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Abstract

I develop a new framework for analyzing land use change with dynamically optimizing
landowners. My empirical approach allows for unobservable heterogeneity and avoids the
burden of explicitly modeling the evolution of market-level state variables like input and
output prices. Using a rich new data set on land use in the United States, I estimate
a relatively large long-run cropland-price elasticity of 0.3. Compared to static estimates
using the same data, my dynamic estimates suggest that biofuels production leads to
dramatically more land use change and substantially smaller price increases in the long
run.
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1 Introduction

Empirical studies of land use change typically treat landowners as static decision makers de-
spite the fact that land use change is a fundamentally dynamic process, often involving switch-
ing costs (e.g., clearing forest to plant crops) and sometimes involving switching benefits (e.g.,
crop rotation). In this paper, I formulate and implement a flexible and tractable empirical
approach for analyzing land use based on a model of dynamically optimizing landowners.

The effects of many controversial policies concerning greenhouse gas mitigation, ecological
destruction, and agricultural policy depend crucially on how land use patterns respond to
economic changes. Changes in the area of cultivated land are an important aspect of agricul-
tural supply responses, so any question which depends on supply elasticities for agricultural
commodities can be said to depend, in part, on land use responses. Conversely, any policy
affecting agricultural markets can have indirect land use effects.

Indirect land use change has become a central concern in evaluating biofuels regulation.
Many governments mandate that some portion of their countries’ fuel supplies come from
biofuels.1 The primary feedstocks for biofuel production around the world are crops, especially
corn, sugarcane, and various oil crops. Thus, biofuels mandates effectively increase crop
demand.2 In the US, a staggering 35-40% of corn production has been used to produce ethanol
in recent years (US EPA, 2011). Properly evaluating the equilibrium effects of the increased
demand created by biofuels mandates requires an understanding of land use elasticities. On
the one hand, if cropland use responds little to changes in crop prices, elevated crop demand
will lead to elevated crop prices, and decreased use of crops for other purposes such as direct
human consumption and animal feed. On the other hand, a more elastic crop acreage response
would mitigate the effect on food prices, but result in higher environmental costs through
indirect land use change. The most influential recent research on the equilibrium effects of
biofuels relies on static models, both in estimating supply and demand elasticities (Roberts
and Schlenker, 2013) and in simulating equilibrium responses (Searchinger et al., 2008; Tyner
et al., 2010).

Static models remain common in empirical work on land use (Chomitz and Gray, 1996;
Fezzi and Bateman, 2011; Souza-Rodrigues, 2012), and some studies incorporate state depen-
dence without forward-looking dynamics (Nerlove, 1956; Lubowski et al., 2006). However,
static and myopic models of land use are likely to understate long-run land use responses.
Intuitively, landowners may respond more to long-run changes in the process governing price

1 In the US, bioethanol subsidies expired in January, 2012, but mandated levels of biofuel use remain in
effect, and the growing demands of the mandate continue to be met mostly by corn ethanol (US EPA, 2011,
2012). In 2011, the mandate of 13.95 billion gallons of biofuels represents about 9% of US gasoline consumption.
The EU mandates biofuels use on similar levels (Flach et al., 2012). Brazil’s mandate is larger in relative terms,
with 18-25% of Brazilian gasoline blends coming from bioethanol (Barros, 2012). China, India, and many other
countries have biofuels mandates.

2 There are now widespread efforts to develop cost-effective biofuel production strategies for feedstocks that
don’t compete with sources of human feed or animal food (e.g., algae). However, conventional biofuels remain
substantially less costly to produce for the time being.
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changes than they respond to year-to-year price variation in the data; i.e., landowners may
be more willing to pay the costs associated with bringing new land into crops in response
to a long-run price increase than in response to a temporary price increase. This creates an
external validity problem when static or myopic models are used for counterfactual policy
analysis; e.g., we might only observe short-run variation in the data, but one would expect
policy like the biofuels mandate to have a long-run price impact. Unfortunately, existing
studies on land use which account for forward-looking behavior are rare and largely confined
to models of irreversible decisions (Irwin and Bockstael, 2002; Vance and Geoghegan, 2002).

Using a new empirical framework, I estimate a dynamic discrete choice model of cropland
use in the United States with forward looking landowners, finding a long-run elasticity of crop
acreage with respect to crop prices in the neighborhood of 0.3. This elasticity is roughly ten
times larger than static elasticities estimated using the same data.

To give the results some context, I revisit Roberts and Schlenker’s (2013) assessment of
the effects of the US biofuels mandate. Comparing my long-run elasticity estimates using
dynamic model to static elasticities based on the same data, I find that taking dynamics into
account leads to a 160% larger land use effect and a 78% smaller price increase in the long
run.

This paper’s main methodological contribution is to show how a dynamic model of land
use can be estimated using a linear regression equation and without modeling how market-
level state variables evolve. The approach is analogous to the Euler equation approach which
has a long history in the context of single-agent dynamic models with continuous choice
variables (Hall, 1978). While most dynamic discrete choice estimation approaches rely on
evaluating Bellman equations (Rust, 1987; Aguirregabiria and Mira, 2002) or simulating the
model (Hotz et al., 1994; Bajari et al., 2007), my approach relies on estimating the realized
path of continuation values. Given that agents are small and have rational expectations, valid
moments for estimation can be constructed using realized continuation values despite the fact
that agents make decisions based on earlier expectations of the continuation values.3

Avoiding the need to model the evolution of market-level state variables is a major advan-
tage in the context of agricultural land use. The set of market-level variables which influence
farmers’ expected returns is large (e.g., input and output prices, technological conditions,
government policies, and crop stocks), and dealing with such a large state space would make
other estimation strategies infeasible without strong simplifying assumptions. Furthermore,
I can allow for unobservable supply shocks which may be serially correlated – because they
are unobservable, such shocks are difficult to handle when the empirical approach requires a
model of how all state variables evolve. The inclusion of these error terms is appealing given

3 Similar regression equation constructions could be applied to other single-agent dynamic discrete choice
applications with less restrictive assumptions than those used by previous studies; for instance, my approach
could be used to estimate demand for durable goods without having to assume that consumers have perfect
foresight (Conlon, 2010) or that prices evolve according to a particular sort of process (Hendel and Nevo, 2006;
Gowrisankaran and Rysman, 2011).
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the infeasibility of perfectly measuring every variable which shifts farmers’ incentives.4

Unobservable heterogeneity is another practical challenge which is difficult to avoid when
modeling land use. While detailed spatial information on soil and weather characteristics
provides a wealth of information about field-level heterogeneity, fields may differ on such a
multitude of characteristics that it may be infeasible to account for every payoff-relevant di-
mension of heterogeneity.5 When field-level characteristics cannot be quantified completely,
ignoring unobservable heterogeneity can lead to biased estimates (e.g., when ignored, persis-
tent unobservable heterogeneity may exaggerate switching costs). To estimate my dynamic
model with unobservable heterogeneity, I follow Arcidiacono and Miller (2011) in using the
EM algorithm to estimate a mixture model of choice probabilities.

The main data set is a rich new panel of land cover data spanning the entire contiguous
United States in recent years. I also construct a measure of expected returns to cropland
based on state-level price forecasts, county-level yield forecasts, aggregate cost data, and
government payment rates. Typically, the lack of cross-sectional variation in agricultural
commodity prices limits identification of complex models of agricultural supply. However,
cross-sectional variation in expected yields results in some cross-sectional variation in my
measure of expected returns.

In Section 2, I lay out a binary choice model of land use and derive a regression equation.
In Section 3, I describe data sources, the construction of the land use panel data set, and
the measurement of expected returns. Details regarding estimation are treated in Section 4,
including the extension to unobservable heterogeneity. Section 5 presents the results; Section
6 considers implications for biofuels policy; and Section 7 concludes.

2 Empirical framework

This section presents a flexible model of land use with dynamically optimizing agents. To
simplify the exposition, I consider fields of a homogeneous type. That is, fields may differ due
to differences in the history of actions they take, and due to idiosyncratic shocks, but they are
otherwise similar – e.g., they should face similar prices and weather patterns in expectation.
In Section 4, I explain how I estimate the model with different observable types and with a
mixture of unobservable types.

4 Typically, the only error terms empirical models of dynamic discrete processes allow for are conditionally
independent, ruling out serially correlated errors. However, it is hard to imagine measurement errors ever
satisfying such restrictive assumptions in the context of crop agriculture. Given the limited availability of
local price data, differences between measured and actual prices may be nontrivial, and there is little reason
to doubt that such errors will be serially correlated.

5For example, local economic characteristics such as proximity to processing, storage, and input manufac-
turing facilities may be almost as important as soil characteristics, but they are much harder to quantify at a
fine level of spatial resolution.
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2.1 Model

Field owners act to maximize the expected discounted profits from their fields. Each year,
during planting season, field owners decide whether to plant crops in their fields or not.
Formally, the choice set is J = {crops, other}.6 Let jit denote the land use of field i in year t.

There are two types of state variables in the model. First, the field state, kit, represents
characteristics specific to field i at time t. For example, field states may represent soil nutrient
levels, the state of the terrain, or enrollment in a government program. Let the set of field
states be denoted by K, which is assumed to be discrete.

The other state variable is the information set or market state, ωt, which includes all infor-
mation necessary to determine expected returns in the current period for each field state (e.g.,
futures prices, input costs, inventories) as well as information which is relevant in predicting
future market states (e.g., demand and policy conditions). The current market state is known
to all field managers but not fully observable to the econometrician. Let Ω denote the set of
possible market states.

During planting season, returns are uncertain even in the current year. For example,
weather is an intrinsic source of randomness in crop yields, and input and output prices
fluctuate over the course of the growing season (a stark example is the US drought during the
summer of 2012, which caused yields in the Midwest to fall far below expectations and prices
to rise well above expectations). I assume field managers are risk neutral so that expected
returns are all that is needed to model their decisions.

If field i is in state k at time t, the expected payoffs to land use j are

π (j, k, ωt, νit) = α0 (j, k) + αRRj (ωt) + ξjk (ωt) + νjit (1)

where Rj (ωt) is an observable (to the econometrician) component of expected returns, ξjk (ωt)
is an unobservable aggregate shock to expected returns, νjit is an idiosyncratic shock, and
α =

(
αR, {α0 (j, k)}j∈J,k∈K

)
is the vector of parameters to be estimated. For the purposes of

this section, take for granted that Rj (ωt) is available data; Section 3 explains how I construct
the expected returns variable.

The inclusion of the unobservable shock ξ in the profit equation is important given the
limitations of available data on farmer’s expected returns. Local data of input and output
prices for crops are not available, and there is very limited data on the returns to non-crop
land uses such as pasture land.

Dynamic incentives come from the dependence of the intercept term α0 (j, k) on the field
state k. While the assumption that the field state shifts only the intercept term is restrictive
(i.e., field states can affect switching costs but not productivity), it is difficult to identify the
effect of the field state on both intercepts and productivity in a short panel. Furthermore,
it is relatively common in the literature to restrict dynamics to only affect an intercept term

6The empirical approach I describe can be generalized to larger discrete choice sets. See Appendix A.6.
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(Claassen and Tegene, 1999; Munroe et al., 2004; Wu et al., 2004), so I adopt this strategy as
a starting point.

For the purposes of my estimation strategy, the important difference between field states
and market states is that field states must be observable and the econometrician must know the
process governing their evolution (or be able to estimate it). In contrast, the econometrician
does not need to observe all market-level state variables, and no functional form assumptions
are necessary on the process governing the evolution of the market state.

