservation system. In practice, this entailed the

implementation of the following procedure. For each flight and departure date, the crawler

started by requesting the price of one seat, and then continued by sequentially increasing the

number of seats by one unit. The sequence would stop either because the maximum number

of seats in a query, equal to 40, was reached or at a smaller number of seats. As in Alderighi

et al. (2015), the latter case directly indicates the exact number of seats available on the

flight on a particular query date, which we store in a variable called Available Seats to track

how a flight occupancy changes as the departure date nears. The former case corresponds

to a situation where we know that at least 40 seats still remain to be sold on a given query

date; i.e., Available Seats is censored at 40.

After applying the treatment described in the Appendix A.1 to the retrieved fares, we

obtained the flights’ distribution of posted fares over the available seats on a query date. An

example of such distributions is shown in Figure 1, which is based on the data of a randomly

selected flight.

4 Properties of fare distributions

Figure 1, which includes a flight’s fare distributions retrieved 30, 10, 6 and 4 days to departure,

is central for the whole analysis. Each graph, where a dot denotes a seat, shows that the

fare sequence includes a series of ‘buckets of seats’ – that is, groups of seats that have

the same price tag. The size of each bucket varies, and in all the panels, the seat on sale

corresponds to the one positioned at the extreme left. Considering that such distributions

are found for all the flights in our sample in all booking periods, the Figure indicates that

a fundamental aspect of Revenue Management consists in the definition of a (possibly non-

strictly) monotonically increasing sequence that assigns a fare, starting from the cheapest and

ending with the dearest, to each seat on a plane; in Section 5, we show that such distributions

are consistent with the results of a revenue optimization problem.

In the top panels of Figure 1, the number of available seats is censored to 40; i.e, the graphs

do not show the extreme right tail of the price distribution, which is instead represented in

the two bottom panels, where, on the left, 30 seats remain to be sold, reducing to 25 four

days before departure (right lower panel). Interestingly, the same bucket fares, ranging from

£156 down to £65, are repeatedly found over the booking temporal horizon, thus suggesting

that they tend to be used throughout most of the booking period and that new buckets may

be only occasionally created during the selling period.

7



Figure 1: Fare distribution at various days to departure

Legenda - Flight EZY5293 from London Gatwick (13.05) to Milan Malpensa (16.00) on 19 May 2014

A visual inspection is sufficient to establish some interesting features of the distributions

and their evolution over time. Thirty days to departure, the carrier had allocated four seats

for sale at the price of £65, three seats at the price of £75, and so on and so forth. Due to

the data censoring, we cannot ascertain the precise size of the last observed “bucket” valued

at £156. Twenty days later, the first bucket includes only one seat; the size of the buckets

£75-£117 has increased to four seats, and the size of the £156’s top observed bucket is still

unmeasurable due to censoring. Six days prior to departure, there is no censoring and we

can precisely gauge the number of available seats on the flight, as well as uniquely identify

the position of each seat, and its corresponding fare.7 Noticeably, the size of the top bucket

(£156) includes thirteen seats, whereas the other buckets have maintained the size they had

four days before. Two days later, five seats have been sold, and the size of the top bucket

has further shrunk because some of its seats were moved down to increase the size of most

7To guarantee that the positions in the Figure are time-invariant, because seats are sold over time, they
need to be counted from right to left; we follow this procedure throughout the article, in both the theoretical
and empirical part.
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intermediate buckets.

4.1 Connecting fare distributions to dynamic pricing

The focus on a fare distribution implies that dynamic pricing should not be defined exclusively

in terms of the evolution of the fare of the seat on sale, but by considering how all the fares

in the distribution evolve. We argue that dynamic pricing corresponds to a modification of

the distribution structure as revealed by a reallocation of seats to a higher or lower bucket,

and that some instances of price increases may not be dynamic in nature, in the sense that

they may not reflect the airline’s revision of the underlying distribution’s structure.

More importantly, we can explain how the “capacity” and “temporal” effects discussed

in the Introduction (and further theoretically developed in Section 5) are responsible for the

evolution of not only the price of the first seat on sale, but also of all the seats available on

a plane. To illustrate both, we refer again to the bottom panels of Figure 1.

The “capacity” effect implies that the fare goes up as the plane fills up. Four days to de-

parture, the number of available seats dropped to 25, that is, the seats denoted with numbers

30 to 26 in the right bottom panel were sold, each at the fare indicated by their bucket. Thus,

the offered fare increased from £75 to £87 simply by following the predetermined sequence,

and in this sense, we do not count this as an example of dynamic pricing because the bucket

allocation of the sold seats did not change over time.

The “temporal” effect is related to the perishable nature of the airline service, which

implies that the airline faces a strong incentive to reduce fares in the attempt to minimise

the number of empty seats at take-off. It may engender hidden forms of dynamic pricing,

leading to dynamic pricing taking place even if online customers cannot observe any change

in the offered fare. This happens when the carrier shifts some seats from higher to lower-

priced buckets, or viceversa, thus generating a modification of the fare sequence that is not

associated with a change in the offered fare. Between six and four days to departure, the seats

labelled 24 to 6 were moved to a lower bucket, relative to their previous bucket position. As

a result, the £87 bucket ended up containing 5 seats, whereas it only had 4 two days before.

The £101 and £117 buckets also increased in size, but the top bucket shrank to contain only

5 seats. Such variations are indeed forms of dynamic pricing. Interestingly, the replenishment

of the £87 bucket implies that the offered fare will remain at this level longer, thereby slowing

down the rate of increase of the offered fare due to the force illustrated in the first force.

Thus, contrary to the common belief that airlines rely on dynamic pricing to charge higher

fares, we highlight how dynamic pricing can achieve the opposite effect.

To strengthen the argument that easyJet’s pricing approach, exemplified by the distribu-
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tion in Figure 1, is largely adopted of the industry, in the next subsection we generalize the

analysis by presenting similar fare distributions derived from data collected from the websites

of another European and a U.S. Low-Cost carriers, and in the Appendix A.2 we discuss how

the present analysis also offers interesting insights into Full Service Carriers (FSCs) pricing.

Figure 2: Fare distribution at various days to departure (Ryanair)

Legenda - Flight FR 8547 from Berlin Schonefeld (21:55) to London Stansted (22:40) on 21 Oct 2011

4.2 Examples of fare distributions from other airlines

Figure 2 shows the striking resemblance between the fare distributions of easyJet and Ryanair,

the largest European LCC. The censoring point, which is caused by the limit on the maximum

number of seats in a query imposed by the website’s programming code, is in Ryanair’s case

set at 25 seats. Interestingly, five days to departure there are at least two, four and nine

seats in, respectively, the £143, £121 and £99 buckets. Two days later, the £143 bucket has

disappeared, only two seats are allocated to the £121 one, and the size of the £99 bucket

has increased to thirteen seats. Whereas the price of the seats allocated in higher buckets

has clearly fallen (temporal effect), the price of the seat on sale has increased from £84 to
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£99, consistent with the “capacity” effect according to which fares increase as the buckets

are sold out. That is, the main implications of this study could easily be extended to at least

another large player in the industry.8

Figure 3: Fare distribution at various days to departure (Southwest). ‘Wanna Get Away’
fares.

Upper Flight - Chicago MDW (6:00) to New York LGA (9:05) on 9 Nov 2012

Lower Flight - Chicago MDW (18:20) to Los Angeles on 21 Sept 2012

Southwest allows queries with a maximum number of seats restricted to eight and it is

therefore not possible to depict a fare distribution encompassing a number of buckets as high

8The original plan for this study was indeed to use data from both Ryanair and easyJet. However, the
adoption by the former of Captcha techniques made web crawling impossible. The limited amount of data
collected prior to this event, from which Figure 2 is derived, led us to the decision to focus on easyJet only.
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as in the case of easyJet and Ryanair. Nonetheless, the analysis of Figure 3 reveals striking

similarities between Southwest’s pricing approach and that of its European counterparts.9

On the one hand, when holding the query date fixed, for the majority of flights the eight

seats carry the same fare, as it is shown for instance in the first two top left vertical panels.

On the other, the data include several examples where the fare of the first eight seats exhibits

a jump upward from one bucket to the next, as in the vertical panels for the departure dates

14, 10 and 7 in the top part of the Figure, and in most of the panels in the bottom part. The

Figure, which features various instances of the temporal effect, thus suggests that Southwest

also organizes the fares on its reservation system making use of a flight’s fare distribution

where fares tend to follow the sequence defined by the buckets’ rank.

5 Theoretical set-up

In this Section we offer a stylized model of RM which translates some of the previously dis-

cussed key elements of RM practices into economic terms. First, carriers price in distribution,

that is, in each period they assign a fare to all the seats in a flight (Flig et al., 2010). This

is because in each period a carrier can sell more than one seat and possibly all the seats of

the flight. Second, carriers charge a very limited number of fares during the entire selling

period (Talluri and van Ryzin, 2004). Third, fare distributions remain fixed over discrete

time intervals of one or more days, that is, they are not instantaneously updated. Escobari

et al. (2016) report evidence suggesting full service airlines revise their prices overnight; in

our data, distributions stay unchanged for two-three days on average.

