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Spatial Econometrics 
The basics 

 
J.Paul Elhorst, University of Groningen, the Netherlands 

 
- What is a spatial econometric model? 
- What are spatial lags/interaction effects? 
- What are spatial spillover effects? 
- How to interpret the outcomes of a spatial econometric model? 
- How to estimate a spatial econometric model? 
- How to select the spatial weights matrix W and the right econometric model? 
- How to deal with critique on spatial econometrics? 
- Role of economic theory 
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Spatial Econometrics – Cross-sectional dependence 
vs. 
Time series Econometrics 
 
1. Two-way rather than one-way relationship: Unit A can affect 

unit B, and vice versa. The past can affect the future, but the 
future cannot affect the past. 

2. Wide variety of units of measurement is eligible for modeling 
spatial/cross-sectional dependence: geographical, political and 
socio-economic variables. 
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Spatial econometric model 
Linear regression model (Y=Xβ+ε) extended to include 
 
Endogenous interaction effect (1): ρWY 
- Dependent variable y of unit A ↔ Dependent variable y of unit B 
- Y denotes an N×1 vector consisting of one observation on the dependent 
variable for every unit in the sample (i=1,…,N) 
- W is an N×N nonnegative matrix describing the arrangement of the units in 
the sample 
 
Exogenous interaction effects (K): WXθ 
- Independent variable x of unit A → Dependent variable y of unit B 
- X denotes an N×K matrix of exogenous explanatory variables 
 
Interaction effect among error terms (1): λWu 
- Error term u of unit A ↔ Error term u of unit B 
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Linear spatial econometric model for cross-section data 
in vector notation 

 
Y=ρWY+αιN+Xβ+WXθ+u,     u=λWu+ε 

 
Y denotes an N×1 vector consisting of one observation on the dependent 
variable for every unit in the sample (i=1,…,N), Nι  is an N×1 vector of 
ones associated with the constant term parameter α, X denotes an N×K 
matrix of exogenous explanatory variables, with the associated 
parameters β contained in a K×1 vector, and T

N1 ),...,( εε=ε  is a vector 
of disturbance terms, where εi are independently and identically 
distributed error terms for all i with zero mean and variance σ2. 
 
The total number of interaction effects in this model is K+2. 
  



 7 

W is an N×N matrix describing the spatial arrangement of the spatial units in 
the sample. Usually, W is row-normalized. 
 

1 2 3 
Example: Netherlands – Belgium – France  
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This is an example of a row-normalized binary contiguity matrix for N=3. 
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Finally, note that X may not contain a constant, since this constant and the 
corresponding WX variable 
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Table 1. Spatial econometric models with different combinations of spatial interaction effects and their 

      flexibility regarding spatial spillovers 

Type of model Spatial 

interaction 

effects 

# Flexibility spillovers 

OLS, Ordinary least squares model - 0 Zero by construction 

SAR, Spatial autoregressive model  WY 1 Constant ratios 

SEM, Spatial error model Wu 1 Zero by construction 

SLX, Spatial lag of X model WX K Fully flexible 

SAC, Spatial autoregressive 

combined model (SARAR) 

WY, Wu 2 Constant ratios 

SDM, Spatial Durbin model WY, WX K+1 Fully flexible 

SDEM, Spatial Durbin error model WX, Wu K+1 Fully flexible 

GNS, General nesting spatial model WY, WX, Wu K+2 Fully flexible 
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Figure 1. Comparison of different spatial econometric model specifications 
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Note: GNS = general nesting spatial model, SAC = spatial autoregressive combined 
model (SARAR), SDM = spatial Durbin model, SDEM = spatial Durbin error model, 
SAR = spatial autoregressive model (spatial lag model), SLX= spatial lag of X model, 
SEM = spatial error model, OLS = ordinary least squares model 
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Four generations of spatial econometric models  
 