Assumption 1. (Small fields, no externalities) The market state evolves according to a
Markov process which is unaffected by changing the land use in any single field; i.e., the
conditional distribution of ωt+1 satisfies G (ωt+1|ωt, jit = j) = G (ωt+1|ωt) for all i and j.

The assumption of small fields implies that, although the process governing the evolution
of market states is endogenous in general, it may be regarded as exogenous by a small agent in
a competitive equilibrium. Given that agricultural commodity markets are highly integrated,
and changing an individual field’s usage plausibly has a negligible effect on prices and other
aggregate variables, the assumption that landowners are price-taking agents is plausible.7

While the assumption that there are no externalities across fields is arguably less plausible
as a general claim, few studies have made any attempt to model the economies of space in
crop agriculture.8 This paper focuses on developing a model of land use which can account
for dynamic decision making, and treating dynamics and spatial effects together may be an
important topic for future work.

Given Assumption 1, it is without loss of generality to assume that each landowner man-
ages a single field, so i can be used to refer to an agent or the field she manages. Without
market power or externalities across fields, maximizing the individual profits of several fields
separately is equivalent to maximizing their joint profits.

I assume that field states are a deterministic function of past land use, and that planting
crops is a renewal action always leading to the same field state.9 However, a field’s state
can evolve when it remains in non-cropland, potentially capturing several effects. First, if the
outside option is leaving the field idle, then the land might slowly revert to natural terrain, and

7The 2007 US Census of Agriculture reports that there were 310 million acres of harvested cropland in the
US spread over 1.3 million farms. Furthermore, 170 million acres of cropland were spread across farms of under
5000 acres in size, and The Land Report magazine claims that no American individual or business owns over
2.2 million acres of land (see the 2012 Land Report 100). Thus, ownership of cropland in the United States is
highly unconcentrated.

8Anecdotal evidence suggests that production complementarities across fields in different type of crops are
important for some farmers – for example, while there are powerful dynamic considerations driving the corn-
soybeans rotation (pest and soil nutrient management), another reason why farmers might keep half their
land in soybeans and half in corn (switching the two from year to year) is that the two crops can be planted
and harvested at slightly different times, potentially saving on labor costs. In some areas, rotation between
cropland and fallow land may similarly be driving by both dynamic considerations and economies of space.
Since I rule out the externalities across fields, these economies of space may be absorbed as dynamic effects.

9A renewal action is a special case of finite dependence. See Arcidiacono and Miller (2011) for a formal defi-
nition of finite dependence, and see Arcidiacono and Ellickson (2011) for an overview of how finite dependence
leads to simple estimation approaches.
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the costs of switching back to crops might increase during the reversion process. Alternatively,
in some areas leaving fields unplanted (fallow) is an important part of a dynamic management
process, much like crop rotation – in this case, planting crops may be more profitable after
the land is left fallow for a year.

Formally, I let the field state denote the number of years since crops were last planted in
the field, up to some limit k̄, implying that the set of possible field states is K =

{
0, 1, . . . , k̄

}
.

Formally, the state transition process is

κ+ (j, k) =

0 if j = crops

min
{
k + 1, k̄

}
if j = other.

(2)

Thus, if crops were planted in field i in year t−1, then ki,t = 0. If that same field is then used
for non-cropland in year t, then ki,t+1 = 1. If the field continues to be used for non-cropland
indefinitely, then ki,t+s = k̄ for s ≥ k̄. The special case with k̄ = 1 corresponds to a model
in which the profit equation is affected only by the previous land use (as in Claassen and
Tegene (1999), Lubowski (2002), Wu et al. (2004), Lubowski et al. (2006), and Lubowski et
al. (2008)).

Next, I adopt the standard logit model assumption.

Assumption 2. (Conditionally independent logit errors) Conditional on ωt and kit, νjit
is identically and independently distributed across i, j, and t with a type 1 extreme value
distribution.

Assumption 2 implies that differences in idiosyncratic error terms have a logistic distri-
bution, resulting in convenient expressions for value functions and conditional choice proba-
bilities. Without loss of generality, I normalize the variance of νjit to π2

6 , implying that the
distribution function is F (νjit) = exp (− exp (−νjit)).10

I now consider a field owner’s dynamic optimization problem. Let β represent a common
discount factor. Field owner i’s value function is defined as follows:

V (kit, ωt, νit) ≡ max
j∗

E

 ∞∑
s≥t

βs−tπ (j∗ (kis, ωs, νis) , kis, ωs, νis) |kit, ωt, νit

 . (3)

where the maximization is over all policy functions j∗ : K× Ω× RJ → J.
My empirical approach is very flexible with respect to the process governing the evolution

of the market state ωt. The process must be well behaved enough for the value function to
exist,11 Assumption 1 must hold, and estimation will require identifying assumptions on the
unobservable shocks ξ. However, the process governing the evolution of ωt does not have to

10The sensitivity parameter αR can be seen as a result of this normalization – i.e., αR is inversely proportional
to the variance of the idiosyncratic errors when they are measured in the same units as returns.

11See Bhattacharya and Majumdar (1989) for regularity conditions on G which guarantee the existence of
the value function.
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be modeled explicitly or estimated. Hereafter, I will mainly use t subscripts on functions and
variables which depend on ωt; e.g., Vt (kit, νit) ≡ V (kit, ωt, νit), and Rjt ≡ Rj (ωt).

The ex ante value function is the expectation of the value function before the realization
of idiosyncratic errors:

V̄t (k) ≡
ˆ
. . .

ˆ
Vt (k, (ν1, . . . , νJ)) dF (ν1) . . . dF (νJ) . (4)

The conditional value function represents the expected discounted returns conditional on
an action, but before the realization of νit:

vt (j, k) ≡ π̄t (j, k) + βEt
[
V̄t+1

(
κ+ (j, k)

)]
. (5)

where π̄t (j, k) ≡ π (j, k, ωt, 0). Note that the expectation of the value function at t + 1 does
not need to be conditioned on j because of Assumption 1.

Next, Assumption 2 implies a simple expression for conditional choice probabilities. Defin-
ing pt (j, k) ≡ Pr (jit = j| kit = k, ωt),

pt (j, k) = exp (vt (j, k))∑
j′∈J exp (vt (j′, k)) . (6)

Assumption 2 also implies a convenient expression for the mean value function:

V̄t (k) ≡ ln

∑
j∈J

exp (vt (j, k))

+ γ (7)

where γ is Euler’s gamma.

2.2 Deriving a regression equation

In this section, I derive a linear regression equation for the model presented above. Ap-
pendix A.6 explains how this derivation can be generalized to larger choice sets and different
assumptions on the idiosyncratic error terms.

Pesendorfer and Schmidt-Dengler (2008) show that it is possible quite generally to con-
struct representations of equilibrium conditions in dynamic discrete models which are linear
in parameters (see Lemma 1 in their appendix). However, their construction relies on an
explicit model of how all state variables evolve. The distinguishing aspect of the construction
I present here is that it avoids this requirement. Given that agents are small and have rational
expectations, market-level state variables can be integrated out into an expectational error
term which is a “true regression disturbance,” uncorrelated with any variables in ωt (as in
Hall (1978)).

The derivation amounts to constructing an Euler equation out of conditional choice proba-
bilities. Traditionally, Euler equations in economics involve marginal changes in a continuous
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choice variable. Naturally, the discrete choice analog of an Euler equation requires that we
consider two distinct alternative actions, rather than a marginal change, but in both cases,
the Euler equation equates the benefits of a change today with the costs of a compensating
change tomorrow.

I begin with the Hotz-Miller inversion, which states that there is an invertible mapping
between differences in conditional value functions and conditional choice probabilities. For
the case of logit errors, the inversion is derived by differencing equation (6) across j:

ln
(
pt (j, k)
pt (j′, k)

)
= vt (j, k)− vt

(
j′, k

)
. (8)

Rewriting the Hotz-Miller inversion for the crop choice model as a relationship between
ex ante current profits, continuation profits, and conditional choice probabilities,

π̄t (j, k)− π̄t
(
j′, k

)
− ln

(
pt (j, k)
pt (j′, k)

)
= βEt

[
V̄t+1

(
κ+ (j′, k))]− βEt [V̄t+1

(
κ+ (j, k)

)]
(9)

In binary choice logit models, the conditional choice probability term has a very simple inter-
pretation: ln

(
pt(j,k)
pt(j′,k)

)
is equal to the cutoff ∆ν∗t such that if νjit − νj′it ≥ ∆ν∗t , field i will be

in land use j, and otherwise field i will be in land use j′. Thus, the left-hand-side of equation
(9) expresses the minimum difference in expected profits during period t which justifies the
choice of land use j rather than j′ in period t, given a particular field state k. The right hand
side expresses the expected loss in continuation values resulting from the choice of j instead
of j′.

The next step is to replace the expected difference in continuation values with its realiza-
tion and expectational errors:

π̄t (j, k)− π̄t (j′, k)− ln
(
pt(j,k)
pt(j′,k)

)
= β

(
V̄t+1

(
κ+ (j′, k)

)
− V̄t+1

(
κ+ (j, k)

))
+εVt (j′, k)− εVt (j, k)

(10)

where
εVt (j, k) ≡ β

(
Et
[
V̄t+1

(
κ+ (j, k)

)]
− V̄t+1

(
κ+ (j, k)

))
.

The final step in constructing the regression equation amounts to replacing differences
in continuation values (V̄t+1) with terms that will cancel. To do this, I use a convenient
relationship between ex ante and conditional value functions, which can be derived by adding
and subtracting vt (j, k) from equation (7), and substituting using equation (6):

∀j : V̄t (k) = vt (j, k)− ln (pt (j, k)) + γ. (11)

Equation (11) is a special case of Lemma 1 in Arcidiacono and Miller (2011), and versions of
it also appear in Altug and Miller (1998) and Arcidiacono and Ellickson (2011).

Note well that equation (11) holds for any land use j. It is particularly convenient to
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apply equation (11) with j set equal to a renewal action jre, where jre satisfies κ+ (jre, k) =
κ+ (jre, k′) for any field states k and k′. Choosing a renewal action for two different fields in
period t+ 1 will bring the fields into the same field states in period t+ 2, regardless of what
field states they were in period t+ 1.12

Replacing the continuation values in equation (10) using equation (11),

π̄t (j, k)− π̄t (j′, k)− ln
(
pt(j,k)
pt(j′,k)

)
= β

(
vt+1

(
jre, κ

+ (j′, k)
)
− vt+1

(
jre, κ

+ (j, k)
))

−β
(

ln
(
pt+1(jre,κ+(j′,k))
pt+1(jre,κ+(j,k))

))
+εVt (j′, k)− εVt (j, k) .

(12)

The conditional value function terms for period t + 1 could be written as profits in period
t + 1 plus continuation values in period t + 2. However, because jre is a renewal action, the
continuation values in period t+ 2 cancel, leaving

vt+1
(
jre, κ

+ (j′, k))− vt+1
(
jre, κ

+ (j, k)
)

= π̄t+1
(
jre, κ

+ (j′, k))− π̄t+1
(
jre, κ

+ (j, k)
)

(13)

Finally, the Euler equation comes from substituting equation (13) into equation (12):

π̄t (j, k)− π̄t (j′, k)− ln
(
pt(j,k)
pt(j′,k)

)
= β

(
π̄t+1

(
jre, κ

+ (j′, k)
)
− π̄t+1

(
jre, κ

+ (j, k)
))

−β ln
(
pt+1(jre,κ+(j′,k))
pt+1(jre,κ+(j,k))

)
+εVt (j′, k)− εVt (j, k) .