5.1 A stylized model of revenue management

A carrier operates a single flight with N > 1 seats on a monopolistic route.10 The flight

is sold over T ≥ 1 selling periods: t = T, T − 1, . . . , 2, 1 describes the number of periods

remaining before departure (t = 1 is the last selling period and t = T is the first one), and

t = 0 is the departure date. For each t, the carrier commits to a sequence of fares for all the

M ≤ N remaining seats of the flight. Thus, until seat m = M, . . . , 2, 1 has not been sold,

each traveler presenting in selling period t faces fare p (t,m). Within the selling period t,

once seat m has been sold, then the next fare on offer becomes p (t,m− 1). At the end of

the selling period t, the unsold seats are offered in the next period, t− 1, until t = 1. Seats

9The data were collected using the same web crawling technique and is part of work in progress.
10In our empirical analysis we show that the main implications of the model hold regardless of the actual

market structure.
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available at the end of the last selling period remain unsold.11

In each period t, consumers h = 1, 2, . . . ,∞ arrive sequentially. The probability that the

first consumer arrives in t is ϕ1,t ∈ (0, 1), and that consumer h + 1 arrives conditional on

the fact that consumer h has already appeared is ϕh+1,t ∈ (0, 1). Consumer (h, t) is myopic

and her willingness to pay is a random variable θh,t, with (right-continuous) cumulative

distribution Fh,t on the support Θ, with
¯
θ = inf Θ > 0 and θ̄ = sup Θ <∞.12

We assume that the arrival process is memoryless and consumers have the same ex-ante

evaluation; i.e., for any h and t, ϕh,t = ϕh+1,t = ϕ ∈ (0, 1); Fh,t = Fh+1,t = F . Thus, the

probability of selling the first available seat at the fare p is:

q (p) = ϕ (1− F (p))
∞∑
h=0

(ϕF (p))h =
ϕ (1− F (p))

1− ϕF (p)
∈ [0, 1] , (1)

where ϕ (1− F (p)) is the probability that consumer h arrives and buys at fare p provided

that consumers 1, . . . , h − 1 have previously refused to buy at the same fare; and (ϕF (p))h

is the probability that consumers from 1 to h arrived and did not buy.

The carrier’s maximization problem is denoted by the following Bellman equation:

V (t,M) = max
p∈Θ
{q (p) [p+ V (t,M − 1)] + (1− q (p))V (t− 1,M)} , (2)

with boundary conditions V (t, 0) = 0 and V (0,M) = 0, for any t ∈ {0, . . . , T} and M ∈
{0, . . . , N}. Unlike the existing literature, the novel approach in equation (2) assumes the

possibility that more than one seat can be sold within each t: this implies the need to set

always a (possibly different) fare for all the seats on an aircraft. Moreover, equation (2) entails

a trade-off between selling now at least one seat (gaining p and the revenue flow coming from

the remaining seats, V (t,M − 1)), and keeping the capacity intact and postpone the sale to

the next period, gaining V (t− 1,M).

Because problem (2) is solved recursively by starting from the last period, the optimal

fare of seat m ≤M in period t when there are M seats available, p̃(t,m,M), is independent

of the total number of available seats M in period t, i.e. p̃(t,m,M) = p̃(t,m,M + 1), for any

M = 1, . . . , N − 1 and t = 1, . . . , T . This property is a consequence of the assumption that

the arrival process is memoryless. Indeed, by having ϕ depending on the number of travellers

already arrived during the period would imply that the optimal fare is also affected by the

11The use of reverse indexes for both periods and seats simplifies the notation and the proofs. It also
establishes a direct link to the empirical part of the article, where the position of seats is counted by starting
from the last one.

12This guarantees the existence of a solution of the problem. Moreover, note that the random variable θh,t
can be one of continuous, discrete or mixed type.
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total number of available seats at the beginning of the period and, in general, p̃(t,m,M) is

not necessarily equal to p̃(t,m,M + 1). In what follows, we refer to the optimal fare of seat

m at time t as p∗(t,m) without indexing for the number of available seats because it plays

no role with current assumptions.

Definition 1 V (t,M) has decreasing returns in t and M , respectively, if and only if, for any

t and M :

V (t,M)− V (t− 1,M) ≤ V (t− 1,M)− V (t− 2,M)

V (t,M)− V (t,M − 1) ≤ V (t,M − 1)− V (t,M − 2) .

Definition 2 V (t,M) has increasing differences in (t,M) if and only if for any tH ≥ tL and

MH ≥ML, we have:

V (tH ,MH)− V (tH ,ML) ≥ V (tL,MH)− V (tL,ML) .

The following proposition characterizes the value function described in (2).

Proposition 1 The value function V (t,M) : {0, 1, .., T} × {0, 1, .., N} → R is non negative

and exhibits positive but decreasing returns in t and M , and increasing differences in (t,M).

Proposition 1 has important implications for our analysis. First, V (t,M) is increasing in

t and M , which is a standard results in the pricing literature (Gallego and van Ryzin, 1994;

McAfee and te Velde, 2007). Second, periods and seats are two resources, which generate

positive but decreasing value: the additional impact of one period (or one seat) is lower when

the number of periods (seats) increases. Third, increasing differences in (t,M) is a form of

complementarity. The larger the selling periods and the higher the return from an additional

seat, and vice versa. Note that complementarity is equivalent to stating that the option value

of any seat M in any period t, declines as the departure approaches:

V (t,M)− V (t,M − 1) ≥ V (t− 1,M)− V (t− 1,M − 1). (3)

From these properties we derive Corollary 1, which is essential for the characterization of

the optimal fare p∗(t,m).

Corollary 1 Let X (t,M) = V (t,M − 1)−V (t− 1,M) be the marginal value of substituting

a seat with a period, then, for any t and M :

X (t,M) ≤ X (t− 1,M) (4)

X (t,M) ≥ X (t,M − 1) (5)
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Corollary 1 states that the value of giving up a resource in exchange for the other tends

to increase as the latter becomes scarcer. For instance, when the total number of periods

available to sell the seats reduces, the value of giving up a seat increases because the value

of that additional seat reduces. This property comes directly from complementarity between

t and M , or, equivalently, from the fact that the option value of a seat is declining across

periods. Assuming, now, that the optimal fare p∗(t,m) which solves (2) is unique, then:

Proposition 2 For any t and M , the optimal fare p∗ (t,m) has the following properties:

A. (capacity effect): p∗(t,m) ≤ p∗(t,m− 1),

B. (temporal effect): p∗(t,m) ≥ p∗(t− 1,m).

To provide an intuition of this result, with F continuous and q differentiable, the internal

solution p∗(t,m) from the f.o.c. in (2) satisfies:

q(p∗(t,m)) = −q′(p∗(t,m))(p∗(t,m) +X(t,m)). (6)

The left-hand side and the right-hand of the equation capture, respectively, the expected

gains and the expected losses from a marginal increase of p. Because q(p) is decreasing in p,

and, from Corollary 1, X(t,m) is increasing in m, we have that the larger a seat’s position,

the lower the optimal fare in any period (Property A). Thus, within a given period, seats are

sold by setting a sequence of fares (i.e. a fare distribution) which is increasing. This result

extends the cost-based justification of an increasing equilibrium fare distribution considered

in Dana (1999).

Similarly, because X(t,m) is decreasing in t, it follows that the larger the number of

periods, the higher the optimal fare for any seat m (Property B). Thus, the fares of all

the seats in the distribution tend to decrease over time. This result reflects the perishable

nature of the airline service, and the fact that the option value decreases over time. When

the number of periods is high, a carrier has multiple chances to sell seats, but approaching

the departure date, the likelihood of selling each seat of the (remaining) fare distribution

decreases and therefore, the carrier reduces the fares of all seats. This is standard for highly

perishable services, as illustrated in Sweeting (2012), where however the analysis is limited

to the case of a single ticket and not to a full fare distribution as in the present case.
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5.2 Simulating and extending the model

To gauge how robust the theoretical results in Proposition 2 are, we simulate the model

by first retaining and then relaxing the assumption of a time-invariant F (θ).13 By doing

so, we can gain insights into how the capacity and the temporal effects are affected by the

standard assumption that business-people tend to purchase only a few days before departure,

or, equivalently, how dynamic pricing is applied in the presence of an inter-temporal price

discriminatory motive.

Table 1: Simulated observed number of seats for each bucket fare across booking periods,
under a time-invariant or time-varying distribution of WTP over time.