Y=ρWY+αιN+Xβ+WXθ+u,     u=λWu+ε          Cross-section data 

 
Yt=ρWYt+αιN+Xtβ+WXtθ+ut, ut=λWut+εt              Space-time data 
 
Yt=ρWYt+Xtβ+WXtθ+μ+αtιN+ut                          Spatial panel data 
 
μ: vector of spatial fixed or random effects 
αt: time period fixed or random effects (t=1,…,T) 
 
Yt=τYt-1+ρWYt+ηWYt-1+Xtβ+WXtθ+μ+αtιN+ut  
                                         Dynamic spatial panel data 
 
Yt=τYt-1+ρWYt+ηWYt-1+Xtβ+WXtθ+ΣrΓrfrt +ut  
      Common factors: cross-sectional averages or principal components 
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Interpretation estimation results:  
Direct, indirect=SPATIAL SPILLOVER EFFECTS=MAIN FOCUS 

Cross-section or non-dynamic spatial panel data model 
Yt=ρWYt+Xtβ+WXtθ+μ+αtιN+ut 

Reduced form: Yt=(I-ρW)-1[Xtβ+WXtθ+μ+αtιN+ut] 
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Direct effect: Mean diagonal element (or of different groups) 
Indirect effect: Mean row sum of off-diagonal elements 
Problem: t-values of direct and indirect effects are bootstrapped 
Note: Error terms (μ+αtιN+ut) drop out due to taking expectations 
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Table  Direct and spillover effects corresponding to different model specifications 
Model  Direct effect Spillover effect 

OLS / SEM (Wu) 
            

βk 0 

SAR (WY)/  
SAC (WY, Wu)  * 

Average diagonal  
element of 
(I-ρW)-1βk 

Average row sum of off-
diagonal elements of 

(I-ρW)-1βk 

SLX / SDEM 
WX  / Wu 

βk θk 

 
SDM / GNS 
WY+WX/Wu 

 
Average diagonal  

element of 
(I-ρW)-1[βk+Wθk] 

 
Average row sum of off-

diagonal elements of 
(I-ρW)-1[βk+Wθk] 

* Ratio between the spillover effect and the direct effect in the SAR/SAC model is 
the same for every explanatory variable. 
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Two further properties: global and local spillover effects 
 
Indirect effects that occur if ρ=0 (of WY) are known as local 
spillover effects  
 

.WI

.ww
....

w.w
w.w

  

x
)y(E.

x
)y(E

...
x

)y(E.
x

)y(E

 kNk

kk2Nk1N

kN2kk21

kN1k12k

Nk

N

k1

N

Nk

1

k1

1

θ+β=



















βθθ

θβθ
θθβ

=





















∂
∂

∂
∂

∂
∂

∂
∂

  
This is local because the indirect effects only fall on spatial units 
for which the elements of W are non-zero. Local spillovers go 
together with dense(r) W matrix. 
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Indirect effects that occur if ρ≠ 0 (of WY) are known as global 
spillover effects 
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This is global because the indirect effects fall on all units; even if 
W contains many zero elements, (I-ρW)-1 will not. Global 
spillovers tend to go together with sparse(r) W matrix; due to the 
higher-order terms ρgWg (g>1) locations farther away are reached 
anyway even if they are not directly connected. 
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Dynamic spatial panel data model with FE, RE or CF 
Yt=τYt-1+ρWYt+ηWYt-1+Xtβ+WXtθ+error terms  
 
Short-term (ignore τ and η) 
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Long-term (set Yt-1=Yt=Y* and WYt-1=WYt=WY*) 
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Generally, it is hard to find significant spillovers since they depend 
on so many parameters (3 short term, 5 long term); many empirical 
studies do not recognize this. 
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Empirical illustration: Cigarette Demand in the US 
Baltagi and Li (2004) estimate a demand model for cigarettes based on a panel from 46 
U.S. states (N=46) 
 