(14)

As explained above, the left-hand side represents the difference in continuation profits neces-
sary to justify the choice of land use j over land use j′ in period t. Now, the right hand-side
represents the expected discounted difference in profits in period t+1 when an action is taken
which compensates for the impact of the period t land use on the field state, plus a term which
corrects for the fact that this action isn’t always optimal. This correction is possible thanks
to equation (11), which allows one to forward calculate the unconditional value function at
time t + 1 using any action at time t + 1. As shown in Appendix A.6, it turns out that
the Hotz-Miller inversion makes this possible generally (not just for the assumption of logit
errors).

Letting j = crops, j′ = other, and jre = crops, the Euler equation (14) can be rearranged
into the following linear regression equation:

Ytk = ∆̃α0k + αR∆Rt + ∆̃ξtk + ∆εVtk (15)
12Renewal actions are a special case of finite dependence, defined by Arcidiacono and Miller (2011).
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where
Ytk ≡ ln

(
pt(crops,k)
pt(other,k)

)
+ β ln

(
pt+1(crops,0)

pt+1(crops,κ+(other,k))

)
∆̃α0k ≡ α0 (crops, k)− α0 (other, k)

+β
(
α0 (crops, 0)− α0

(
crops, κ+ (other, k)

))
∆Rt ≡ Rcrops,t −Rother,t
∆̃ξtk ≡ ξcrops,k,t − ξother,k,t + β

(
ξcrops,0,t+1 − ξcrops,κ+(other,k),t+1

)
,

∆εVtk ≡ εVt (crops, k)− εVt (other, k) .

(16)

Notice that the dependent variable Yt,k can be constructed from estimated conditional choice
probabilities and the discount factor. This calls for a two-stage estimation procedure: first,
estimating conditional choice probabilities to construct an estimate of Yt,k; then, estimating
the linear regression equation above with the constructed dependent variable.

The importance of the perfectly competitive setting is that the econometrician effectively
observes the relevant counterfactuals in which agents had taken different actions than they
actually took. That is, suppose that field i is in land use jit in year t, resulting in field state
ki,t+1 = k in year t + 1. The realized choice probabilities in period t + 1 for fields in state
k′ 6= k are a valid estimate of what the choice probabilities would have been for field i in
period t + 1 if field i had taken a different course of actions leading to ki,t+1 = k′. In an
imperfectly competitive setting, we don’t observe these counterfactuals because the agent’s
own decision in period t has a non-trivial impact on the state of the world in period t+ 1.

Some comments on identification are in order. First, exclusion restrictions on the com-
posite error term ∆̃ξtk + ∆εVtk are needed for estimation. Because the expectational error
term ∆εVtk is mean-uncorrelated with any variables in the information set ωt by construction,
it satisfies standard exclusion restrictions by construction.13 This same point was famously
made by Hall (1978) in the context of consumption-savings decisions.

In contrast, substantive assumptions must be made about the unobservable shock term ξ

to justify an estimator. For example, assuming E
(
∆̃ξtk|∆Rt (k)

)
= 0, ordinary least squares

will deliver consistent estimates. If the unobservable shocks ξ are potentially correlated with
observable returns Rt but uncorrelated with some observed variable in ωt, then linear instru-
mental variables estimators can be used.

Another issue is whether the original intercept terms (α0 (j, k)) can be recovered from the
intercepts of the regression equation (∆̃α0k). This requires some restrictions; in fact, dynamic
discrete choice models are generally not fully identified without some restrictions (Magnac and

13To see this formally, let xt represent some instrumental variable, and notice that

E
[
xtε

V
t (j, k)

]
= βE

[
xt
(
E
[
V̄t+1

(
κ+ (j, k)

)
|ωt
]
− V̄t+1

(
κ+ (j, k)

))]
= βE

[(
E
[
xtV̄t+1

(
κ+ (j, k)

)
|ωt
]
− xtV̄t+1

(
κ+ (j, k)

))]
= 0

where the second equality follows as long as xt is within the time t information set, and the final equality
follows from the law of iterated expectations.
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Thesmar, 2002). The fact that the model is not identified in its full generality is easy to see
in this setting, for estimating equation (15) can only deliver |K| values of ∆̃α0k, but there are
2 |K| − 1 values of α0 (j, k) (after normalizing). The following assumption effectively limits
the number of distinct values of α0 (j, k).

Assumption 3. The payoffs to non-cropland do not depend on the field state.

Given Assumption 3, the model is fully identified, and parameters of the payoff function
can be recovered from estimates of equation (15). Since it is harmless to rescale the payoff
function by adding a scalar, it is generally possible to normalize α0 (j, k) = 0 for a single
choice of (j, k). Assumption 3 implies that α0 (other, k) does not depend on k, so I normalize
α0 (other, k) = 0 for all k. With this normalization, α0 (crops, k) can be recovered from ∆̃α0k

with a little algebra.14

3 Data and measurement

In this section, I describe the two data inputs used to estimate a model of US cropland. First,
I describe how I construct a rich panel data set on land use in the United States. Subsequently,
I explain the several steps involved in constructing a measure of expected returns R.

While the effects of biofuels mandates (as well as any other policies which affect agricultural
markets) depend on supply elasticities around the world, the United States is a particularly
important player in global agricultural markets, for the US is the world’s top exporter of
agricultural products in general and cereal crops in particular.15 By any measure, US crop
production is a large industry, with $143 billion in sales in 2007 (US Census of Agriculture).
Among the world’s four most important crops (wheat, rice, corn, and soybeans, which account
for 75% of crop production worldwide in caloric terms), US production accounts for roughly
23% of worldwide output in caloric terms (Roberts and Schlenker, 2013).

3.1 Land use data

The National Agricultural Statistics Service’s Cropland Data Layer (CDL) features finely
detailed land cover data for the United States.16 The CDL’s land cover classifications include
over 50 different crops as well as about 20 non-crop classifications (e.g., grassland, forest,

14Specifically, α0 (crops, k) can be recovered from ∆̃α0 (k) as follows:

α00 = βk̄∆̃α0k̄ +
k̄−1∑
k=0

βk (1− β) ∆̃α0k,

and the other α0 (crops, k) parameters could be solved for by proceeding forward through k, e.g., α0 (crops, 1) =
β−1 ((1 + β)α0 (crops, 0)− ∆̃α0 (0)

)
.

15Based on export values, FAOSTAT Database on Agriculture, visited 10/31/2012.
16See http://nassgeodata.gmu.edu/CropScape/ for data and Boryan et al. (2011) for a description data

inputs, classification system, and validations procedures.
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water, several levels of developed land). Since 2008, the annual CDL data have provided
field-level resolution (30m or 56m) of the entire contiguous United States.

I construct a panel of land use outcomes using the CDL data for 2006-2012, avoiding CDL
data from before 2006 because they are less reliable and cover fewer states. Fields are defined
as points on an 840m sub-grid of the CDL’s grid. The CDL covers the entire contiguous US
2008-2012, but only some states in 2006 and 2007. Consequently, my panel is unbalanced,
with 5-7 land use observations per field.

After excluding water, protected land, and developed land, remaining points were classified
as cropland or non-cropland. Table 1 lists the share of points in cropland by point and the
the initial year in the panel by state.

The CDL data performs poorly when it comes to distinguishing among unmanaged grass-
land, pasture, and hay.17 While hay might be more naturally categorized as cropland, this
limitation of the data leads me to assign it to the non-cropland category, lumping it together
with grassland, pasture and various forms of unmanaged land such as shrubland, forests, and
wetlands.

Further details regarding the land use data are included in Appendix B.1.

3.2 Crop-specific returns

Before constructing a measure of the average returns to cropland, I construct returns sepa-
rately for each of eleven crops: corn, sorghum, soybeans, winter wheat, durum wheat, other
spring wheat, barley, oats, rice, upland cotton, and pima cotton (denote this set of crops by
C). These crops account for about 94% of harvested cropland (excluding hay) in the US,
according to the 2007 Census of Agriculture.

Expected returns should be a reflection of farmers’ incentives during planting season, when
land managers must commit to a particular land use. I bring together data on prices received
by farmers, futures prices during planting season, costs, yields, and weather to construct
expected returns at the county level.

In the models I estimate, each US county defines an observable type of field. In some
specifications, I also allow for unobservable within-county heterogeneity in fields’ parameters,
but the returns variable is always measured at the county level. Letting z index counties, the
expected returns to planting crop c in county z in year t are given by

Rczt = (Pczt − eczt) · Y IELDczt (17)

where Pczt represents the expected output price (including government payments), Y IELDczt

17The distinctions among grassland, hay, and pasture have more to do with management practices than the
type of plant covering the ground, so it is unsurprising that these land use types are difficult to tell apart from
space. Unfortunately, these difficulties go beyond satellite scan data. Hay and pasture are hard to deal with in
general because “hay farming” encompasses a diverse set of farming practices and plant species. Several quite
different grasses and legumes are all considered hay, and it’s not clear where to draw the line between hay and
pasture – e.g., how should we classify a field of grass which is both harvested and used for grazing livestock?
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Table 1: Summary statistics for land use panel

State counties in sample points in sample share in crops initial year
Alabama 49 121006 0.050 2009
Arkansas 26 58068 0.541 2007
California 15 74105 0.260 2008
Colorado 30 187300 0.135 2009
Georgia 67 88362 0.171 2009
Idaho 38 202990 0.085 2008
Illinois 102 169048 0.726 2007
Indiana 92 108929 0.570 2007
Iowa 99 180652 0.707 2007
Kansas 105 277396 0.387 2007
Kentucky 60 68197 0.194 2009
Louisiana 32 70728 0.207 2007
Maryland 22 25276 0.236 2009
Michigan 64 122998 0.264 2008
Minnesota 78 200920 0.495 2007
Mississippi 49 89742 0.221 2007
Missouri 81 152978 0.301 2007
Montana 49 443806 0.078 2008
Nebraska 90 237878 0.359 2007
New Jersey 13 12372 0.110 2009
New York 49 138677 0.080 2009
North Carolina 77 126148 0.160 2009
North Dakota 53 224953 0.409 2007
Ohio 72 102982 0.460 2007
Oklahoma 60 186974 0.216 2007
Oregon 20 181990 0.046 2008
Pennsylvania 56 118894 0.107 2009
South Carolina 33 74199 0.097 2009
South Dakota 62 236735 0.317 2007
Tennessee 55 81522 0.161 2009
Texas 174 547901 0.178 2009
Utah 13 140410 0.012 2009
Washington 14 74520 0.255 2007
Wisconsin 65 156457 0.223 2007
Wyoming 11 113773 0.022 2009

14



is the expected yield (output per acre), and eczt represents a unit production cost.18

The unit cost variable ectz is obtained from cost and returns estimates published by the
USDA Economic Research Service, computed by dividing average operating costs by average
yield at the level of ERS Resource Regions. Since many costs are incurred relatively early
in the planting year, it is arguably reasonable to use realized costs in constructing expected
returns.

The expected price variable Pczt is constructed using futures prices, historical state-level
prices received, and information on government payments. County-level expected yields
Y IELDczt are based on historical yields and weather data. In the remained of this section,
I provide an overview of how expected prices and expected yields are constructed. Further
details can be found in Appendix B.

3.3 Expected yields

I estimate a model of yields similar to those estimated by Schlenker and Roberts (2009):

ln (Y IELDczt) = θcz + θcwWzt + θct+ εYczt (18)

where Wzt includes weather variables described in Appendix B, θcz is a county-level fixed
effect, and θc is a linear time trend. I estimate the model using 1981-2005 data. Separate
models are estimated for each crop and ERS production region.

County-level expected yields are simply fitted values to equation (18) using the county’s
historical mean values of Wzt.