F (θ) Periods to departure - time-invariant F (θ) Periods to departure - varying F (θ)
Prob. fares 11 10 9 8 7 6 5 4 3 2 1 11 10 9 8 7 6 5 4 3∗ 2∗ 1∗

14/64 50
12/64 65 6 6 5 7 6 6

8/64 80 6 5 5 4 4 4 3 3 2 2 5 5 5 4 3 3 2 2

6/64 95 6 6 5 5 5 4 3 2 2 1 1 6 6 5 5 4 3 3 2 5

6/64 110 5 5 4 4 3 3 3 2 2 1 1 5 4 4 3 4 3 2 2 1 1

5/64 130 6 5 5 4 4 3 3 3 2 2 1 5 5 4 4 3 3 3 2 2 2 2

5/64 150 4 4 3 3 3 2 2 1 1 1 0 4 4 4 3 3 3 2 2 2 2 2

4/64 175 4 3 4 3 2 2 2 2 1 0 4 3 3 3 2 2 2 1 2 1 0

4/64 200 2 2 1 1 1 1 0 3 3 2 2 2 1 1 1 0
Avail. seats 39 36 32 24 22 19 16 13 10 7 3 39 36 33 24 21 18 15 12 12 6 4
∗ The time-varying F (θ) is obtained by shifting, in each of the last three periods, 1/64th of proba-
bility from each of the three smallest buckets (i.e., 50, 65 and 85) to the three largest ones (i.e., 150,
175 and 200). The circles (squares) denote buckets with seats moved to a lower (upper) bucket.

We set the number of periods T = 11; available seats N = 39; and the average total

number of prospective travellers L = 1.2N .14 We suppose F (θ), the distribution of consumers’

WTP, is discrete with its probability density function reported in the left columns of Table

1. A time-varying F (θ) is obtained by shifting, in each of the last three periods, 1/64th of

probability from each of the three smallest buckets (i.e., 50, 65 and 85) to the three largest

ones (i.e., 150, 175 and 200). That is, we simulate the impact of a larger proportion of buyers

with a higher willingness to pay (business-people) on the fares distributions and on dynamic

pricing. Each cell reports the resulting bucket size (i.e., number of seats) in each period, with

bucket fares corresponding to a subset of the support of the distribution; note that no seat

13In the empirical analysis, we test whether the theoretical framework can be generalized to market struc-
tures other than monopoly.

14From T and L we obtain ϕ = L/(L+ T ) ' 0.81. The numerical simulation is based on the algorithm
described in Section B.1 of the online Appendix to solve problem (2) recursively.
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is offered at the value of 50, despite the large mass of consumers in the distribution. Bucket

sizes denote the modal value of the simulated number of seats at the beginning of each period

based on 50.000 runs. We do so because each simulated flight exhibits a possibly different

selling path across periods, so the Table refers to a representative simulated distribution by

focusing on the more likely evolution of the selling path, as reported in the last row that

indicates the seats that remain to sell.

A visual presentation of Property A is given in both panels of Figure 4, which graphi-

cally depicts the content of Table 1: in each period and under time-invariant F (θ), the fare

distribution has a stepwise increasing profile over seats, equivalent to the observed ones in

Figure 1. For instance, in the initial selling period (period 11), the first six seats are put on

sale at 65, the next six at 80 and so on and so forth up until the last two seats, which are in

the 200 bucket. Similarly shaped distributions arise under a time-varying F (θ), leading to

the conclusion that Property A is largely independent of the assumption on F (θ).

As far as Property B is concerned, the temporal effect is present both under time-invariant

and time-varying F (θ), although at different degrees. As previously illustrated, such an effect

is revealed by seats being moved from upper to lower buckets. Take the two most expensive

buckets, priced at 200 and 175. Under time-invariant(varying) F (θ), the former disappears

in period 5 (period 3), and the latter in period 3 (period 1). That is, having a larger mass

of consumers with a high WTP late in the booking period mitigates and slows down the

temporal effect, but it does not invalidate the main implication of Property B that the

temporal effect operates to reshape the fare distribution by moving seats from upper to lower

buckets. This is shown by a comparison of the two parts of Table 1. On the one hand,

relative to the time-varying case, there appear to be more circles in the time-invariant F (θ)

simulation that identify an instance of buckets with seats moved down. On the other, under

time-varying F (θ), the impact of the temporal effect continues to be noticeable, even if the

simulation also reveals cases, denoted by a square, of seats being moved to an upper bucket:

for instance, the two seats allocated in period 4 to bucket 80 are moved up by one bucket in

the next period (see also Panel b. of Figure 4). Overall, upward movements of seats appear

to be in general less likely than downward movements.

Concerning the behaviour of the first seat on sale across periods, the temporal evolution

is the same in both simulations until period 4. Subsequently, in the time-varying F (θ) case,

the selling fare increases in every period, reaching the value of 135 in the last period, which

is much higher than the value of 95 resulting under time-invariant F (θ). The simulation

thus suggests that under a time-varying F (θ), the ensuing incentive to pursue an inter-

temporal price discriminatory motive is consistent with a faster growth of the selling fare in

the periods immediately preceding departure. As far as dynamic pricing is concerned, such a
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faster growth can be implemented via movements of seats to higher buckets and by reducing

the downward movements.

Figure 4: Fare distribution by periods to departure

6 Descriptive analysis of DP

Figure 5 reports the probability of observing the fare of the seat on sale increase or decrease

between two consecutive booking days during the booking period. It thus represents a mea-

sure of the fare variability over time that would result from tracking the posted fare from a

query for one seat. The Figure highlights how the posted fare remains invariant on average

in at least 80% of flights until six weeks to departure, and that such a proportion continues

to be larger than 60% until the last week.

The theoretical analysis has highlighted the sources of such variability. On the one hand,

the price of the seat on sale may vary due to upward movements along the fare distribution

when seats are sold (capacity effect) On the other, all seats’ fares could change because of

modification in the fare distribution induced by the temporal effect and the countervailing

impact of a time-varying composition of the willingness to pay distribution Ft. This is

important because, as previously discussed in the analysis of Figure 1, the fare of the seat

on sale may be made more stable over time if its bucket is replenished by moving seats from

upper buckets. Disentangling such effects’ individual impact on the overall evolution of all

the seats’ fares, but in particular on the fare of the seat on sale is the central focus of this and

the next section. To this purpose, we classify as DP any case where a seat in any position
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is either moved up or down to an existing (i.e., previously observed as part of a flight’s fare

distribution) or a new bucket.

Figure 5: Probability of fare changes induced by any effect. Full sample of censored and
uncensored observations.

To tease out the net capacity effect, Table 2 reports the probability of observing the fare

of the seat on sale increase or stay the same, as a function of the number of seats sold in two

consecutive booking days, after excluding fare changes due to any form of DP. Because the

capacity effect can operate only by pushing the fare upward, the probability of downward

fare movements is always zero. On average, every time one seat is sold, the fare of the seat

on sale increases in about 20% of observations; such a probability rises to about 37% in the

case of two seats, and reaches almost 66% for three or more seats. A similar progression,

which is observed throughout the various parts of booking period, suggests that, on the one

hand, the capacity effect is an important determinant of the fare increases in 5; on the other,

because of the stepwise shape of the fare distribution, the sale of one or two seats is unlikely

to lead to a fare change.

As Figures 1-2 and the theoretical analysis suggest, DP clearly goes beyond the mere
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Table 2: Probability of the price of the seat on sale to increase, stay the same or decrease,
by booking period and number of seats sold between two consecutive days. Pure capacity
effect.

Days to Fare Number of seats sold
departure variation 0 1 2 3+ Overall

up 0.0% 19.5% 36.8% 65.6% 31.7%
0-7 same 100.0% 80.5% 63.2% 34.4% 68.3%

up 0.0% 21.7% 37.6% 66.6% 26.1%
8-14 same 100.0% 78.3% 62.4% 33.4% 73.9%

up 0.0% 28.0% 40.9% 63.9% 12.8%
15-35 same 100.0% 72.0% 59.1% 36.1% 87.2%

up 0.0% 25.0% 27.8% 60.0% 4.3%
36+ same 100.0% 75.0% 72.2% 40.0% 95.7%

up 0.0% 20.5% 37.2% 65.8% 28.8%
Overall same 100.0% 79.5% 62.8% 34.2% 71.2%

down 0.0% 0.0% 0.0% 0.0% 0.0%

fluctuation of the price of the first seat in the distribution and has to include any modification

of the fare distribution. Because our definition of DP excludes any price increase due to the

capacity effect, the descriptive analysis of DP is carried out using only the non-censored

observations because doing so allows the position of each seat to be precisely identified, as

discussed in the comment to the bottom panels in Figure 1.

Table 3 reports the probability that each seat in the distribution is treated with one of

the forms of DP, calculated by considering only variations between query dates separated

by one day.15 The first four columns investigate whether a seat has moved up or down and

whether it has moved to a bucket previously observed as part of the distribution or to an

entirely new one. The subsequent two columns report whether the size of a seat’s own bucket

has increased or decreased.