  ,)optional()optional()Ylog()Plog()Clog( ittiit2it1it ε+l+µ+β+β+a=  
 
where Cit is real per capita sales of cigarettes by persons of smoking age (14 years and 
older). This is measured in packs of cigarettes per capita. Pit is the average retail price of 
a pack of cigarettes measured in real terms. Yit is real per capita disposable income. 
Whereas Baltagi and Li (2004) use the first 25 years for estimation to reserve data for 
out of sample forecasts, we use the full data set covering the period 1963-1992 (T=30). 
Details on data sources are given in Baltagi and Levin (1986, 1992) and Baltagi et al. 
(2000). They also give reasons to assume the state-specific effects ( iµ ) and time-specific 
effects ( tλ ) fixed, in which case one includes state dummy variables and time dummies 
for each year. 
We have reasons to believe that spatial interaction effects need to be included in 
this model! 
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BOOTLEGGING  
• The main motivation to extend the basic model to include spatial interaction effects is the 

so-called bootlegging effect; consumers are expected to purchase cigarettes in nearby 
states, legally or illegally (smuggling), if there is a price advantage.  

• This smuggling behavior is a result of significant price variation in cigarettes across US 
states and partly due to the disparities in state cigarette tax rates. Baltagi and Levin (1986, 
1992) incorporate the minimum real price of cigarettes in any neighboring state as a proxy 
for the bootlegging effect.  

• A limitation is that this proxy does not account for cross-border shopping that may take 
place between other states than the minimum-price neighboring state (Baltagi and Levin, 
1986). This can be due to smuggling taking place over longer distances by trucks since 
cigarettes can be stored and are easy to transport (Baltagi and Levin, 1992) or due to 
geographically large states where cross-border shopping may occur in different neighboring 
states.  

• To take this into account, other studies have extended the model to explicitly incorporate 
spatial interaction effects. However, while the specification originally adopted by Baltagi 
and Levin (1992) resembles the SLX model but then with only one exogenous interaction 
effect (price), applied spatial econometric studies have either included: (i) endogenous 
interaction effects, (ii) interaction effects among the error terms or (iii) a combination of 
endogenous and exogenous interaction effects.  

 



 19 

Basic findings 
 
TABLE Model comparison of the estimation results explaining cigarette demand 

OLS SAR SEM SLX SAC SDM SDEM GNS GNS2

ln(P) -1.035 -0.993 -1.005 -1.017 -1.004 -1.003 -1.011 -1.020 -1.017
(-25.63) (-24.48) (-24.68) (-24.77) (-24.49) (-24.60) (-24.88) (-25.40)

ln(I) 0.529 0.461 0.554 0.608 0.557 0.601 0.588 0.574 0.575
(11.67) (9.86) (11.07) (10.38) (10.51) (10.33) (10.57) (11.02)

W × ln(C) 0.195 -0.013 0.225 -0.481 -0.400
(6.79) (-0.22) (6.85) (-7.01)

W × ln(P) -0.220 0.051 -0.177 -0.645 -0.555
(-2.95) (0.62) (-2.24) (-5.97)

W × ln(I) -0.219 -0.293 -0.168 0.079 0.053
(-2.80) (-3.70) (-2.12) (0.85)

W × u 0.238 0.292 0.229 0.628 0.550
(7.26) (4.73) (6.95) (14.60)

R 2 0.896 0.900 0.895 0.897 0.895 0.901 0.897 0.873
Log-likelihood 1661.7 1683.5 1687.2 1668.4 1687.2 1691.4 1691.2 1695.1

Notes: t-values are reported in parentheses; state and time-period fixed effects are included in every model, 
W = pre-specified binary contiguity matrix  
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• In this case including endogenous interaction effects (SAR model)  implies that state 
cigarette sales directly affect one another, which is difficult to justify. The resulting global 
spillovers would mean that a change in price (or income) in a particular state potentially 
impacts consumption in all states, including states that according to W are unconnected.0F

1 
Pinkse and Slade (2010, p. 115) argue that an empirical problem like this is insightful 
precisely because it is difficult to form a reasonable argument to include endogenous 
interaction effects even though they are easily found statistically. Given the research 
question of whether consumers purchase cigarettes in nearby states if there is a price 
advantage, this example points towards a local spillover specification such as the SLX 
model rather than a global spillover specification. 