For some county-crop pairs, NASS yield data is unavailable (or only available for a few
years). For such county-crop pairs, I impute fixed effects (θcz) based on a weighted average
of the fixed effects of nearby counties, as long as some other county within 160km is included
in the fixed effects regression (see Appendix B.3 for details).

Figures 6-8 illustrate that my expected yields variables are good forecasts of average
county-level yields between 2006 and 2012 (noting that no data from 2006-2012 were used to
make the forecasts). The yield forecasts prove effective even for counties with fixed effects
imputed from neighbors.19

3.4 Expected prices

Expected prices are based on futures contract prices for corn, soybeans, wheat, oats, and
cotton from the Chicago Board of Trade (CBOT) and New York Board of Trade (NYBOT)
together with information about government payments.

18Strictly speaking, equation (17) assumes more than just risk-neutrality, for it ignores the covariance between
realized prices and yields. However, this covariance is plausibly small for an individual farmer.

19For some county-crop pairs, NASS estimates feature little or no county-level information about yields prior
to 2005, but some information about yields since 2006 – these are the crop-county pairs which I’m able to plot
in Figures 6-8 although they were not included in the fixed effects regressions. For many county-crop pairs
with imputed fixed effects, no validation data is available.
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Figure 1: Expected market prices over time
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Expected prices in spring are forecasts for November-December of the same calendar year. Expected
prices in fall are for November-December of the following calendar year. Boxes span the median 50% of
expected market prices by state. Whiskers span the full distribution of expected market prices within
a season.

I use a simple forecasting model to map futures prices on commodity exchanges to expected
prices received by farmers. I estimate the following equation using 1997-2012 data:

P reccrt = θ1cr + θ2crP
fut
ct + εPcrt (19)

where P reccrt is the price received for crop c in state r in year t. The reference price P futct

corresponds the price, during planting season, of a futures contract expiring in November or
December of year t. The reference price contract for each crop is listed in Table 4.

Expected market prices are defined as fitted values to equation (19):

P̃crt ≡ θ̂1cr + θ̂2crP
fut
ct . (20)

Since the expected returns variable represents land owners’ incentives at the time when land
use decisions are made, it should coincide with planting season (or perhaps precede it slightly,
since crop insurance sign ups, fertilizer application, and some input purchases must be made
in advance of planting). Unfortunately, there is considerable heterogeneity with respect to
the timing of crop planting. The biggest difference comes from the fact that most crops are
planted in the spring, but some are planted in the fall, including winter wheat. To deal with
differences in planting seasons, I actually estimate two versions of equation (19), corresponding
to the two different planting seasons. Expected market-level prices for each county are taken
from one version or the other, depending on which crops are typically planted in the county
(see Appendix B for details).

Figure 1 displays the distribution (over US states) of corn and wheat expected market
prices for each year and and planting season.
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Because of government payments, expected market prices do not fully represent the effec-
tive price per unit of output that a farmer can expect. I take into account counter-cyclical
payments which kick in when market prices fall below a target prices.20 The expected price
received by farmers is

Pczt ≡ max
{
P̃czt, TPct

}
,

where TPct denotes the target price for crop c in year t as reported by the Farm Service
Agency.

3.5 Aggregating over crops

To construct an aggregate measure expected returns to planting crops, I take a weighted
average of expected returns:

Rcrops,z,t =
∑
c∈Cz

AcrRczt∑
c∈Cz

Acr
(21)

where s denotes the US state containing county z, Acr is the average annual harvested area of
crop c in state r (from 1981-2006), and Cz is the set of crops for which I am able to construct
Rczt.

Differences in the set of crops used to construct expected returns Cz across counties is a
potential cause for concern. This problem is alleviated to some extent by computing yields
forecasts even for counties in which historical yield data for crop c is limited or non-existent
(as described in Section 3.3). However, this strategy relies on imputing intercept terms based
on intercept terms for nearby counties, and it would be unrealistic to extend the definition of
nearby counties too far.

To ensure that the set Cz does not vary too much across counties within a given US state,
a county z is included in my sample only if∑

c∈Cz
Aczt∑

c∈CAczt
> .75 (22)

for every year t. In other words, I drop county z if I am not able to construct Rczt for crops
which account for at least 90% of the acreage within C at the state level.

Other counties are excluded from my estimation because the crops in C constitute a small
fraction of the crops planted in those counties (see Appendix B.5 for details).

After all exclusions, there are 1975 counties remaining in my sample. Collectively, they
contain over 90% of US cropland, according to the 2007 Census of Agriculture. Table 1
displays the number of counties in the sample by US state, and Figure 4 is a map illustrating
which counties are in the sample.

20In a previous version of the paper, direct payment rates (government subsidies which do not depend on
market conditions) were also included, but in most cases such payments do not depend on the decision of
whether to plant crops or not in the US. If a farmer is eligible for direct payments, she will generally receive
them even if she doesn’t actually plant crops (as long as her land is still used for agricultural purposes).
Similarly, planting new acres will not immediately increase the direct payments a farmer is eligible to receive.
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3.6 Net expected returns

Estimation is based on the difference in crop returns between cropland and non-cropland:

∆Rz,t = Rcrops,z,t −Rother,z,t.

For the returns to non-cropland, I use pasture land rental rates published on line by NASS.
County-year pasture land rental rates are used when available, and state-year rental rates
otherwise. When neither county- nor state-level rental rates are available, I simply set
Rother,z,t = 0.

Pasture land rental rates generally have lower variance than cropland returns, and incor-
porating them into the measure of ∆Rz,t makes little difference to the results, for cropland
returns account for most of the variation in ∆Rz,t. This is fortunate because information on
the returns to pasture land is much harder to come by than information on the returns to
cropland. While rental rates are naturally correlated with returns, they may be imperfectly
correlated, and they may respond little to short-run variation in returns.

4 Estimation

The model presented in Section 2 was focused on a set of fields which shared profit function
parameters α, observable returns Rt and unobservable shocks ξt. To extend the model to have
observable field-level heterogeneity, I simply index these variables by the observable type (αz,
Rzt, and ξzt), noting that the regression equation can be constructed separately for each type
z.

Consistent with the notation in Section 3, observable characteristics z correspond to coun-
ties. Observable characteristics could also be based on soil characteristics and weather pat-
terns, but the variation in these variables within-county is relatively small.21 In Section 4.2,
I extend the estimation of the model to observable heterogeneity.

4.1 Choice probability smoothing

In principle, conditional choice probability estimates can be obtained directly from choice
data as frequencies estimates. However, a problem with frequency estimates is the possibility
that some estimated frequencies will be zero or one, in which case the Hotz-Miller inversion
is not well-defined (for logit errors or any other distributional assumption with full support),
and the regression equation cannot be constructed as in Section 2.

I smooth choice probability estimates by taking a weighted average of frequency estimates,
with weights inversely proportional to distances between counties. The smoothed estimates

21Initially, I experimented with using only agro-climactic characteristics to define field types, but I found
that there were persistent differences in yields across counties which could not be explained by the underlying
agro-climactic characteristics of the fields within counties. Thus, counties plausibly capture some important
spatial economic characteristics.
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are:
p̂zt (crops, k) =

∑
z′∈Zr wzz′

∑
i∈Iz′ Dit (j, k)∑

z′∈Zr wzz′
∑
i∈Iz′ Dit (k) (23)

where Dit (j, k) = 1 if jit = j and kit = k and Dit (j, k) = 0 otherwise, Dit (k) is defined
similarly, Iz is the set of fields in county z, and Zr is the set of counties within US state r. The
smoothing weight wzz′ is inversely proportional to the square of the distance between counties:
wzz′ ≡ (1 + dzz′)−2, where dzz′ is the distance between z and z′ measured in kilometers. If z
and z′ are not within the same US state, then wzz′ = 0, even if they are adjacent.22 Cross-
county smoothing weights are small; the median county has 98% of the total weight on its
own frequency estimate, and the lowest own-county weight is about 95%.

After smoothing, I use the resulting conditional choice probabilities to construct dependent
variables Yzt, as in the derivation of equation (15).

4.2 Extension to unobservable heterogeneity

Ignoring unobservable heterogeneity can bias dynamic estimation results. For example, the
persistence of a particular land use could be rationalized by appealing to switching costs or
unobservable heterogeneity. When both factors are present, failure to account for unobserv-
able heterogeneity may lead to exaggerated switching cost estimates. While it’s difficult to
predict how counterfactuals will be affected by unobservable heterogeneity ex ante, it’s worth
assessing how incorporating unobservable heterogeneity affects the results, if only to evaluate
its importance in obtaining reliable estimates of agricultural supply responses.

As described above, the empirical approach without unobservable heterogeneity involves
first estimating conditional choice probabilities, then constructing and estimating a regres-
sion equation. With unobservable heterogeneity, I follow the same two steps, but the first-
stage estimation of CCP’s involves the estimation of a mixture model using the Expectation-
Maximization (EM) algorithm, which Arcidiacono and Miller (2011) introduced to the esti-
mation of dynamic discrete choice models with unobservable heterogeneity.

I assume that each field has a persistent unobservable binary characteristic: ζi ∈ {0, 1}.
We can think of ζi = 1 as indicating that field i is relatively well suited to cultivation. In
contrast, fields with ζi = 0 might have poor soil or steep terrain features which would make
it difficult to cultivate the field.

Identification of dynamic discrete choice models with unobservable heterogeneity is a rel-
atively new topic, so it’s worth commenting on how this model is identified. Conditional on
a field’s state in period t, lagged land use decisions should have no impact on its current land
use decision. However, we might observe in the data that fields with a given state k at time t
are more likely to be in crops if they have also been in crops for each of the five years before t.
If we’re confident in the model of field states, then the persistence of cropland beyond what

22I measure the distance between counties in terms of the distance between centroids of the counties. The
centroid of a county was calculated by averaging the coordinates of all points in my sample.
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can be explained by field states may be evidence of unobservable heterogeneity. Put broadly,
identification of unobserved heterogeneity comes from correlations in agents’ decisions over
time which are cannot be explained by state dependence. Consequently, the identification of
unobservable heterogeneity relies crucially on the model of how field states evolve.23

Some new parameters are involved in the mixture model. Each county has an unrestricted
joint distribution of unobservable types and field states in the initial period:

µz (ζ, k) ≡ Pr (ki1 = k, ζi = ζ|i ∈ Iz) (24)

where Iz is the set of fields in county z. Furthermore, conditional choice probabilities must
now be indexed by the unobservable characteristic: pzζt (j, k).

The posterior distribution on the unobservable type ζ for a given field is a function of
type-specific conditional choice probabilities, the initial distribution of unobservable types µz,
and the field’s land use history:

qiζ ≡ Pr (ζi = ζ| ji,ki) = µz (ζ, ki1)
T∏
t=1

pzζt (jit, kit) (25)

where ji = (ji1, ji2, . . . , jiT ), and ki = (ki1, ki2, . . . , kiT ).
The EM algorithm iteratively updates estimates of µ, p, and q until convergence. Let the

superscript (m) denote values at themth iteration. The E step updates posterior probabilities
q̂

(m)
iζ based on CCP estimates p̂(m)

zζt (crops, k) and prior probabilities µ̂(m)
zζ (k):

q
(m)
iζ = µ̂

(m)
zζ (ki1)

T∏
t=1

p̂
(m)
zζt (jit, kit) . (26)

The M step goes in the other direction, estimating conditional choice probabilities and
initial type probabilities, taking the posterior probabilities q(m) for granted. Conditional
choice probabilities estimates (at the mth iteration) can be computed as follows:

p̂
(freq,m)
zζt (j, k) =

∑
i∈Iz q

(m−1)
iζ Dit (j, k)∑

i∈Iz q
(m−1)
iζ Dit (k)

, (27)

p̂
(m)
zζt (j, k) =

∑
z′∈Zs wzz′ p̂

(freq,m)
z′ζt (j, k)∑

z′∈Zs wzz′
, (28)

where Dit (j, k) = 1 if jit = j and kit = k and Dit (j, k) = 0 otherwise; similarly for Dit (k).
Notice that p̂(freq,m)

zζt (crops, k) is the analog of a frequency CCP estimate, but weighted by
posterior type probabilities. Naturally, p̂(m)

zζt (other, k) = 1− p̂(m)
zζt (crops, k).