Table 3 provides several insights into how DP reshapes the fare distributions. First, the

probability that a seat is moved to a lower bucket is much higher relative to that of being

moved in the opposite direction; the maximum probability of moving to a higher bucket is

about 5% for the seat in position 26, which also records a 17.6% likelihood to be shifted down

to a previously observed bucket. Second, the design of a fare distribution is rarely altered

by adding new buckets, given the generally low probability of observing the creation of a

new bucket. This provides further support to the previous claim that the structure of all the

distributions is largely fixed and is not subject to drastic redesigns. Third, and relatedly, the

15The qualitative results do not change if the probabilities were obtained considering variations between
any two consecutive, but not adjacent, query dates.
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Table 3: Probability to observe Dynamic Pricing applied to each seat in a fare distribution

Seat moves to
Position in Higher Higher Lower Lower Bkt size Bkt size Obs.
distribution bkt new bkt bkt new bkt increase decrease

1 1.7% 1.2% 4.4% 0.4% 7.4% 26.7% 124,441
2 1.4% 1.1% 4.3% 0.4% 7.6% 27.3% 121,578
3 1.5% 1.0% 5.1% 0.5% 6.7% 27.4% 119,069
4 3.3% 1.0% 7.4% 0.5% 7.8% 28.1% 116,774
5 3.3% 0.9% 8.4% 0.5% 8.5% 27.5% 114,439
6 2.8% 1.0% 9.2% 0.6% 9.1% 26.8% 111,907
7 2.6% 0.9% 9.7% 0.6% 9.9% 26.6% 109,387
8 2.5% 0.8% 9.7% 0.6% 10.3% 26.1% 106,752
9 2.3% 0.8% 10.0% 0.7% 10.9% 25.9% 103,852
10 2.3% 0.9% 11.0% 0.8% 11.9% 25.2% 100,811
11 2.5% 0.8% 11.2% 0.8% 12.6% 24.4% 97,683
12 3.4% 1.0% 13.3% 1.0% 13.1% 23.6% 94,168
13 4.1% 0.3% 14.1% 0.4% 13.5% 22.7% 90,936
14 4.0% 0.4% 14.1% 0.5% 13.8% 21.8% 87,745
15 3.9% 0.4% 14.2% 0.5% 14.3% 20.4% 84,330
16 3.8% 0.4% 14.4% 0.5% 14.6% 19.6% 80,584
17 3.8% 0.5% 14.9% 0.6% 14.8% 18.6% 76,840
18 4.7% 0.7% 16.4% 0.8% 15.1% 16.8% 72,814
19 4.4% 0.7% 16.1% 0.8% 15.3% 15.7% 69,061
20 4.2% 0.8% 16.0% 0.9% 15.7% 14.6% 65,436
21 4.3% 0.9% 16.7% 1.1% 16.3% 13.4% 61,537
22 4.1% 0.8% 16.3% 1.1% 16.7% 12.6% 57,721
23 4.0% 0.9% 16.3% 1.2% 16.9% 11.8% 54,058
24 4.2% 1.1% 17.4% 1.6% 17.8% 10.9% 50,125
25 4.8% 0.6% 17.4% 0.9% 17.9% 10.0% 46,471
26 5.0% 0.8% 17.6% 1.1% 18.5% 9.1% 42,864
27 4.6% 0.9% 17.5% 1.2% 18.9% 8.2% 39,306
28 4.5% 1.0% 17.6% 1.6% 19.7% 7.1% 35,715
29 4.4% 1.2% 16.5% 1.9% 20.8% 6.3% 32,281
30 4.1% 1.3% 16.4% 2.3% 21.6% 5.2% 28,905
31 3.8% 1.6% 16.2% 2.8% 22.0% 4.4% 25,396
32 3.8% 1.9% 14.9% 3.1% 22.2% 3.8% 22,014
33 3.4% 2.1% 13.6% 3.4% 23.1% 3.3% 18,612
34 3.2% 2.4% 12.6% 4.2% 24.3% 3.0% 15,275
35 2.8% 2.5% 11.4% 4.8% 25.8% 2.5% 11,954
36 2.2% 2.2% 11.3% 5.2% 27.5% 2.4% 8,782
37 2.0% 1.8% 10.0% 7.4% 30.6% 2.0% 5,836
38 1.9% 1.3% 8.7% 12.1% 34.2% 1.1% 3,305
39 1.4% 0.5% 3.8% 14.0% 45.1% 0.0% 1,316
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size of buckets in the right tail of the distribution (i.e., those with low positions) tends to

shrink, whereas seats in the left tail belong to buckets whose size is more likely to increase.

Indeed, the buckets for the seats in positions 1 to 9 exhibit a probability of more than 25% to

be shrunk; conversely, the probability of a size increase is larger for seats in lower positions 20

to 39. That is, seats in top buckets are highly likely moved to lower buckets, thus increasing

their size. Overall, Table 3 provides strong descriptive support to the role of the temporal

effect in driving down the option value of all the seats in the fare distribution, and that such

an effect is only partially offset by upward movement of seats.

6.1 DP over time

The theoretical analysis focussed on the role of the capacity and temporal effect, showing

how the latter may be offset or slowed down by the incentive to engage in discriminatory

pricing. As the simulations suggested, in our empirical setting we should then expect that the

probability to observe a seat moving to a lower (higher) bucket reduces (increases) as the date

of departure nears. Table 4 reports the probability of whether, during the various booking

periods, at least one of the seats in the distribution has moved to a higher or lower, possibly

new, bucket. The “Any fare move” column reports the probability that the distribution has

changed due to a fare movement in either directions.16 The “Overall” row provides a sample

estimate: on average, a flight distribution has a probability of 48.6% of changing between

two consecutive days; that is, distributions change less than once every two days. There are

however important variations across the booking period. Distributions rarely change when

more than fifty days separate the query date from the date of departure: the probability of

21.1% implies that distributions remain unchanged for about four out of five days. Between

thirty-six and eleven days to departure, the likelihood of observing a change in the fare

distribution increases drastically, but, in line with property B that predicts a decreasing

option value, this is largely due to seats being moved to lower, pre-existing buckets. Finally,

in the three weeks before departure, the probability of observing seats being transferred to

higher buckets (both existing and new) increases up to about 21%, with a combined fall in

the probability of observing downward movements during the last ten days; both aspects are

consistent with the view that a discriminatory motive can be revealed by both a weakening

of the temporal effect as well as by upward movements, consistent with the simulations in

Table 1.

It could be argued that DP, as well as price discrimination, mostly likely concerns the first

16This does not coincide with the row total because, in each period, different seats may be moved in
different directions
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Table 4: Probability to observe specific forms of Dynamic Pricing applied to a fare distribu-
tion, over booking periods

Seat moves to
Days to Higher Higher Lower Lower Any fare
departure bkt new bkt bkt new bkt move

0-3 17.6% 3.9% 14.3% 1.3% 33.1%
4-7 10.9% 4.0% 20.6% 2.2% 32.8%
8-10 13.6% 4.2% 23.5% 3.0% 37.4%
11-14 13.0% 4.7% 74.4% 10.6% 82.3%
15-21 16.1% 5.1% 73.2% 8.9% 84.3%
22-28 12.1% 5.8% 79.4% 10.7% 88.1%
29-35 10.5% 3.7% 62.6% 10.9% 73.3%
36-50 5.8% 4.0% 40.6% 4.8% 46.5%
51+ 2.7% 5.4% 14.9% 2.1% 20.7%
Overall 14.1% 4.2% 35.3% 4.5% 48.7%

seat on sale, the one with the lowest position in the distribution. Table 5, which reports the

same information as Table 4 only for the first seat on sale, highlights two main aspects. One,

it shows that the shifts downward in the distribution in Table 4 do not necessarily involve

the first seat on sale. For instance, between eleven and twenty-eight days to departure, the

probability of a downward fare movement of any seat in the entire distribution is always

higher than 70% in Table 4, but it is less than 20% for the fare of the seat on sale. Once

a seat becomes visible (i.e., its price is immediately revealed by an online query), it is less

subject to a downward movement.17 Two, a large proportion of movements to higher buckets

shown in Table 4 involve the first seat, especially during the last ten days prior to departure.

Although this is consistent with the hypothesis that a discriminatory motive moderates the

overall impact of the temporal effect, it is noteworthy that in Table 5 the first seat is moved

upward in at most 17% of observations taken three or less days before departure, and that

the same percentage is lower in the two preceding weeks. If, on the one hand, the seat on sale

is moved quite rarely to a higher seat, the third and the fourth columns of both Tables 4 and

5 clearly indicate that the probability to observe all seats being moved down falls sharply

during the ten days before departure. It would seem therefore that price discrimination does

not appear to lead to price increases of the first seat on sale but, mostly, manifests itself

through a reduction in the strength with which the temporal effects pushes all fares down.

Most importantly, the analysis of the first seat on sale highlights the importance to clean DP

of the upward fare movements’ induced by the capacity effect, because failing to do so would

17The fact that easyJet does not resort to last-minute deals to clear capacity was also noted in Koenisgsberg
et al. (2008).
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confound late price increases as manifestation of price discrimination.