• The model is aggregated over individuals since the objective is to explain sales in a 
particular state, as in Baltagi and Levin (1986, 1992), Baltagi and Li (2004), Debarsy et al. 
(2012), and Elhorst (2014), among others. If the purpose, on the other hand, is to model 
individual behavior (e.g., the reduction in the number of smokers or teenage smoking 
behavior) then this is better studied using micro data.   

                                                 
1This implies that e.g., price changes in California would exert an impact on cigarette consumption even in states as distant 
as Illinois or Wisconsin. 
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TABLE Model comparison of the estimated direct and spillover effects on cigarette demand 
OLS SAR SEM SLX SAC SDM SDEM GNS

Direct effects

ln(P) -1.035 -1.003 -1.005 -1.017 -1.004 -1.016 -1.011 -0.999
(-25.63) (-25.10) (-24.68) (-24.77) (-24.47) (-24.84) (-24.88) (-25.43)

ln(I) 0.529 0.465 0.554 0.608 0.556 0.594 0.588 0.594
(11.67) (10.18) (11.07) (10.38) (10.56) (10.88) (10.57) (10.35)

Spillover effects

ln(P) -0.232 -0.220 0,010 -0.215 -0.177 -0.122
(-5.63) (-2.95) (0.17) (-2.39) (-2.24) (-1.89)

ln(I) 0.107 -0.219 -0.006 -0.200 -0.168 -0.155
(5.51) (-2.80) (-0.20) (-2.30) (-2.12) (-2.16)

  W = pre-specified binary contiguity matrix 

 
Basic findings (W pre-specified, fixed!!!) 
1. The direct effects produced by the different models are comparable. 
2. The spatial spillover effects produced by the different models differ widely. 
3. For various reasons the OLS, SAR, SEM, SAC and GNS models need to be rejected.  
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The OLS model is outperformed by other, more general models.  
 
The spillover effects of the SEM model are zero by construction, while the results of 
more general models show that  the spillover effect of the price and income variable 
are significant.  
 
The SAR and SAC models suffer from the problem that the ratio between the 
spillover effect and the direct effect is the same for every explanatory variable. 
Consequently, the spillover effect of the income value variable gets a wrong and 
significant sign.  
 
Often, the GNS model is overparameterized, as a result of which the t-values of the 
coefficient estimates have the tendency to go down (not here!, see Burridge et al. 
(2017) for better example), or its parameters are difficult to reproduce using Monte 
Carlo simulation experiments (see columns GNS2), probably due to multicollinearity 
issues. Also the opposite signs of W*ln(C) and W*u are difficult to interpret 
(Note: this is a general problem of SARAR model approaches).  
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In sum, only the SLX, SDM and SDEM models, i.e., models that include WX 
variables, produce acceptable results.  

 
However, it is not clear which of these three models best describes the data. Even 
though they produce spillover effects that are comparable to each other, both in 
terms of magnitude and significance, this is worrying since these models have a 
different interpretation (global or local).  
 
 Furthermore, the price spillover effect has a negative sign rather than the expected 
positive sign; could it be that W=binary contiguity matrix is wrong? 
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The spatial weight matrix W 
The specification of W is of vital importance: 
1. The value and significance level of the interaction 

parameter depends on the specification of W. 
2. Importantly, the direct and indirect effects are sensitive 

for fundamental changes of W only, not for small 
changes, see Biggest Myth paper of LeSage and Pace 
(2014).  