23For my model, Kasahara and Shimotsu (2009), Proposition 4, implies that at least three periods of ag-
gregate county-level CCP’s (pzt) are generically sufficient to identify type-specific CCP’s (pzζt) and the initial
type-state distribution function (µz).
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I update the prior distribution of field states and unobservable types as follows:

µ̂
(m)
zζ (k) =

∑
i∈Iz q

(m−1)
iζ Di1 (k)∑

i∈Iz q
(m−1)
iζ

. (29)

The EM algorithm involves iterating on the E step (equation (26)) and the M step (equations
(27-29)) until convergence.

The log-likelihood function for this mixture model can be written as follows:

∑
z

∑
i∈Iz

log

∑
ζ

µz (ζ, ki1)
T∏
t=1

pzζt (jit, kit)

 . (30)

If it were the case that only own-county weights were non-zero, the above algorithm would
indeed be a traditional implementation of the EM algorithm to maximize a likelihood function.
However, in general the algorithm is non-standard in that it does not converge to a local
maximum of the likelihood function. In particular, the way conditional choice probabilities
are updated in equations (27-28) does not necessarily increase the likelihood function, so
iterations do not necessarily monotonically increase the likelihood function.

The lack of the EM algorithm’s traditional monotonicity property removes the theoretical
guarantee that the above algorithm will converge. However, as pointed out by Arcidiacono and
Jones (2003), if it does converge (which it always does, in my experience), then it converges
to values which satisfy equations (26-29). Then, these equations can be seen as defining a
method-of-moments estimator, and the EM algorithm can be seen as a tool for implementing
that method-of-moments estimator.

4.3 Identifying assumptions

The returns to competing land uses are plausibly correlated with variation in crop returns
both in the cross section and over time. Note that my only measure of returns to non-cropland
is an estimate of rental rates for pasture land. For some counties, I am missing these data, and
it is a crude measure in any case. Any unmeasured variation in returns to the non-cropland
alternative will be absorbed by the unobservable shock ξ. Livestock and crop output prices are
correlated because feed grains are an important input in livestock production. Therefore, the
expected returns to grazing livestock (and the unobservable shock term) is likely correlated
with crop returns over time. Furthermore, endogeneity problems in the cross section can result
from the fact that land which is productive in growing crops is typically also productive in
growing forage.

For these reasons, it is important to control for correlations between observed and unob-
served returns in both the cross section and over time. To deal with correlations between
unobserved and observed returns in the cross section, I include county-level fixed effects. To
allow for some correlations between unobserved and observed returns over time, I assume
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only that period-t levels of observed returns R are uncorrelated with subsequent changes in
unobserved returns ξ, allowing for correlation between the levels of observed and unobserved
returns.

In the remainder of this section, I lay out the regression equations and identifying assump-
tions explicitly. To simplify notation, let n = (z, ζ, k). A linear regression equation can be
written out for a given choice of n:

Ynt = ∆̃α0n + αRζ∆Rnt + ∆̃ξnt + ∆εVnt (31)

where the differenced variables are defined in equation (16).
Equation (31) seems to call for a standard fixed effects estimation strategy. However, this

would implicitly require implausible identifying assumptions.
The rational expectations assumption implies the following moments:

∀t : E
[
∆εVnt∆Rnt

]
= 0. (32)

However, fixed effects estimation requires a stronger assumption:

∀t, t′ : E
[
∆εVnt∆Rnt′

]
, (33)

which is not implied by the model and indeed unlikely to be true when considered carefully. For
example, condition (33) requires the expectational error term for period t to be uncorrelated
with returns in period (t+ 1). Recalling that the expectational error term is the difference
between the time-t expectation of the time-(t+ 1) value function and its realization, of course
returns in period (t+ 1) are one of the most important determinants of the expectational
error term for period t.

A similar identification problem is considered by Arellano and Bond (1991), and their
solution applies. Specifically, rather than using the standard fixed effects estimator, a first
differences strategy can be used to remove the fixed effects, and the earlier values of explana-
tory variables (or further lagged values) can be used as instruments.

Formally, after taking first differences of equation (31),

Yn,t+1 − Ynt = αRζ (∆Rn,t+1 −∆Rnt) +
(
∆̃ξn,t+1 − ∆̃ξnt

)
+
(
∆εVn,t+1 −∆εVnt

)
. (34)

We can then consistently estimate αRζ using equation (34) with ∆Rnt as an instrument for
(∆Rn,t+1 −∆Rnt) given the identifying assumption:

E
[
∆Rnt

(
∆̃ξn,t+1 − ∆̃ξnt

)]
= 0,

noting that E
[
Rnt

(
∆εVn,t+1 −∆εVnt

)]
= 0 follows from the rational expectations assumption.

The instruments I use are the lagged returns variable, expected caloric yields, and a
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constant term. I use two-stage GMM, first using two-stage least squares, and then using the
estimated residuals to construct a weighting matrix for a second GMM estimation.

4.4 Static and myopic models

A myopic model features agents who lack forward-looking behavior but still allows for state
dependence (i.e., the profit function may depend on the field state). In other words, a myopic
model is a special case of the model described above with β = 0.

The regression equation for a myopic model (without unobservable heterogeneity) can be
written as follows:24

ln
(
pzt (crops, k)
pzt (other, k)

)
= α0zk + αR∆Rzt + ξztk. (35)

Equation (35) makes it clear why ignoring forward looking behavior might lead to biased
parameter estimates. If β > 0, the dependent variable in the regression equation implied by
the model is

Ytk = ln
(
pzt (crops, k)
pzt (other, k)

)
+ β ln

(
pz,t+1 (crops, 0)

pz,t+1 (crops, κ+ (other, k))

)
. (36)

Thus, the dependent variable in the myopic model is missing a dynamic correction term if
β > 0.

Static models are more restrictive than myopic models in that they also rule out state
dependence – formally, a static model is a special case of the model in which the set of field
states is degenerate – i.e., k̄ = 0 and K = {0}. The regression equation for a static model is
similar to equation (35), but with no dependence on k:

ln
(
pzt (crops)
pzt (other)

)
= α0z + αRRzt + ξzt. (37)

4.5 Defining elasticities

Elasticities for static models (without unobservable heterogeneity) are computed as follows:

(∑
z

Azt

)−1∑
z

(
∂Azt
∂Rzt

(Rzt′ −Rzt)
Pzt

Pzt′ − Pzt

)
, (38)

where Azt represents the area of cropland in county z during year t, and Pzt is a weighted
average of crop prices.25

While there is a natural definition of acreage-price elasticities in static models, dynamic
24 I have omitted difference operators to simplify the notation here, but the α0z (k) in equation (35) should

still be regarded as a function of differences in parameters of the payoff function (the α0z (j, k) terms).
25County-level prices are averaged across crops using the same weights as county-level returns – see equation

(3.5).
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models feature many elasticities one might be interested in. For understanding the impacts of a
long-run shift in demand like the US biofuels mandate, it is crucial to understand how farmers
respond to a long-run change in prices. For dynamic models (including myopic models), I
compute an aggregate long-run acreage-price elasticity as follows:

∑
z

∑
ζ

A∗zζ (Rzt)

−1∑
z

∑
ζ

(
A∗zζ (Rzt′)−A∗zζ (Rzt)

) Pzt
Pzt′ − Pzt

 (39)

Where A∗zζ (R) is the steady-state acreage of fields in county z of type ζ, given expected
crop returns fixed at R indefinitely. When solving A∗zζ , I assume that the unobservable shocks
are fixed at the average values of the estimated annual shocks.

I report arc elasticities of acreage changes with respect to a 10% increase in all crop output
prices. Formally, t = 2012 in equations (38-39), and t′ is a counterfactual period in which
expected output prices are 10% higher than their 2012 levels.

Calorie-price elasticities are calculated in the same manner as acreage-price elasticities,
but with caloric yields multiplying acreages. Yields are taken to be exogenous (and fixed at
2012 levels) so that calorie-price elasticities reflect only extensive responses and not intensive
responses.26 Caloric yields are weighted averages of crop-specific yields, using the same weights
used for returns (see equation (21)).

5 Results

Table 2 presents long-run elasticity estimates for different assumptions on unobservable het-
erogeneity and field-level dynamics. While static analysis suggests that crop supply is highly
inelastic – long-run acreage-price and calorie-price elasticities are less than .03 – dynamic
models generate long-run elasticities on the order of .3.

Dynamic and myopic specifications differ only in the imputed discount factor (.9 and 0,
respectively), but this impacts long-run elasticity estimates dramatically. Myopic models
generate long-run elasticity estimates which are insignificantly different from zero. Standard
errors are computed allowing for spatial and temporal autocorrelation. See Section A.1 for
details.

In dynamic specifications, I effectively lose k̄ periods of choice probability data from the
beginning of my choice data sample because k̄ periods of choices must be observed to infer
field states. Furthermore, with β > 0, I cannot construct the dependent variable for the final
period of observed choice data (see equation (15)). The most flexible dynamic specification I
estimate features k̄ = 2, so with choice data spanning 2006-2012, the effective sample period
used in my most flexible dynamic specification 2008-2011 (before differencing out fixed effects).
In Table 2, the samples are harmonized across specifications so that differences in results do

26 Recent evidence suggests that intensive crop supply responses are relatively small, at least in the US
(Berry and Schlenker, 2011).
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Table 2: Long-Run Price Elasticities for Different Specifications

No Unobs. Heterogeneity Two Types Per County
Acreage Calorie Acreage Calorie

Static model (k̄ = 0) 0.0156 0.0152 0.0256 0.0263
(0.0050) (0.0048) (0.0079) (0.0079)

Myopic models (β = 0)
k̄ = 1 0.0675 0.0652 0.0081 0.0084

(0.0212) (0.0205) (0.0047) (0.0045)

k̄ = 2 0.1328 0.1275 -0.0016 -0.0018
(0.0358) (0.0344) (0.0218) (0.0215)

Dynamic models (β = .9)
k̄ = 1 0.6521 0.6160 0.2416 0.2278

(0.3762) (0.3685) (0.0190) (0.0170)

k̄ = 2 0.3512 0.3435 0.3009 0.2951
(0.3374) (0.3368) (0.1149) (0.1102)

All models feature first differences with instruments. Standard errors in parentheses allow for arbitrary
correlation within each year.
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not reflect differences in the effective samples.
Differences between elasticity estimates between these different specifications can largely

be explained by considering differences in dependent variables. First, consider the difference
between a static model and myopic model without unobservable heterogeneity. While the
dependent variable for the myopic model features choice probabilities which are specific to a
certain field state,

ln
(

pzt (k)
1− pzt (k)

)
, (40)

the dependent variable for a static model is aggregated over field states:

ln
(

pzt
1− pzt

)
= ln

( ∑
k µzt (k) pzt (k)

1−
∑
k µzt (k) pzt (k)

)
, (41)

where µzt (k) is the proportion of fields in state k within county z during year t. This aggre-
gation can mute the apparent responsiveness of cropland to acreage changes. For example, it
might be the case that the transition rate from non-cropland to cropland increases dramati-
cally at high price levels. However, if the share of land in crops is typically small, the aggregate
share of land in crops will increase only slightly when crop prices are high. Thus, a static
model could predict a small acreage-price elasticity and fail to capture the elevated transition
rate. In reality, the elevated transition rate might lead to a very large acreage response when
prices are held at elevated levels for a long time. Thus, a static model effectively captures
short-run correlations between acreage and returns in the data, and there’s good reason to
expect that these short-run correlations in levels might understate actual long-run responses.