Table 5: Probability to observe specific forms of Dynamic Pricing applied to the first seat on
sale, over booking periods

Seat moves to
Days to Higher Higher Lower Lower Any fare
departure bkt new bkt bkt new bkt move

0-3 13.8% 2.9% 5.4% 0.6% 22.7%
4-7 8.7% 3.0% 7.4% 1.1% 20.2%
8-10 10.1% 2.9% 7.5% 1.4% 21.8%
11-14 7.3% 3.3% 19.8% 6.3% 36.7%
15-21 7.2% 4.0% 11.8% 4.9% 27.9%
22-28 5.6% 4.6% 11.0% 6.4% 27.5%
29-35 4.2% 3.1% 7.3% 8.3% 23.0%
36-50 3.0% 2.7% 7.0% 2.6% 15.3%
51+ 2.2% 1.6% 4.8% 1.6% 10.1%
Overall 9.8% 3.1% 9.3% 2.5% 24.7%

7 Econometric design and analysis

We now proceed to test formally the two properties characterizing the equilibrium solution in

Proposition 2, by providing two sets of regressions. In the first, we consider the full sample,

and focus on how the fare of each seat in the distribution is affected by its position and

how it changes over time. The second regression sheds light on how the fare of the first

seat on sale changes as its position changes over time. As far as property A is concerned,

we have already shown how the adoption of a fare distribution is pervasive and offers the

carrier a practical way to implement DP. The second regression shows that the capacity

effect is responsible for the movement of the seat on sale along the distribution, leading to

a temporally increasing profile of the “easily observable” fare on sale, whereas the temporal

effect operates in a “hidden” way. Both regressions lend strong support to property B, after

the role of the capacity effect is taken into account.

7.1 Full distribution analysis

To test both properties in Proposition 2, we estimate the following equation for the fare of

seat with position m on flight j departing on date d:

lnFaremjdt =
∑
t

βtDt + γm+
∑
t

ωtDt ∗m+ ζjd + εjdt, (7)
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where Dt defines a set of dummy variables Days to departure, with t defining the intervals

between the query and the departure date; m denotes the Position variable. The ωs denote

the coefficients of their interaction. In a model without interaction terms, as far as property

B is concerned, the dummies Dt represent our variables of interest as they track the time

evolution of the fare of a specified seat’s position, which we expect to be declining, whereas

Property A would be supported by a negative and significant coefficient of γ (recall that we

count the position by starting from the right of the distribution).

The econometric strategy takes into account two related sources of sample selection. First,

Position is identified precisely only when an observation is non-censored, and so we have to

restrict the sample to only those observations of flights that, on a given query date t, have

fewer than 40 seats left to sell – see Alderighi et al. (2015) for a similar problem. Second,

conditional on a flight being non-censored, seats in lower buckets have a higher probability

to be sold and disappear from the sample at an earlier stage, thus biasing the estimated

relationship of a seat’s fare over time. Formally:

FNCjdt =1[z1θ1 + ν1 > 0] (8)

smjdt =1[z1θ2 + θ3m+ ν2 > 0] if FNCjdt=1. (9)

When FNCjdt = 1, i.e., a flight jd is non-censored at booking day t, we can identify,

out of the possible 39 seats that the distribution may potentially include, the seats s in

positions m which are still available for sale.18 In (8)-(9), ν1 and ν2 denote the respective

error terms; under the assumptions (ν1, ν2) ∼ N(0, 1) and corr(ν1, ν2) = ρ, (8)-(9) can be

estimated using a bivariate probit with sample selection model (Greene, 2003, ch.21), where

z1 includes the following regressors: dummies for the number of days to departure, the day of

the week of the departure date, the departure slot time (morning, afternoon, evening, etc.),

the season (Winter and Summer), the route (estimates available on request). After obtaining

the estimated coefficients (θ̂2, θ̂3) using all observations, the Inverse Mills ratios (IMR) for

the selected observations are: λ̂mjdt(θ̂2, θ̂3) = φ(z1θ̂2 + θ̂3m)
/

Φ(z1θ̂2 + θ̂3m) . We can then

estimate an augmented version of (7):

lnFaremjdt =
∑
t

βtDt + γm+
∑
t

ωtDt ∗m+ λ̂mjdt(θ̂2, θ̂3) + ζjd + ξjdt, (10)

by panel OLS fixed-effects.19

18Imagine that at t we only retrieve fares for, say, the last 20 seats; these would have sjdt = 1. To estimate
(8)-(9), we would append observations for seats 21-39 and set sjdt = 0.

19The approach draws from procedure 17.1 in Wooldridge (2002).
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The panel identifier corresponds to the combination of flight-code plus day of departure;

the panel’s temporal effect is represented by a sequential counter that uniquely identifies

all the possible combinations of Position for all query dates t.20 We set the earliest day to

departure dummy (Days to departure 51+) as reference group and we cluster the standard

errors by route and week to take into account the possibility of flight-specific demand shocks

on a given day affecting the demand for all the flights on the route in a given week.

Table 6 reports the results. Models (1) and (2) use the full sample, whereas the others

focus on flights in different market structures. The distinction by market structure provides

an assessment of whether the results of the theoretical model, derived assuming a monopoly

firm, can be generalised to other types of markets. In our sample, we define as competitive

those routes with an HHI no higher than 0.5, as monopoly if the index is at least equal to

0.90 and as oligopolistic all the routes with intermediate values.21

All models in Table 6, except the first, include the interaction between the temporal

dummies and the Position variable. In the first column, the coefficient of Position is, as

expected, negative. That is, the econometric evidence indicates that the fare distributions

are structured as predicted in property A of Proposition 2. Second, and relatedly, the Position

coefficient provides an estimate of the fare distribution’s gradient: such a value is about 1.6%,

that is, a unit decrease in Position is associated with an equivalent expected percentage

increase in fare. Third, and more importantly, the Days to Departure (DtD) dummies are

also negative and their coefficients increase in absolute value as the departure date nears.

Considering that the reference category corresponds to seats in early posted observations,

the dummies’ coefficients suggest a downward trend for the fare of all the seats in the fare

distribution, holding the position fixed. This finding is consistent with the view that the

carrier moves the seats down to lower buckets as the departure date nears and that such a

move reflects a reduction in the expected value of the seats (Property B).

In the second column, the temporal dummies’ coefficients also decrease in magnitude as

the departure date nears; importantly, because the interaction coefficients are all negative,

the temporal decline is stronger as the position value increases: the farther a seat is positioned

from the top one, the larger the fall in the bucket order (and in fare) it experiences.

Models (3) to (5) indicate that Proposition 2 is robust to variations based on market

structure. Indeed, each sub-sample leads to estimates that are qualitatively similar to those

20Alternatively, we could have incorporated either the variable Position into the fixed effect identifier so
that only the interaction model could be identified in the Fixed Effects estimation. The results would not
change. Estimates available on request.

21The HHI was derived using the punctuality statistics published by the UK Civil Aviation Authority on
their website. Using the HHI based on the citypair classification does not change the qualitative nature of
the results.
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Table 6: OLS Regression analysis of the price of all seats in the distribution - Flight-code
fixed effects. NB: Dtd=Days to Departure. Standard Errors in parentheses

(1) (2) (3) (4) (5)
Full Full Compet. Oligop. Monop.

sample sample routes routes routes

DtD 0-3 -0.273*** -0.015 0.021 -0.130*** 0.033
(0.043) (0.061) (0.122) (0.038) (0.098)

DtD 4-7 -0.267*** 0.021 0.059 -0.094* 0.069
(0.043) (0.061) (0.122) (0.038) (0.098)

DtD 8-10 -0.256*** 0.053 0.085 -0.058 0.101
(0.043) (0.061) (0.122) (0.038) (0.098)

DtD 11-14 -0.202*** 0.085 0.110 -0.029 0.137
(0.043) (0.061) (0.122) (0.038) (0.098)

DtD 15-21 -0.099* 0.185** 0.222 0.068 0.234*
(0.043) (0.061) (0.122) (0.037) (0.098)

DtD 22-28 -0.047 0.201*** 0.266* 0.072* 0.241*
(0.042) (0.061) (0.122) (0.037) (0.097)

DtD 29-35 0.017 0.207*** 0.276* 0.062 0.255**
(0.042) (0.061) (0.123) (0.036) (0.097)

DtD 36-50 0.031 0.142* 0.213 0.026 0.177
(0.039) (0.057) (0.121) (0.032) (0.091)

Position -0.016*** -0.002 0.000 -0.005*** -0.001
(0.000) (0.002) (0.003) (0.001) (0.003)

Pos*DtD 0-3 -0.020*** -0.021*** -0.016*** -0.021***
(0.002) (0.003) (0.001) (0.003)

Pos*DtD 4-7 -0.021*** -0.022*** -0.017*** -0.022***
(0.002) (0.003) (0.001) (0.003)

Pos*DtD 8-10 -0.020*** -0.021*** -0.017*** -0.021***
(0.002) (0.003) (0.001) (0.003)

Pos*DtD 11-14 -0.017*** -0.018*** -0.014*** -0.019***
(0.002) (0.003) (0.001) (0.003)

Pos*DtD 15-21 -0.017*** -0.018*** -0.013*** -0.017***
(0.002) (0.003) (0.001) (0.003)

Pos*DtD 22-28 -0.014*** -0.017*** -0.010*** -0.014***
(0.002) (0.003) (0.001) (0.003)

Pos*DtD 29-35 -0.011*** -0.013*** -0.006*** -0.011***
(0.002) (0.003) (0.001) (0.003)

Pos*DtD 36-50 -0.006*** -0.009** -0.003*** -0.007**
(0.002) (0.003) (0.001) (0.002)

IMR λ -0.100*** -0.015*** -0.028* -0.018* -0.007
(0.003) (0.004) (0.012) (0.007) (0.005)

Constant 5.197*** 4.930*** 4.917*** 5.029*** 4.881***
(0.043) (0.061) (0.122) (0.037) (0.098)

R2 0.698 0.710 0.709 0.710 0.712
Observations 5,443,535 5,443,535 1,118,566 1,458,918 2,866,051
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produced using the full sample, indicating that the insights generated by our theoretical

model in relations to the main features of fare distributions can be generalized and hold in

many market settings.