3. The specification of W should follow from the theory at 
hand. In principle, different theories imply different W. 
However, although one may look to economic theory for 
guidance, it often has little to say about the specification of 
W. Therefore, empirical researchers often investigate 
whether the results are sensitive to the specification of W. 
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The row elements of a weights matrix display the impact on a 
particular unit by all other units, while the column elements of 
a weights matrix display the impact of a particular unit on all 
other units 
  



 26 

Spatial weights matrices most often used in empirical research in spatial 
econometrics: 
1. p-order binary contiguity matrices (if p=1 only first-order neighbors 

are included, if p=2 first and second order neighbors are considered, 
and so on). 

2. Inverse distance matrices (with or without a cut-off point) or 
exponential distance decay matrices. 

3. q-nearest neighbor matrices (where q is a positive integer). 
4. Block diagonal or group interaction matrices where each block 

represents a group of spatial units that interact with each other but not 
with observation in other groups. 

5. Leader matrices. 
6. Matrices based on socio-economic variables. 

 
If W is endogenous rather than exogenous, consult Qu and Lee (2014) 
on endogenous spatial weight matrix in Journal of Econometrics.  
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Row-normalization 
 

∑
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N
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Row-normalization is standard in spatial econometrics!  
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Normalization by largest characteristic root 
As an alternative to row-normalization, one may divide the 
elements of W by its largest characteristic root, ωmax, 
WS=1/ωmaxW, which might be labeled as matrix 
normalization (This has the effect that the characteristic roots 
of W are also divided by ωmax, as a result of which ωS

max=1, 
just like the largest characteristic root of a row- or column-
normalized matrix). The advantage of matrix normalization is 
that the mutual proportions between the elements of W 
remain unchanged. For example, scaling the rows or columns 
of an inverse distance matrix so that the weights sum to one 
would cause this matrix to lose its economic interpretation 
for this decay.  
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Two basic identification problems in applied econometric research: 
(1) How to find the right/best spatial econometric model 

specification. 
(2) How to find the right/best specification of the spatial weights 

matrix. 
 
See also critique special theme issue Journal of Regional Science (2012, 
volume 52, issue 2). 
 
Economic Theory: (1) Use an economic-theoretical model, if available, or 
develop it. (2) Do global spillover effects make sense from a theoretical 
viewpoint, SDM vs. SDEM, and related to this is W dense or sparse? 
 
Three “statistical type” of solutions 
(1) SLX approach 
(2) Bayesian comparison approach 
(3) CD-test and exponent α-estimator 
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The SLX approach Halleck Vega and Elhorst (SLX model, 2015, JRS; 
2017, PEE): 
1. Only in the SLX, SDEM, SDM and GNS models can the spatial 

spillover effects take any value. The SLX model is the simplest one in 
this family of spatial econometric models. 

2.In the SLX model W can easily be parameterized (𝑤𝑤𝑖𝑖𝑖𝑖 = 1 𝑑𝑑𝛾𝛾⁄ ). 
3.There are K spatial lags WX, and only one WY and only one Wu, so it 

makes sense to focus on WX variables first. 
4.The estimation of this model also does not cause severe additional 

econometric problems (such as endogeneity, regularity conditions). 
5.The SLX model allows for the application of standard econometric 

techniques to test for endogenous explanatory variables. 
6.The SLX approach starkly contrasts commonly used spatial 

econometric specification strategies and is a complement to the 
critique of spatial econometrics raised in a special theme issue of the 
Journal of Regional Science (Volume 52, Issue 2).  
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Parameterizing W in the SLX model 
Inverse distance:  𝑤𝑤𝑖𝑖𝑖𝑖 =  1

𝑑𝑑𝑖𝑖𝑖𝑖𝛾𝛾
 

 
Negative exponential: 𝑤𝑤𝑖𝑖𝑖𝑖 =  exp (−𝛿𝛿𝑑𝑑𝑖𝑖𝑖𝑖)  
 

Gravity type of function: 𝑤𝑤𝑖𝑖𝑖𝑖 =  
𝑃𝑃𝑖𝑖
𝛾𝛾1𝑃𝑃𝑗𝑗

𝛾𝛾2

𝑑𝑑𝑖𝑖𝑖𝑖𝛾𝛾3
, 

 
where P measures the size of units i and j in terms of population and/or 
gross product. Preferably, theory should be the driving force behind 
W, the gravity type of model is such a theory. 