As noted in Section 4.4, dynamic and myopic models can be estimated from regression
equations which are identical but for different dependent variables – the dependent variable
in models with β > 0 includes an additional dynamic correction term. Furthermore, this
correction term in dynamic models is a function of future conditional choice probabilities.
Since agricultural commodity prices exhibit positive autocorrelation over time, current returns
will generally be correlated with future returns, which are naturally correlated with future
realizations of conditional choice probabilities. This means that the dynamic correction term
cannot be written off as exogenous measurement error, and it should not be surprising that
forward-looking dynamic specifications yield different parameter estimates than their myopic
counterparts.

Table 3 provides a more detailed summary of estimation results for dynamic models.
For models with unobservable heterogeneity, it is the low field types (those with a lower
probability of being planted in crops) which have a higher value of the sensitivity parameter
αR. High field types tend to be in cropland most of the time, and the results reflect that
their choice probabilities respond little to variation in expected returns. While the point
estimates of long-run elasticities are not significantly different for dynamic models with and
without unobservable heterogeneity, the standard errors are considerably smaller for models
with unobservable heterogeneity.
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Table 3: Dynamic Model Parameter Estimates

Model Specification
State dependence (k̄) 1 1 2 2
Field types per county 1 2 1 2
Type High Low High Low

αR 0.0790 0.0090 0.3667 0.0431 0.0363 0.2194
(0.0357) (0.0124) (0.0237) (0.0387) (0.0174) (0.0820)

Average intercept (α0k)
k = 0 -0.1522 1.2312 -2.5792 -0.0168 0.7729 -2.0226

(0.0102) (0.0012) (0.0045) (0.0120) (0.0024) (0.0540)

k = 1 -4.7859 -0.0835 -5.1790 -2.3696 -1.4929 -1.8249
(0.0102) (0.0012) (0.0045) (0.0120) (0.0024) (0.0540)

k = 2 – – – -5.7543 -1.9172 -5.0213
– – – (0.0120) (0.0024) (0.0540)

Type’s share of fields 1.0000 0.2708 0.7292 1.0000 0.2547 0.7453

Share in crops 0.2503 0.8637 0.0225 0.2523 0.8878 0.0351

Long run acreage- 0.6521 0.2416 0.3512 0.3009
price elasticity (0.3762) (0.0190) (0.3374) (0.1149)

Long run calorie- 0.6160 0.2278 0.3435 0.2951
price elasticity (0.3685) (0.0170) (0.3368) (0.1102)

Counties 1975 1975 1975 1975
County-years 6296 6296 6296 6296

Intercepts are unweighted averages of the estimated intercepts for all counties. First differences with
instruments were used, and β = .9. Standard errors in parentheses allow for arbitrary correlation
within each year. R measured in $100/acre.
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Figure 2: Stability of predictions with and without unobservable heterogeneity
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Forward simulated acreage with returns fixed at 2006 levels indefinitely. Dashed lines are 95% confi-
dence interval for total acreage levels in model with unobservable heterogeneity. Dotted line are 95%
confidence interval for model without unobservable heterogeneity. Initial distribution of field states in
2012 set equal to the average distribution of field states by county and unobservable type in the sample.
Both models feature k̄ = 2, β = .9, and were estimated using first differences with instruments.

Putting aside elasticity estimates, there is another important sense in which the results
with unobservable heterogeneity are more stable. Figure 2 illustrates the stability of predicted
acreage levels for a model with and a model without unobservable heterogeneity. If returns are
held constant at 2006 levels indefinitely, the model with unobservable heterogeneity predicts
relatively stable acreage levels going forward. In contrast, the model without unobservable
heterogeneity allows for relatively large increases in acreage within its 95% confidence inter-
vals.

It makes sense that models with unobservable heterogeneity would make more stable land
use predictions. For a given observable type of field, if we observe considerable amounts of
both cropland and non-cropland and a non-trivial amount of switching between the two, the
only way to rationalize the data without unobservable heterogeneity is for landowners to be
somewhat close to indifferent about whether or not to switch land uses. Then, if returns shift
dramatically, the model will predict a massive shift in land use behavior. In contrast, the
model with unobservable heterogeneity allows for some landowners to be very happy to stay
in cropland and others to be very happy to stay out of cropland, and both types may be
relatively unresponsive to changes in returns since they are far from indifferent on average.
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6 Implications for the US biofuels mandate

To give some meaning to my elasticity estimates and as a preliminary assessment of their
policy implications, I revisit Roberts and Schlenker’s (2013, hereafter “RS”) evaluation of the
US biofuels mandate.

The US biofuels mandate is met mostly by corn ethanol, and the corn used to produced
this ethanol corresponds to a staggering 5% of worldwide caloric production of major crops.27

Furthermore, it is arguably realistic to claim that the US biofuels mandate corresponds to a
long-run increase in demand. While US Renewable Fuel Standards are scheduled to require
increasing amounts of biofuels other than corn ethanol (which arguably have a smaller impact
the human food and animal feed supply), the absolute quantity which may come from corn
ethanol is not scheduled to decrease (US EPA, 2011).

The effective long-run increase in worldwide crop demand caused by the mandate is plau-
sibly less than 5% because a substantial by-product of corn ethanol production is distillers
dried grain (DDG), which is now popular in animal feed blends in the US. Thus, some portion
of the corn diverted to the biofuels market actually comes back to the food and feed market.
However, the DDG by-products correspond to about one third of the dry weight of the original
corn inputs to ethanol production. Although the nutritional equivalence of unprocessed corn
and DDG may be questioned, a natural assumption (and the assumption adopted by RS) is
that one third of the corn used in ethanol production is effectively returned to the food and
feed supply.

Following RS, let’s assume that the US biofuels mandate corresponds to a 3.33% increase
in long-run global crop demand. Assuming a demand elasticity for crop calories of -0.05
(within the range of what RS estimate), my static supply elasticity of 0.03 implies a 44%
increase in prices and a 1.1% increase in crop acreage.28 In contrast, my dynamic long-run
elasticity of 0.3 implies a 9.7% increase in prices and a 2.9% increase in crop acreage. In
other words, taking dynamics into account when estimating supply leads to a 160% larger
land use effect and a 78% smaller price increase in the long run.

While the reduced price effect makes the assessment of biofuels subsidies seem more pos-
itive – especially given the burden increased food prices place on less developed countries –
the increased land use is likely to mean increased greenhouse gas emissions due the release of
terrestrial carbon as land is cleared. Moreover, it should be noted that the relatively small
price increase following from the dynamic elasticity estimate is based on plugging a long-run

27It should be noted that this 5% figure does not include the crops used to produce the biofuels mandated
by many other countries around the world.

28I calculate the price impact of the biofuels mandate following the same formula as RS:

∆p = ∆q
ES − ED

where ∆p is the relative change in price, ∆q = 0.033 is the relative change in demand resulting from the US
biofuels mandate, and ES and ED are the calorie-price elasticities of supply and demand, respectively. The
acreage effect is then given by EA∆p, where EA is the acreage-price elasticity.
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supply elasticity into a static equilibrium calculation. Even if the long-run price effect of the
US biofuels mandate is as small as this 9.7% figure suggests, it is possible that the mandate
had a much larger short run price effect, consistent with the spike in prices in 2008.

RS estimate a global calorie-price elasticity around 0.1, but they estimate an acreage-price
elasticity for the US which is remarkably similar to my estimate of 0.3. This is surprising given
that their estimate is based on a static model while my static models deliver much smaller
elasticities. However, RS’s estimate is based largely on much older data, and they discuss the
possibility that their supply elasticity estimates are picking up an endogenous policy response
– i.e., policies incentivizing farmers to set land aside may arise when output prices are low.
This endogenous policy response has arguably weakened over time, making the effective static
elasticity lower now. Thus, it may be the case that their supply elasticity, which is based on
much older data, is picking up an older static relationship which happens to coincide with the
new long-run elasticity.

Another possible source of the difference between RS’s and my static estimates is the
difference in instrumental variables used. Unfortunately, RS’s instruments based on lagged
yield shocks (or weather variation) are too weak to deliver reliable estimates with my short
panel. Notice that the explanatory variable model in my model is proportional to Rcrops,t+1−
Rcrops,t. While this difference in expected returns will certainly be strongly correlated with
weather outcomes during year t, these weather outcomes are also correlated with unexpected
changes in the value function εVt , making time-t weather and yield shocks invalid instruments.
Weather outcomes from earlier years are plausibly valid instruments, but I find that they are
too weak to generate estimates that can be taken seriously.

7 Conclusion

This paper’s main contribution is to formulate a flexible empirical approach for analyzing
land use based on a model of dynamically optimizing landowners. The method is easily
implemented, for I derive a linear regression equation which can be used to estimate the
model (a construction of potential use in other single agent dynamic settings such as dynamic
demand estimation). My empirical approach accommodates unobservable market-level shocks
as well as unobservable heterogeneity, unavoidable difficulties when modeling land use at a
disaggregated level.

Furthermore, I estimate long-run crop acreage elasticities for the United States based
on a new land use panel data set. Relative to my results with forward looking landowners
and unobservable field-level heterogeneity, I find that static and myopic models understate
long-run acreage elasticities, and specifications without unobservable heterogeneity overstate
acreage elasticities. A preliminary comparison of results suggests that static models understate
the long-run land use effects (and indirect environmental costs) of biofuels mandates and
overstate their long-run effects on food prices.
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A Technical appendix (for online publication)

A.1 Standard errors with spatial and temporal dependence

Standard errors are based on Conley’s (1999) treatment of spatial autocorrelation in a Gen-
eralized Method of Moments (GMM) framework. Conley’s treatment of spatial dependence
is an extension of Newey and West’s (1987) approach to dealing with temporal dependence,
and it can be applied to deal simultaneously with both spatial and temporal dependence.

The asymptotic theory developed in these papers relies on covariance matrix estimators
which use weights which decline as the distance (and/or time duration) between observations
increases. Furthermore, the weights change as the sample size increases. In practice, it is
common to simply use unit weights with some cutoff determining what count as "nearby"
observations (Conley, 2008).

Let ĝzkt represent the fitted value of moments for a given observation for a particular
regression. Because regressions are estimated separately for each ζ-type, I omit the subscripts
for unobservable types ζ from the notation. To simplify the notation further, let s = (z, k, t),
let S represent the set of (z, k, t) included in the regression, and let Ns represent the number
of elements in S. To give an explicit example, for my main specification (first-differences with
instruments), fitted moments can be computed as follows:

ĝs = ((Yzk,t+1 − Yzkt)− α̂R (∆Rz,t+1 −∆Rzt))


1
Rzt

CY IELDzt


where CY IELDzt is the expected caloric yield for county z in period t.