Figure 6: Predicted effects of Position and days to departure on fares.
Note: based on Model (2)-(5) in Table 6.

Figure 6 shows the predicted values from models (2)-(5) of Table 6. Each line, which

represents the predicted relationship between fare and position keeping the temporal dummies

fixed, defines a stylized, smooth version of the fare distributions in Figure 1. The slope varies

to reflect the interaction terms. Remarkably, Figure 6 shows that each model generates

predicted values that are very similar in each sub-sample, suggesting that the RM approach

that easyJet adopts is very consistent in all its routes.

Furthermore, Figure 6 can shed some light on how the discriminatory motive may inter-

vene to counteract the temporal effect. Indeed, as the analysis of Tables 4 and 5 illustrated,

price discrimination is implemented by either moving seats to upper buckets, or by slowing

down their rate of descent to lower buckets (which could imply keeping them on the same

bucket). Intuitively, within a fortnight from departure, the temporal effect would be partic-

ularly strong for seats on the left side of the distribution, if still available to be sold. By
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the same token, as the previous descriptive evidence showed, seats on the right side of the

distribution should be less likely to fall or more likely to be moved up. This mechanism re-

sults in distributions becoming steeper as the departure date nears, something that is clearly

depicted in Figure 6, where distributions collected within a fortnight, but especially during

the last seven days, are indeed steeper than earlier ones. Because this is the case in all market

structures, a further implications is that, at least in our sample, price discrimination does

not appear to be strongly related to market concentration, as hypothesized in Borenstein

and Rose (1994); Gerardi and Shapiro (2009); Gaggero and Piga (2011).

7.2 The temporal profile of the first seat on sale

Studying the fare of the first seat on sale is important, because all the existing empirical

literature on airline pricing, whether it uses transacted or posted fares, focusses exclusively on

it. There is general consensus that the overall temporal profile of such a fare is upward sloping,

with many articles reporting graphical and/or econometric evidence of fares increasing as the

departure date nears.22 The pervasiveness of such a correlation is strongly at odds with the

theoretical prediction of fares falling as the takeoff date approaches (Gallego and van Ryzin,

1994), as first highlighted in McAfee and te Velde (2007).

Using the insights offered by the foregoing theoretical and empirical analysis, in this

section we investigate the extent by which the behavior of the fare of the seat on sale in

our dataset can be reconciled with and related to the evidence reported in the existing

literature. To this purpose, the econometric strategy hinges on testing properties A and B

of Proposition 2 on the first seat on sale, using the specification in equation (10) modified to

take into account that for such a seat the censoring process can be modeled using equation

(8) only.

Models (1) and (2) in Table 7 replicate the regressions in McAfee and te Velde (2007),

by first using the full sample with all observations, and then only the non-censored sample.

Like McAfee and te Velde (2007), the temporal trajectory is clearly either increasing or non-

declining, with sharp rises during the last week. In terms of our analysis, the increasing

temporal profile suggests that the capacity effect appears to be a stronger driving force than

the temporal effect, especially when the latter is further weakened by the price discriminatory

motive. Interestingly, as far as the presence of strategic consumers is concerned, the first

two models in Table 7 indicate that a consumer would generally observe fares following an

increasing trend, which Li et al. (2014) describe as the standard way to curb the incentive

22See Alderighi et al. (2015); Bergantino and Capozza (2015); Clark and Vincent (2012); Escobari (2012);
Gaggero and Piga (2010); Koenisgsberg et al. (2008); McAfee and te Velde (2007); Stavins (2001) inter alia.
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Table 7: Regression analysis of the price of the first seat on sale - Flight-code fixed effects.
NB: Dtd=Days to Departure. Standard Errors in parentheses

(1) (2) (3) (4)

Dependent variable log(p) log(p) log(p) log(p)
Estimation technique OLS-FE OLS-FE OLS-FE IV-FE
Sample All obs. Not cens. obs. Not cens. obs. Not cens. obs.

DtD 0-3 0.783*** 0.327*** -0.339*** -0.376***
(0.007) (0.041) (0.078) (0.105)

DtD 4-7 0.665*** 0.210*** -0.349*** -0.382***
(0.007) (0.041) (0.077) (0.105)

DtD 8-10 0.489*** 0.056 -0.347*** -0.372***
(0.006) (0.041) (0.076) (0.104)

DtD 11-14 0.402*** -0.000 -0.285*** -0.303**
(0.005) (0.041) (0.075) (0.103)

DtD 15-21 0.350*** -0.022 -0.190* -0.202*
(0.005) (0.041) (0.074) (0.103)

DtD 22-28 0.304*** -0.030 -0.101 -0.109
(0.005) (0.041) (0.073) (0.103)

DtD 29-35 0.276*** 0.006 -0.001 -0.010
(0.004) (0.041) (0.072) (0.102)

DtD 36-50 0.169*** 0.002 0.045 0.037
(0.003) (0.039) (0.070) (0.098)

Position=Available Seats -0.019*** -0.020***
(0.000) (0.001)

IMR λ -0.020 -0.024
(0.011) (0.014)

Kleibergen-Paap rk LM stat 825.897
Hansen J-stat .842
R2 .569 .414 .623 .629
Observations 887,671 249,125 249,125 172,411
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to postpone purchase.

However, the first two models are misspecified. To tease out the possible separate im-

pact of inter-temporal price discrimination, we need to control for the evolution of available

capacity on the flight, as in model (3), which uses only the non-censored observations to

identify the number of seats left on the flight at a given point in time. Importantly, for the

first seat on sale, the number of available seats corresponds to the position of the first seat

in the distribution (see, e.g., the bottom panels in Figure 1). Such a property has important

implications because it sheds more light on the impact of the capacity effect. Indeed, unlike

the estimates in Table 6 where each seat occupies a fixed position in the distribution, the

position of the first seat varies over time, and thus captures how the fare changes as the seat

moves along the distribution.

The inclusion of Position in model (3) drastically alters the structure of the temporal

dummies to reveal a declining time path for fares, consistent with the Property B in this

article. Relative to those posted fifty-one or more days from departure, fares posted twenty-

eight days or later are ceteris paribus significantly different, and show a constant decreasing

trend which is minimally reversed in the last three days before departure. Indeed, the coef-

ficient of the “0 − 3 days” DtD dummy is slightly larger than the previous one (−0.339 vs.

−0.349), pointing to a U-shaped temporal profile, whose increasing part can be ascribed to

the implementation of an inter-temporal price discrimination strategy (Alderighi et al., 2015;

Bilotkach et al., 2010; Escobari, 2012).

The capacity effect, however, is by far responsible for the overall upward trend highlighted

in models (1) and (2). Indeed, the Position’s coefficient of −0.019 is similar to the ones

estimated in Table 6 and indicates that the first seat on sale follows an increasing temporal

profile determined by the structure of the distribution. That is, the carrier tends to close

a bucket once all the seats in that bucket are sold out, so that automatically the fare of

the next bucket becomes the one advertised on the site. Our results thus provide a so far

undetected perspective, that is, they directly relate the evolution of the selling fare to the

overall design of the fare distribution.