The spatial weights matrix of every exogenous spatial lag WkXk may 
also be modeled as 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 =  1

𝑑𝑑𝑖𝑖𝑖𝑖𝛾𝛾𝑘𝑘
; why should the distance decay effect 

be the same for every explanatory variable. 
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TABLE 4: SLX model estimation results for pre-specified and parameterized W, for all regressors treated as exogenous, for ln(P) treated as 
endogenous, and for both ln(P) and W × ln(P) treated as endogenous 
 OLS, W=BC 

 
 

(1) 

Nonl. OLS, 
W=1/dγ 

 
(2) 

2SLS, W=BC 
ln(P) 

endogenousa 
(3) 

2SLS, W=BC 
ln(P), W×ln(P) 
endogenousb 

(4) 

2SLS, W=1/dγ 
ln(P) 

endogenousc 
(5) 

2SLS, W=1/dγ 
ln(P),  W× ln(P) 

endogenousd 
(6) 

ln(P) -1.017 
(-24.77) 

-0.908 
(-24.43) 

-1.334 
(-16.63) 

-0.785 
(-3.69) 

-1.246 
(-16.32) 

-1.273 
(-15.40) 

ln(I) 0.608 
(10.38) 

0.654 
(15.39) 

0.579 
(9.63) 

0.576 
(6.81) 

0.591 
(13.34) 

0.502 
(10.59) 

W × ln(P) -0.220 
(-2.95) 

0.254 
(3.08) 

-0.109 
(-1.36) 

-3.067 
(-3.59) 

0.192 
(3.00) 

0.898 
(6.25) 

W × ln(I) -0.219 
(-2.80) 

-0.815 
(-4.76) 

-0.230 
(-2.89) 

-0.901 
(-4.09) 

-0.750 
(-14.14) 

-1.068 
(-12.79) 

γ  2.938 
(16.48) 

  3.141 
(11.11) 

3.322 
(15.24) 

R2 0.897 0.916 0.374 <0 0.484 0.421 
Log-Likelihood 1668.4 1812.9     
F-test instruments ln(P)   100.54 

[0.00] 
102.60 
[0.00] 

110.13 
[0.00] 

106.77 
[0.00] 

F-test instruments W × ln(P)    46.07 
[0.00] 

 156.09 
[0.00] 

χ2-test exogeneity instruments   0.087 
[0.99] 

3.84 
[0.28] 

0.112 
[0.99] 

0.907 
[0.82] 

t-test ln(P) residual   4.63 -0.67 5.14 4.50 
t-test W × ln(P) residual    2.94  -1.33 
Notes: See note to Table 2; coefficient estimates of W × ln(P) and W × ln(I) represent spillover effects. p-values of test statistics in squared brackets. Degrees 
of freedom of the F-test is (i) number of instruments and (ii) number of observations minus number of instruments and number of fixed effects. Degrees of 
freedom of χ2-test is number of surplus instruments. 
a. Instruments (+exog.var. in eq.): W × Population, Tax, W × Tax + ln(I), W × ln(P), W × ln(I). 
b. Instruments (+exog.var. in eq.): W × Population, Tax, W × Compensation + ln(I), W × ln(I). 
c. Instruments (+exog.var. in eq.): Tax, W × Compensation  + ln(I), W × ln(P), W × ln(I). 
d. Instruments (+exog.var. in eq.): W × Population,Tax, W × Compensation + ln(I), W × ln(I). 
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Distance decay effect 

• The estimate of the distance decay parameter is 2.938 and also highly significant. This makes 

sense because only people living near the border of a state are able to benefit from lower 

prices in a neighboring state on a daily or weekly basis. If the distance decay effect at 5 miles 

from the border is set to 1, it falls to 0.130 at 10 miles, 0.040 at 15 miles, and 0.017 at 20 

miles.  