In computing standard errors, I estimate the asymptotic covariance matrix as follows:

V̂ = N−1
s

∑
s1∈S

∑
s2∈S

K
(
s, s′

)
ĝs1 ĝ

′
s2
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where K is a uniform kernel which equals one when observations s and s′ fall within the same
period and have nearby locations, or when s and s′ refer to the same (z, k) and fall in adjacent
periods. Formally,

K (s1, s2) =


1 if t1 = t2

.5 if |t1 − t2| = 1

0 otherwise

This kernel allows for arbitrary correlation within the cross-section, which is important be-
cause farmers everywhere receive similar price shocks and therefore are likely to have correlated
expectational error terms εV . Because the dependent variables in my regression use choice
probabilities from the time t and t+ 1, it also makes sense to allow for some correlation over
time. I use the Bartlett kernel in the time dimension (i.e., weights dropping off linearly) to
ensure that V̂ is positive semi-definite.

Table 6 includes standard errors for estimates computed with and without corrections for
autocorrelation. In other tables, I always present standard errors accounting for autocorrela-
tion.

A.2 Standard errors on long run elasticities

Standard errors on long-run elasticity estimates are calculated by simulating the estimated
asymptotic distribution of parameters. Formally, let LRE (α) represent the long run elasticity
given the vector of parameters α. Means and standard errors for LRE (α) are calculated as
follows:

µLRE = 1
Nsim

Nsim∑
l=1

LRE (αl)

SELRE =

√√√√ 1
Nsim − 1

Nsim∑
l=1

(LRE (αl)− µLRE)2

where αl represent pseudorandom draws from the estimated asymptotic distribution of α, and
Nsim = 1000 is the number of simulations.

A.3 Recovery of profit function parameters

Before parameters of landowners’ profits functions can be computed, estimates of fixed effects
must be computed, and then the profit function parameters can be recovered as described in
Section 2.2.

Estimates of the fixed effects are computed as follows:

∆̃α̂0zζkt = T−1
zζk

∑
t

êzζkt
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where êzζkt ≡ Yzζkt − αζRRzζkt, and Tzζk is the number of observations of (z, ζ, k).
Then, with the estimated regression equation intercepts ∆̃α̂0zζkt in hand, intercepts of the

profit function α̂0zζkt can be recovered as described in footnote 14.

A.4 Regression weights

Conditional choice probabilities will be more precisely estimated for field states with large
numbers of fields in that state. Given estimates of choice probabilities and the distribution of
field types from the first stage, I construct weights to be used in the second stage which are
roughly inversely proportional to the estimated standard error of the constructed dependent
variable.

The variance of the log of an estimated probability (ln (p̂)) is largest for small probabil-
ities, so the sampling variance of the dependent variable Yz,ζ,k,t will tend to be dominated
by the smallest choice probability used to construct it. Let p

z,ζ,k,t
be the smallest choice

probability among those used to construct Yz,ζ,k,t (see equation (16)). I construct weights for
the regression equation as follows:

wYz,ζ,k ≡ N̂z,ζ,kpz,ζ,k/
(
1− p

z,ζ,k

)
where p

z,ζ,k
is the mean value of p

z,ζ,k,t
across t, and N̂z,ζ,k is the average number of fields in

field state k in county z of type ζ. I use the same weight wYz,ζ,k for all periods t.
Table 6 illustrates the impact of incorporating regression weights on long run elasticities.

Estimates in all other tables are based on regressions with weights.

A.5 First stage choice probability estimation

For specifications with unobservable heterogeneity, choice probabilities are estimated by al-
ternating between the expectation step (equation (26)) and maximization step (equations
(27-29)) until the change in the likelihood function between full iterations is less than 10−8

for ten successive iterations. This first-stage estimation is run separately for each specification
and US state, allowing the first-stage estimation to benefit substantially from parallelization.

As described in Section 4.1, I smoothed choice probability estimates across counties within
each state using weights proportional to the inverse square of the distance between counties.
My smoothing weights are small, but only a tiny amount of smoothing is needed to avoid CCP
estimates of ones and zeros, which present a technical problem for the Hotz-Miller inversion.

Another way to avoid degenerate CCP estimates is to truncate them, or replace any
frequencies of zero with an estimate which is very close but slightly larger than zero.29

I experimented with CCP truncation, but found that it led to considerably less stable CCP
estimates than CCP smoothing. While CCP truncation allows for CCP’s to be estimated
within each county in principle, there is often insufficient data within each county to have

29 An earlier version of the paper included estimates from both smoothing and truncation.

36



Figure 3: Stability of CCP estimates

0.0.51.1.52.2.5
-1.

0.

1.
with CCP smoothing

0. 0.5 1. 1.5 2. 2.5
-1.

0.

1.
with CCP truncation

Dp

PDF histograms of time-differenced choice probabilities, pz,ζ,t+1 (crops, k) − pz,ζ,t (crops, k), over all
counties for t = 2010, k = 2, and ζ = 2. Other field states and time periods display a similar pattern
in that truncated CCPs are considerably less stable.

reasonable CCP estimates for both unobservable types and all field types. When there are
effectively no observations for a given (ζ, k)-pair for a given county z and year t (or, more
formally, the EM algorithm predicts that all fields in field state k have very low probability of
being in type ζ), it makes more sense to base the estimate of pz,ζ,t (k) on neighboring counties
which actually have fields of type ζ in state k.

Just as Pakes et al. (2007) argue, smoothing can reduce the sampling variance of CCP
estimates. Indeed, I find that year-to-year changes in choice probabilities for a given type
and field state (z, ζ, k) are much more stable with smoothing than with CCP truncation. As
Figure 3 illustrates, truncated choice probabilities sometimes go from 0 to 1 or vice versa, but
choice probabilities with smoothing do not display such extreme changes.

Another apparent virtue of the CCP smoothing over CCP truncation is that it dramatically
improves the convergence properties of the EM algorithm. This is ironic, as smoothing takes us
away from the maximum likelihood framework and removes the theoretical guarantee that the
EM algorithm will converge. However, with smoothing, I find that the EM algorithm not only
always converges but also always converges to the same CCP estimates. With truncation, the
EM algorithm converges to many different local maxima of the likelihood function depending
on the starting values.

With CCP smoothing, I run the EM algorithm with five randomly selected starting values
for each state. For each state, all five trials always converge to the same CCP estimates. With
CCP truncation, I run the EM algorithm forty separate times for each county. On average,
14 out of the 40 trials converge to the highest value of the likelihood function attained for
the county. However, for over 24% of counties, the highest value of the likelihood function
attained was attained by only one trial, which casts doubt on whether 40 trials is enough to
reliably find the CCP estimates which globally maximize the likelihood function.
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I do not report results based on CCP truncation since these CCP estimates cannot be
considered reliable. However, elasticities estimated based on my truncated CCP’s are not
significantly different than my results with CCP smoothing.

A.6 Generalizing the regression equation derivation

In this section, I discuss the generality of the derivation of the regression equation (15). In
particular, I consider three aspects of the model presented in Section 2: the binary choice
setting, the renewal action, and logit errors (Assumption 2).

The choice set

The binary choice setting played no role in the derivation of the regression equation. The
actions j and j′ used throughout the derivation could be any two actions in a discrete choice
set J of arbitrary size. In a multinomial setting, the main thing that changes is that there
are more choices of (j, j′), each pair implying a different version of equation (15) (whereas it
was without loss to set j = crops and j′ = other in the binary choice setting).

Finite dependence

The requirement that a renewal action exists can also be relaxed substantially to the require-
ment that the evolution of field states satisfies finite dependence. The existence of a renewal
action implies one-period dependence, where only one period is needed to harmonize the field
states of two fields. Naturally, s-period dependence means that states can be harmonized
within s periods. As discussed by Arcidiacono and Ellickson (2011) and Arcidiacono and
Miller (2011), s-period dependence generally yields estimators which can be constructed with
s-period sequences of CCPs. To extend my regression equation construction to s-period de-
pendence, equation (11) must be applied iteratively s times – i.e., until the field states k are
harmonized and continuation values cancel.

It should be noted that my regression equation derivation requires only finite dependence
with respect to the field states k – market-level state variables need not satisfy any such
condition.

Idiosyncratic error terms

The distributional assumption on the idiosyncratic error terms (ν) can be relaxed, too. Specif-
ically, Assumption 2 was used in two places: in the Hotz-Miller inversion (equation (8)), and
in equation (11), which relates the ex ante value function (V̄ (k)) to an additively separable
function of a conditional value function for a particular action (v (j, k)) and conditional choice
probabilities. As shown below, the existence of an additively separable equation analogous to
equation (11) is a general consequence of the Hotz-Miller inversion.
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For completeness, I restate the Hotz-Miller inversion in my notation (see Hotz and Miller
(1993), Proposition 1, for the original result). Here, I drop the assumption that the idiosyn-
cratic error terms ν have a type 1 extreme value assumption, but maintain the assumption
that ν has a known distribution F conditional on state variables. Conditional choice proba-
bilities can be written as if a landowner faces a static random utility model with mean utility
from option j equal to the conditional value function vt (j, k):

∀j ∈ J : pt (j, k) = Pr
(
∀j′ ∈ J : vt (j, k) + νjt ≥ vt

(
j′, k

)
+ νj′t

)
. (42)

Normalizing vt (j, k) to zero for some j, equation (42) defines a mapping φ : R|J|−1 →
∆|J|−1 from (differences in) conditional value functions to conditional choice probabilities.

Result 1. (The Hotz-Miller inversion) Assuming F has a well-defined density function, φ is
invertible.30

One value of vt (j, k) must be normalized to zero for the mapping to be invertible, so
the inversion effectively recovers differences in conditional values. We can define the Hotz-
Miller inversion in terms of an arbitrary reference action J ∈ J, and write φ−1

j (pt (k)) =
vt (j, k)− vt (J, k), where pt (k) = {pt (j, k)}j∈J.

Result 2 shows that that equation (11) is a general consequence of the Hotz-Miller inver-
sion. Therefore, the derivation of a linear regression equation can be generalized to different
distributional assumptions on the idiosyncratic shocks. While the result is equivalent to
Lemma 1 in Arcidiacono and Miller (2011), the following proof is simpler than theirs.31

Result 2. (Arcidiacono and Miller, Lemma 1) Assume F has a well-defined density function.
For any j ∈ J, there exists a function ψj such that

V̄t (k) = ψj (pt (k)) + vt (j, k) .

Proof. Define
S (v) ≡

ˆ
max {v1 + ν1, v2 + ν2, . . . , vJ + νJ} dF (ν) . (43)

For any real number c,

max {v1 + ν1 − c, v2 + ν2 − c, . . . , vJ + νJ − c} = max {v1 + ν1, v2 + ν2, . . . , vJ + νJ} − c.

It follows that

S (v) = S (v1 − vJ , v2 − vJ , . . . , 0) + vJ .

30Being more careful, the inverse function φ−1 is defined on the entire simplex ∆J−1 if the support of F is
bounded, and defined only on the interior of ∆J−1 if F has full support, as is the case with the logit errors
above (Norets and Takahashi, 2013).

31I thank Steve Berry for suggesting this proof strategy.
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Notice that the ex ante value function is given by V̄t (k) = S (vt (k)) where vt (k) =
(vt (1, k) , . . . , vt (J, k)). Thus,

V̄t (k) = S (vt (1, k)− vt (J, k) , v1 (2, k)− vt (J, k) , . . . , 0) + vt (J, k) . (44)

Using Proposition 1, substitute φ−1
j (pt (k)) = vt (j, k)− vt (J, k) into equation (44):

V̄t (k) = S
(
φ−1

1 (pt (k)) , φ−1
2 (pt (k)) , . . . , 0

)
+ vt (J, k) .

Noting that J denotes an arbitrary element of J, defining ψJ (p) ≡ S
(
φ−1 (p) , φ−1 (p) , . . . , 0

)
completes the result.