The fact that the position of the first seat on sale varies over time suggests that the

variable Position is likely correlated with ξjdt in eq. (10), i.e., it is endogenous. So we use

two instruments in our identification strategy, similar to those in Alderighi et al. (2015). The

first one, Lag Position, is simply the mean of the two weekly lagged values of Position, where

the lags are intended over d and not t, that is, we take values for the same flights departing

on the same week day one and two weeks before. The use of lagged values guarantees the

instrument is not correlated with the shock ξjdt; furthermore, fare distributions are flight-

specific, and so is the ideal (from the airline perspective) rate of growth of a flight’s load
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factor. In other words, the instrument is correlated with Position because the airline has

likely adopted for the past flights a similar distribution, as well as pursued a similar booking

curve for the temporal progression of the load factor. The second instrument, holiday period,

is a dummy variable indicating whether the query date falls within a holiday period in UK

(Christmas, Easter, school breaks, etc.) and captures possible differences on the demand

side. That is, the ticket purchasing activity in such periods is likely to be different from

non-holiday periods (e.g., when on holiday, a person has less time to spend planning future

trips), and thus seat fares are likely less affected by shocks. Despite the loss of observations

due to the use of a lagged instrument, the estimates in model (4) are equivalent to those

in model (3), and confirm the presence of a weak U-shaped temporal profile and a slightly

stronger capacity effect, with fares expected to increase by 2.0% every time an extra seat is

sold.

8 Conclusions

This article presents several strong reasons, both based on theoretical and empirical grounds,

for modeling airline pricing using the concept of fare distribution. This research strategy

allows to unveil and explain some relevant, and so far, neglected aspects of DP. First, the

fare variations of the first seat on sale are the result of the pricing behavior of carriers that

is largely unknown to consumers. Fare increases mainly emerge as seats are sold, whereas

drops occur when carriers revise the fare distribution to account for the declining option

value of the seats. Second, obfuscation of this pricing behavior also depends on the fact that

the set of fares is discrete so that in some occurrences, when a seat is sold or when there

is a downshift of the fare distribution, the fare of the first seat on sale remains unchanged.

Third, although not the central focus of the study, our analysis suggests that to correctly

identify inter-temporal price discrimination practices, it is necessary to distinguish between

upward changes in the distribution from fare hikes driven by capacity considerations. Finally,

our analysis helps to solve the contrast between theory and empirical evidence illustrated in

McAfee and te Velde (2007).
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A Appendix - For Online Publication

A.1 Building the distributions from easyJet’s posted fares.

This Section contains further details on the procedure we applied to derive the fare distribu-

tions from the posted fares.

Through data visual inspection, we learnt that the carriers’ posted fare follow this rule:

PF (n) =
C +

∑n
j=1 pj

n
, (A.1)

where n denotes the number of seats in the query, PF (n) the corresponding posted fare, pj

the fare of each seat, starting from the first one available for sale and C is a fixed charge

which we interpret as a fixed commission per booking. The presence of C implies that the

distribution of posted fares over seats is generally U-shaped, with the decreasing part due to

the commission being spread over more seats and the increasing part due to the increasing

values of buckets, as in Figure 1.

To find C, we rely on the fact that in most cases the first and the second seat are likely to

belong to the same bucket. Therefore C (and the value of the first bucket) can be obtained

by solving the following system of two linear equations in two unknowns, using the identity

p1 = p2 = p:

PF (1) =C + p

PF (2) =(C + 2p)/2

The commission changed over the sampling period: it amounted to £5.5 until 25 June

2014, then to £6 until 6 May 2015 and subsequently to £6.5. For flights priced in euro the

corresponding values are e7, e7.5 and e8.5 with changes taking place simultaneously to the

fares in British Pounds. The values in the two currencies are highly related to the exchange

rate in the various periods.

After finding C, using (A.1) it is straightforward to derive the bucket fare tags, Pj:

Pj = j ∗ PF (j)− (j − 1) ∗ PF (j − 1) with j ∈ [2, 40], (A.2)

with P1 = PF (1)− C.23

Two aspects are noteworthy. First, the procedure to derive the bucket values does not

impose any restriction on the monotonicity of the distribution. Second, and most importantly,

23For simplicity, cents and pennies are rounded to unity.
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the distributions we derive correspond exactly to the distributions advertised on the carrier’s

website. As discussed in the Data Collection section, for each query the crawler retrieved

the information that appears on the booking page regarding the “number of seats available

at that fare”.24 We can then gauge the extent to which the size of each bucket, obtained

from (A.2), conforms with the information provided by the carrier. It turns out that the

above procedure generates buckets’ sizes that perfectly correspond to the sizes implied by

the information posted by the carrier on the number of seats available at a given fare. We

take this as a strong indication that we succeeded in reverse-engineering the carrier’s pricing

approach.

A.2 Fare distributions and Full Service Carriers’ pricing

As far as FSCs are concerned, the analysis is complicated by their adoption of a nested-

classes system, where the same seat can belong to different classes, each with different ticket

restrictions; therefore, one would need to retrieve a distribution for each class category, with

precise information on the number of seats (and classes) each category is designed to contain.

It is however possible to connect some features of FSCs’ pricing approach with the present

analysis based on fare distributions. For instance, various articles present graphical evidence

of the temporal profile of fares by FSC, i.e., they report the fare of the first seat on sale and its

evolution over time (Escobari, 2012; McAfee and te Velde, 2007; Puller et al., 2009). It turns

out that such temporal paths also follow a step-wise pattern, which can be rationalised along

the terms we use to define a fare distribution. Indeed, one could view each bucket as a different

“fare class”, which, like buckets, is stored in the reservation system, regardless of whether it

is immediately available for sale or not. To shed light on this assumption, starting from 2nd

November 2016, we saved data from the website expertflyer.com, whose ‘Pro’ subscription

allows access to the list of fare classes (and associated fare and ticket restrictions) an airline

uses on a specific route (i.e., the list is not flight-specific). To minimize network pricing

effects, we chose one direct flight departing on 15 November 2016 operated by American

Airlines (AA), connecting New York JFK to Chicago ORD. In addition to the list of classes

from www.expertflyer.com, starting from the 3rd November 2016, we visited AA’s website

and recorded manually all the different fares therein reported.

In Figures 7, the posted fares are joined by a line; the other symbols refer to specific

classes listed by expertflyer.com, of which we report only the first letter.25 There are at least

24This and the other website’s features illustrated in the article were still operative at the date this article
was completed.

25For instance, the full code for the class Q in Figure 7 is Q7ALKNN3. It is noteworthy that expertflyer.com
reports a very large number of classes, and that we only report those whose value is close to that of the posted
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Figure 7: Fare classes and online posted fares- American Airlines

flight AA2296 New York JKF (7:05) - to Chicago ORD (9:01) on 15 November 2016

38



two main aspects worth highlighting. One, our analogy between buckets and classes appears

to be supported by the fact that expertflyer.com reports most classes for the full period,

regardless of the posted online fares. For instance, the non-refundable classes N and G for

a seat in the main cabin (top panel of Figure 7) were available on the computer reservation

system during the whole period. Interestingly, the class Q in the top part of Figure 7 and

the class N in the central part cease to appear on the 8th November, i.e., seven days prior to

the flight departure.

It could be argued that the fare classes in Figure 7 are not relevant because they are not

specific to the flight under study; however, such a criticism is thwarted by the second aspect

the Figure shows. Indeed, we find that the website’s fares often perfectly match the class

fares reported by expertflyer.com. This happens for the days 6-8 and 10-12 November (classes

Q and N in the top part), 3-8 November (class N in central part), and 3-12 November (class

V 3 in bottom part).26 Interestingly, for the case of the Main Cabin lowest fare, the posted

fares depict a step-wise path with fare levels defined by predetermined fare classes. Although

with the limitations due to matching data from different sources, the short period of analysis,

and the fact that FSCs rely extensively on the traditional travel agents’ channel, the overall

analysis based on Figures 7 suggests that the notion of a fare distribution provides a useful

starting point for any investigation of FSCs’ pricing methods.

B Proofs

Proof of Proposition 1.

Non-negativeness. Non-negativity of V can be easily shown from (2) by induction

because V (t,M) comes from the maximization over p of sums and products of nonnegative

terms.

Increasing in both arguments. We show that V (t,M) ≥ V (t− 1,M). By con-

tradiction assume that V (t,M) < V (t− 1,M). Let p∗ (τ,m) with τ = 1, . . . , t − 1 and

m = 1, . . . ,M , be the set of fares that solves (2) when there are t− 1 periods and M seats.

Define p̂ (τ,m) with τ = 1, . . . , t and m = 1, . . . ,M , as a set of fares (not necessarily the

optimal ones) that is chosen when there are t periods and M seats: p̂ (τ + 1,m) = p∗ (τ,m),

for τ = 1, . . . , t− 1 and p̂ (1,m) = p̂ (2,m). Then, under this fare profile the expected return

gained in the first t− 1 periods is V (t− 1,M). Moreover, because in the last period returns

are non negative, we have V (t,M) ≥ V (t− 1,M), which contradicts our assumption. The

online fares.
26Due to time zone difference, we could retrieve the fares on the date of departure when in the USA it was

still nighttime.
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proof that V (t,M) ≥ V (t,M − 1) is similar to the previous one.

Decreasing return in t and M and increasing differences in (t,M). We organize

this part of the proof in different steps.