• People living further from the border can only benefit from lower prices if they visit states for 

other purposes or if smuggling takes place by trucks over longer distances.  

• It explains why the parameterized inverse distance matrix gives a much better fit than the 

binary contiguity matrix; the degree of spatial interaction on shorter distances falls much 

faster and on longer distances more gradually than according to the binary contiguity principle 

(see Figure 2). This is corroborated by the R2, which increases from 0.897 to 0.916, and the 

log-likelihood function value, which increases from 1668.2 to 1812.9.  
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Another important issue to address is whether or not cigarette prices are endogenous. Except for 

Kelejian and Piras (2014), previous spatial econometric studies based on Baltagi and Li’s 

cigarette demand model did not treat price as being potentially endogenous. Although these 

studies argue or assume that price differences across states are largely due to state tax differences 

which are exogenously set by state legislatures, it is likely that demand has a feedback effect on 

price.  

Therefore, we formally test whether price and prices observed in neighboring states may be 

considered exogenous. The advantage of the SLX model over other spatial econometric models 

is that non-spatial econometric techniques can be used for this purpose. It concerns the 

Hausman test for endogeneity in combination with tests for the validity of the instruments to 

assess whether they satisfy the relevance and exogeneity criterions. The methodology behind 

these tests is explained in many econometric textbooks; we used Hill et al. (2012, pp. 419-422).  
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Table 3 SLX model estimation results explaining cigarette demand and the parameterization of W  
 BC 

 
(1) 

ID (γ=1) 
 

(2) 

ID 
 

(3) 

ED 
 

(4) 

ID 
γk’s 

(7) 

ID 
Gravity 

(8) 
Price -1.017 

(-24.77) 
-1.013 

(-25.28) 
-0.908 

(-24.43) 
-1.046 

(-29.58) 
-0.903 

(-24.49) 
-0.841 

(-23.03) 
Income 0.608 

(10.38) 
0.658 

(13.73) 
0.654 

(15.39) 
0.560 

(15.44) 
0.667 

(15.76) 
0.641 

(15.16) 
W×Price -0.220 

(-2.95) 

-0.021 
(-0.34) 

0.254 
(3.08) 

0.108 
(2.08) 

0.385 
(1.81) 

0.041 
(0.87) 

W×Income -0.219 
(-2.80) 

-0.314 
(-6.63) 

-0.815 
(-4.76) 

0.129 
(1.80) 

-0.838 
(-5.21) 

-0.372 
(-4.97) 

γdistance 
 

 2.938 
(16.48) 

0.467 
(9.99) 

 2.986 
(11.50) 

γdistance price in col.(7) and γown population in col. (8) 5.986 
(8.86) 

-0.018 
(-0.41) 

γdistance income in col.(7) and γpopulation neighbors in col.(8) 2.938 
(17.70) 

0.340 
(2.63) 

R2 
0.897 0.899 0.916 0.896 0.917 0.923 

LogL 1668.4 1689.8 1812.9 1666.9 1818.4 1868.0 
Prob. SDM 0.5502 0.0000 0.0000 0.3536   
Prob. SDEM 0.4498 1.0000 1.0000 0.6464   
Notes: t-statistics in parentheses; coefficient estimates of WX variables in the SLX represent spillover effects. 
§W matrix similar to the one used to model exogenous spatial lags WX. 
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Conclusion SLX modeling approach 

 Instead of the common SAR and SEM models for an exogenously 

specified W, we propose to take the SLX model as point of departure using 

a W that is parameterized and to apply standard econometric techniques to 

test for endogenous explanatory variables.  