Equation (11) is a particularly simple special case of Result 2, with ψj (p) = − ln (pj) +γ.
In general, ψj (p) may be a more complicated function of conditional choice probabilities (for
instance, involving probabilities for more than one alternative), but the additively separa-
ble aspect of equation (11) is preserved, maintaining the possibility of constructing a linear
regression equation.

B Data appendix (for online publication)

B.1 Land cover panel

The accuracy of the Cropland Data Layer has improved steadily, and CDL data is now an
input in official USDA acreage estimates. The data has become especially accurate in recent
years for major crops.32 However, the data are still of limited use in distinguishing between
certain similar land cover types, especially grassland, pasture, and hay.

My sample constitutes an 840m sub-grid of the CDL data, a level of spacing chosen to
strike a balance between having a comprehensive sample of fields and artificially increasing
the sample size by sampling many points from individual fields. Furthermore, the 840m grid
scale facilitates matching of points across years when the source data’s grid spacing changed
from 56m to 30m. While the grid coordinates do not always match up exactly after such
changes, one can always find sub-grids spaced by 840m such that the centroids of the two
sub-grids are within 1m of each other in each dimension.

Points which are classified as developed land, water, or protected land (in any year) are
excluded from the data set. This means that non-cropland includes mostly grassland, forests,
and shrub land.

Points are assigned to counties using 2010 county boundary spatial data files provided
by the Census Bureau. Spatial data on protected land was obtained from the Global Agro-
Ecological Zones database, and associated with points in the CropScape data using nearest

32CDL accuracy data is available at http://www.nass.usda.gov/research/Cropland/sarsfaqs2.html
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neighbor interpolation. All coordinate conversions and spatial merges were done with ArcGIS
10.2.

B.2 Weather data

The weather data used in this paper was generously provided by Wolfram Schlenker and
Michael Roberts. These data are described in more detail in the data appendix to Schlenker
and Roberts (2009).

Weather variables Wzt include degree days above 10 degrees Celsius, degree days above 30
degrees Celsius, precipitation, and interactions. The precipitation variable is simply the total
precipitation from March to August. Degree days above Tmin degrees Celsius are defined as:

DDTmin =
ˆ t1

t0

Max (Tt, Tmin) dt

where Tt is the temperature at time t, t0 is the beginning of March 1, and t1 is the end of
August 31. The integral is approximated using a sinusoidal interpolation between the high
and low temperature each day.

Interactions of the degree days variables with precipitation were computed by multiplying
daily values of degree days by daily precipitation values, then summing over the March-August
period.

The weather variables are computed for 872505 grid points. Afterward, I simply average
over grid points within each county to form the county-level weather variables which are used
in the yield regressions.

B.3 Yield regressions and forecasts

Tables 8-12 present regression results for sorghum, barley, oats, rice, and upland cotton,
estimated separately for each ERS region. Because Schlenker and Roberts (2009) estimate
similar models of corn, soybeans, and wheat yields (with similar results), I do not report the
coefficient estimates for those regressions.

The results for these other crops are qualitatively similar to Schlenker and Roberts’s
estimates for corn, soybeans and wheat. Degree days above 30C typically have a strong
negative effect on yields whereas degree days above 10C typically have a weaker positive
effect on yields (except for oats and barley, where degree days above 10C seem to have a mild
negative effect on yields).

I include a county-crop (z, c) in the yield regressions if NASS reports yields for crop c in
county z and a harvested acreage of at least 100 acres for at least five years between 1997 and
2005.

For county-crop pairs (z, c) not included in the yield regressions, I impute a fixed effect
θcz if some counties within 160km of county z were included in the yield regression for crop
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Table 4: Reference prices

Reference price Crops
CBOT corn corn, sorghum
CBOT soybeans soybeans
CBOT wheat winter wheat, durum wheat, other spring wheat, barley, rice
CBOT oats oats
NYBOT cotton upland cotton, pima cotton

c. Imputed fixed effects are computed as follows:

θ̂cz =
∑
z′∈Zc w

Y
zz′ θ̂z′∑

z′∈Zc w
Y
zz′

where Zc is the set of counties included in the yield regression for crop c, and

wYzz′ =

(1 + dzz′/2)−2 if dzz′ ≤ 160

0 otherwise

where dzz′ is the distance between counties z and z′ in kilometers (as measured by their
centroids). These weights wYzz′ are similar to those used in smoothing conditional choice
probabilities (wzz′). However, in this case I allow non-zero weights between counties within
different states, but not between counties which are more than 160km apart or in different
ERS regions.

B.4 Expected prices

All reference prices are based on contracts for December delivery, except for soybean prices,
which are based on November delivery contracts.

To deal with differences in planting seasons, I actually estimate two versions of equation
(19), corresponding to the two different planting season. First, I estimate the model when
P futct is the average closing price of the reference contract during February-March, capturing
the relationship between received prices and futures contract prices before spring planting
season (i.e., when most crops are planted). In the second version, P futct corresponds to closing
prices during August-September of the previous year, capturing the relationship between
received prices and futures contract prices before fall planting season (i.e., when winter wheat
is planted).

Thus, I actually calculate two versions of state-level expected market prices, denoted by
Pm,spcst and Pm,facst . I then assign these values to counties based on the composition of cropland
as reported by USDA-NASS. Specifically, if at least 10% of a county’s cropland is in winter
wheat and rye every year between 2006-2011, then a county is designated as a fall planting
county, and expected prices are based on futures prices in August-September of the previous
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year (i.e., Pmczt = Pm,facst ). For other counties, expected prices are based on futures prices in
February-March (i.e., Pmczt = Pm,spcst ).33

Table 5 presents results using alternative measures of expected prices in which price fore-
casts were based on fall futures prices for all counties.

B.5 Counties in the sample

The county-specific set of crops Cz refers to the set of crops such that I am able to compute
the expected yield for county z. I am able to construct the expected yield for crop c in county
z if (c, z) is included in the yield regression (as described in Section B.3 above) or if there is
another county z′ within 160km of county c such that (c, z′) is included in the yield regression.

A county is included in my sample only if three conditions hold:

1. Within my field-level panel, the crops in C comprise at least 25% of the county’s total
cropland every year.

2. Within my field-level panel, the county has at least 10 points cropland every year.

3. I am able to calculate Y IELDczt for the prominent crops within county z’s state. Specif-
ically, ∑

c∈Cz
Acrt∑

c∈CAcrt
> 9.

where r is the state county z belongs to.

Furthermore, thirteen states were excluded from the analysis either because they contain
little cropland or have a relatively small share of cropland in the crops I model (Arizona,
Connecticut, Delaware, Florida, Maine, Maryland, New Hampshire, Nevada, New Mexico,
Rhode Island, Vermont, Virginia, West Virginia). No CDL data is available for Alaska and
Hawaii.

33The threshold is chosen to err on the side of classifying counties as fall planting counties if substantial
amounts of both spring and fall crops are planted in them. If winter wheat is an option farmers consider, they
must at least make the decision about whether to plant winter wheat or not during the fall.

Figure 4: Map of sample counties
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Table 5: Long-run Elasticities for Different Measures of Returns

Acreage elasticity 0.3009 0.3792 0.1315 0.1649
(0.1149) (0.1330) (0.1556) (0.1652)

Caloric elasticity 0.2951 0.3773 0.1322 0.1676
(0.1102) (0.1303) (0.1568) (0.1686)

Price forecasts based on planting season futures futures from prev. fall

Costs per acre are proportional flat within proporitional flat within
to yields region to yields region

All models feature two unobservable types, two periods of state dependence, first differences with
instruments, and β = .9. Standard errors in parentheses allow for arbitrary correlation within each
year.

According to the 2007 Census of Agriculture, the counties remaining in my sample account
for over 90% of US cropland. Figure 4 presents a map of these counties.

C Sensitivity analysis (for online publication)

C.1 The expected returns measure

Constructing the measure of expected returns involves two substantive assumptions. First,
expected prices were forecasted using futures prices around the beginning of planting season
as explained in Section B.4. However, farmers may effectively commit to planting crops
substantially before this time. Anecdotally, fertilizer is often purchased several months before
planting season, and preparing previously uncultivated land for planting certainly could take
several months or more, depending on the condition of the terrain.

As a preliminary robustness check on the assumptions about the timing of farmer’s deci-
sions, I also construct expected prices which are based on futures prices in the previous fall.
For counties classified as fall planting counties, this does not change the measure of expected
returns. This alternative measure of expected prices also removes some of the cross-sectional
price variation in the original measure – when price forecasts for different places are based
on futures prices for different months, month-to-month variation in futures prices effectively
creates some cross-sectional price variation.

A second assumption is that operating costs are linearly proportional to expected yields.
An alternative assumption is that the costs per acre are fixed for a given crop within each of
the ERS regions.

Table 5 shows how these two assumptions behind the construction of returns impact long-
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Figure 5: Long-Run Elasticities and the Discount Factor

A
cr

ea
ge

E
la

st
ic

ity

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Discount Factor
Elasticities for model with two unobservable types and two periods of state dependence. CCP trunca-
tion was used in the first stage, and first differences with instruments were used in the second. Dashes
indicate 95% confidence interval.

run elasticity estimates. Assumptions on the timing of the decision make a more substantial
difference although the difference is not statistically significant.

C.2 The discount factor

The discount factor for all dynamic models discussed above either use β = .9 (for models I
call "dynamic") or β = 0 (for models I call "myopic"). As discussed by Rust (1987), discount
factors in dynamic discrete choice models are often poorly identified, and I follow common
practice in imputing a discount factor.

It is straightforward to estimate the model for different discount factor imputations, and
as Figure 5 illustrates, I find that the relationship between long-run elasticity estimates and
the discount factor tends to be increasing and convex.

C.3 Different estimation approaches

Table 6 illustrates how regression weights and differencing affect the estimates, and presents
standard errors with and without allowing for autocorrelation.

While the weights and differencing strategy seem to make relatively little difference, the
impact of autocorrelation is large, reflecting considerable spatial autocorrelation across coun-
ties.

Elasticity estimates vary modestly based on whether fixed effects, first differences, or first
differences with instrumental variables are used. Thus, the endogeneity problem discussed in
Section 4.3 may be a relatively small issue in practice.
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Table 6: Weights, Differencing, and Correlation

Regression Approach
Weights Std. Errors FE FD FDIV

yes 0.2537 0.2234 0.3009
no correlation (0.0124) (0.0108) (0.0159)
spatial HAC (0.1859) (0.1232) (0.1149)

no 0.2554 0.2435 0.3434
no correlation (0.0102) (0.0094) (0.0125)
spatial HAC (0.2404) (0.1806) (0.2191)

Regression approaches are fixed effects, first differences, and first differences with instruments. All
models feature two unobservable types, two periods of state dependence, and β = .9.
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Figure 6: Validation of expected yields, selected crops
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Each point corresponds to a county, with the x-axis indicating expected yield forecasts for that
county, averaged over 2006-2011; the y-axis represents the average actual yield for that county,

averaged over the same period (reported by the National Agricultural Statistics Service).
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Figure 7: Validation of expected yields, small grains
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Each point corresponds to a county, with the x-axis indicating expected yield forecasts for that
county, averaged over 2006-2011; the y-axis represents the average actual yield for that county,

averaged over the same period (reported by the National Agricultural Statistics Service).
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Figure 8: Validation of expected yields, selected crops
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Each point corresponds to a county, with the x-axis indicating expected yield forecasts for that
county, averaged over 2006-2011; the y-axis represents the average actual yield for that county,

averaged over the same period (reported by the National Agricultural Statistics Service).
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