Step 1. We introduce the following notation: ∆1 (t,M) = V (t,M) − V (t− 1,M) and

∆2 (t,M) = V (t,M) − V (t,M − 1). Note that decreasing returns in t and M can be,

respectively, defined as:

∆1(t,M) ≤ ∆1(t− 1,M), ∆2(t,M) ≤ ∆2(t,M − 1). (B.1)

Moreover, increasing differences in (t,M) are guaranteed by one of these two equivalent

expressions:

∆2(t− 1,M) ≤ ∆2(t,M), ∆1(t,M − 1) ≤ ∆1(t,M). (B.2)

Indeed, we can write: V (tH ,M)−V (tL,M) = ∆1(tH ,M)+∆1(tH−1,M)+· · ·+∆1(tL+1,M).

Thus, increasing difference property as in Definition 2 requires that the following inequality

holds ∆1(tH ,MH)+∆1(tH−1,MH)+ · · ·+∆1(tL +1,MH) ≥ ∆1(tH ,ML)+∆1(tH−1,ML)+

· · · + ∆1(tL + 1,ML), or ∆1(tH ,MH) − ∆1(tH ,ML) + ∆1(tH − 1,MH) − ∆1(tH − 1,ML) +

· · · + ∆1(tL + 1,MH) −∆1(tL + 1,ML) ≥ 0. Because the previous inequality must hold for

any tH > tL and MH > ML, it is equivalent to (B.2)

Step 2. We rewrite the Bellman equation in an useful way. First note that (2) can be

rephrased as:

∆1(t,M) = max
p
{q (p) [p+ V (t,M − 1)− V (t− 1,M)]} (B.3)

= max
p
{q (p) [p+X(t,M)]} ,

where X(t,M) = V (t,M − 1) − V (t− 1,M). Note that the solution of the maximization

problem p = arg maxp {q (p) [p+X]} does not change because we have subtracted a constant

term V (t − 1,M). Moreover, from the Envelope theorem, ∆1(t,M) is increasing in X.

Therefore, it is possible to state the following result:

∆1(t,M) ≤ ∆1(t− 1,M) ⇐⇒ X(t,M) ≤ X(t− 1,M) (B.4)

⇐⇒ V (t,M − 1)− V (t− 1,M) ≤ V (t− 1,M − 1)− V (t− 2,M)

⇐⇒ ∆1(t,M − 1) ≤ ∆1(t− 1,M).
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Moreover:

∆1(t,M − 1) ≤ ∆1(t,M) ⇐⇒ X(t,M − 1) ≤ X(t,M) (B.5)

⇐⇒ V (t,M − 2)− V (t− 1,M − 1) ≤ V (t,M − 1)− V (t− 1,M)

⇐⇒ ∆2(t− 1,M) ≤ ∆2(t,M − 1).

Similarly, (2) can be rephrased as:

∆2(t,M) = max
p
{q (p) p+ [1− q (p)] [V (t− 1,M)− V (t,M − 1)]} (B.6)

= max
p
{q (p) p+ [1− q (p)]Y (t,M)} ,

where Y (t,M) = V (t− 1,M)− V (t,M − 1). Also in this case, from the Envelope theorem,

∆2(t,M) is increasing in Y . Therefore:

∆2(t,M) ≤ ∆2(t,M − 1) ⇐⇒ Y (t,M) ≤ Y (t,M − 1) (B.7)

⇐⇒ V (t− 1,M)− V (t,M − 1) ≤ V (t− 1,M − 1)− V (t,M − 2)

⇐⇒ ∆2(t− 1,M) ≤ ∆2(t,M − 1).

Moreover:

∆2(t− 1,M) ≤ ∆2(t,M) ⇐⇒ Y (t− 1,M) ≤ Y (t,M) (B.8)

⇐⇒ V (t− 2,M)− V (t− 1,M − 1) ≤ V (t− 1,M)− V (t,M − 1)

⇐⇒ ∆1(t,M − 1) ≤ ∆1(t− 1,M).

Previous results presented in (B.5), (B.6), (B.8) and (B.9) can be summarized as follows:

∆1(t,M) ≤ ∆1(t− 1,M)⇐⇒ ∆2(t− 1,M) ≤ ∆2(t,M)⇐⇒ ∆1(t,M − 1) ≤ ∆1(t− 1,M)(B.9)

∆1(t,M − 1) ≤ ∆1(t,M)⇐⇒ ∆2(t,M) ≤ ∆2(t,M − 1)⇐⇒ ∆2(t− 1,M) ≤ ∆2(t,M − 1)(B.10)

Note that inequalities presented in (B.1) are equivalent to those presented in (B.2). Thus,

in order to show that V (t,M) has decreasing returns in t and M and increasing differences

in (t,M) we can only need to prove that inequalities presented in (B.1) are satisfied.

Step 3. We prove that inequalities in (B.1) are satisfied by induction. We start to show

that inequalities in (B.1) hold for any (t, 1) or (1,M), with t = 1, 2, .., T and M = 1, 2, .., N .

When M = 1, X(t, 1) = −V (t − 1, 1). Because V (t − 1, 1) ≥ V (t − 2, 1), using (B.4),

we have that X(t, 1) ≤ X(t − 1, 1) and ∆1(t,M) ≤ ∆1(t − 1,M). Similarly, when t = 1,
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Y (1,M) = −V (1,M − 1). Because V (t − 1,M) ≥ V (t − 2,M), using (B.7), we have that

X(t,M) ≤ X(t− 1,M) and ∆2(t,M) ≤ ∆2(t,M − 1).

Because we have two different indices (t,M), in order to provide a proof by induction we

need to introduce an ordering, ((t,M),≺), on the indexes t = 1, 2, ..T and M = 1, .., N . We

assume that there is a lexicographic order in (t,M), i.e. (t′,M ′) ≺ (t,M) when t′ < t or when

t′ = t and M ′ < M . Thus, we have to prove two different cases.

Case a. We assume that inequalities in (B.1) hold for (t − 1, N) and we want to show

that they hold for (t, 1). This has been already done above.

Case b. We assume that inequalities in (B.1) hold for preceding values of (t,M), and

we want to show that they hold for (t,M). Using as assumption that the first inequality of

(B.1) holds for (t,M − 1) and that the second inequality of (B.1) holds for (t − 1,M), and

thanks to the first part of (B.10), we obtain:

∆1(t,M − 1) ≤ ∆1(t− 1,M − 1) ≤ ∆1(t− 1,M). (B.11)

Using (B.9), we obtain the proof that the first inequality in (B.1) is satisfied for (t,M).

Similarly, using as assumption that the second inequality of (B.1) holds for (t−1,M) and

that the first inequality of (B.2) holds for (t,M − 1), and thanks to the first part of (B.9),

we obtain

∆2(t− 1,M) ≤ ∆2(t− 1,M − 1) ≤ ∆2(t,M − 1). (B.12)

Using (B.10), we obtain the proof that the second inequality in (B.1) is satisfied for (t,M).

Proof of Corollary 1.

It directly follows from (B.1) and (B.2) and by the fact that X(t,M) = ∆1(t,M)−∆2(t,M).

Proof of Proposition 2.

From the maximization problem in (2), the optimal fare p∗(t,m) can be written as a

function of X:

p∗(X) = arg max
p∈Θ
{q (p) [p+X]} (B.13)

Let ρ = θ̄ − p and H(ρ,X) = q
(
θ̄ − ρ

) [
θ̄ − ρ+X

]
. From Definition 2, after some compu-

tations, we obtain that H has increasing differences in (ρ,X), if and only if, for ρ′ ≥ ρ (i.e.

p′ ≤ p) and X ′ ≥ X, we have:

[
q(θ̄ − ρ′)− q(θ̄ − ρ)

]
(X ′ −X) ≥ 0, (B.14)
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which is always satisfied seeing that q is decreasing in p. From the Topkis (1998)’s Theorem

2.8.2, when H has increasing differences in (ρ,X) then

X ′ ≥ X =⇒ ρ∗(X ′) ≥ ρ∗(X)⇐⇒ p∗(X ′) ≤ p∗(X). (B.15)

From (B.15) and Corollary 1, we obtain the proof.

B.1 Algorithm

As noted in proof of Proposition 1, (2) can be written as:

V (t,M) = max
p
{q (p) [p+ V (t,M − 1)− V (t− 1,M)]}+ V (t− 1,M) (B.16)

with boundary conditions V (t, 0) = 0 and V (0,M) = 0, for any t ∈ {0, . . . , T} and M ∈
{0, . . . , N}. To find a solution for the problem described in (B.4), we consider the following

steps.

Step 1. Find the solution for maxp∈Θ q (p) (p+X). Because Θ is compact, there exists a solu-

tion for the problem.

Step 2. Set t = 1 and M = 1.

Step 3. Compute X = V (t,M − 1) − V (t− 1,M) and use Step 1 to get p (t,M). Replace it

in (B.4) to obtain V (t,M).

Step 4. Set m = m+ 1. Repeat Step 3 until m = N .

Step 5. Set t = t+ 1 and m=1. If t < T , then go back to Step 3.
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