 Parameterizing W is step forward since choice of cut-off point and/or 

limiting interval of distance decay parameter is restrictive. 

 Test for endogenous explanatory variables is step forward since many X 

variables are not exogenous. 
 The sign, magnitude, and significance level of the spillover effects are sensitive to 

both the specification of W and the spatial econometric model specification; the 
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SLX model helps to test different non-parameterized and parameterized 

specifications of W against each other. 

 The claim made in many empirical studies that their results are robust to the 

specification of W should thus be more sufficiently substantiated. It might be that 

these studies mainly focus on the direct effects rather than the spatial spillover 

effects, which are generally the MAIN FOCUS in spatial econometric studies. 
 

************************************************** 
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Bayesian comparison approach 
To choose between SDM and SDEM, and thus between a global or local 
spillover model, as well as to choose between different potential 
specifications of W, a Bayesian comparison approach may be applied. 
This approach determines the Bayesian posterior model probabilities 
of the SDM and SDEM specifications given a particular W matrix, as 
well as the Bayesian posterior model probabilities of different W 
matrices given a particular model specification. These probabilities are 
based on the log marginal likelihood of a model obtained by integrating 
out all parameters of the model over the entire parameter space on which 
they are defined. If the log marginal likelihood value of one model or of 
one W is higher than that of another model or another W, the Bayesian 
posterior model probability is also higher. Whereas the popular 
likelihood ratio, Wald and/or Lagrange multiplier statistics compare the 
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performance of one model against another model based on specific 
parameter estimates within the parameter space, the Bayesian approach 
compares the performance of one model against another model, in this 
case SDM against SDEM, on their entire parameter space. This is the 
main strength of this approach.  

Inferences drawn on the log marginal likelihood function values for 
the SDM and SDEM model are further justified because they have the 
same set of explanatory variables, X and WX, and are based on the same 
uniform prior for ρ and λ. This prior takes the form p(ρ)=p(λ)=1/D, where 
D=1/ωmax-1/ωmin and ωmax and ωmin represent respectively the largest and 
the smallest (negative) eigenvalue of the matrix W. This prior requires no 
subjective information on the part of the practitioner as it relies on the 
parameter space (1/ωmin, 1/ωmax) on which ρ and λ are defined, where 
ωmax=1 if W is row-normalized. Note: only available in Matlab. 
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We find that the Bayesian posterior model probability for SDEM when 

W is specified as the parameterized distance matrix (this is testing for W 

only) is 1.0000 (Note the W used in error term is same parameterized 

distance matrix ≠ binary contiguity matrix). This is also what you expect 

from a theoretical viewpoint. 

 

The Bayesian comparison approach has been applied successfully in: 

(1) Firmino Costa da Silva D. , Elhorst J.P., Neto Silveira R.d.M. 

(2017), Urban and Rural Population Growth in a Spatial Panel of 

Municipalities, Regional Studies 51(6): 894-908. 
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Table. Comparison of model specifications and spatial weights matrices 

W Matrix Statistics         SDM 
                              

SDEM 

Binary 
Contiguity 

log marginal likelihood 3616.03 3611.80 

model probabilities 0.9855 0.0145 

Inverse 
distance 

log marginal likelihood 3444.87 3455.44 

model probabilities 0.0000 1.0000 

K=6 nearest 
neighbors 

log marginal likelihood  3613.06 3613.60 

model probabilities 0.3676 0.6324 
Source: Firmino et al. (2017) 
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(2)Yesilyurt M.E., Elhorst J.P. (2017) Impacts of neighboring countries 

on military expenditures: A dynamic spatial panel approach. Journal of 

Peace Research, http://journals.sagepub.com/doi/full/10.1177/0022343317707569. 
Table II. Simultaneous Bayesian comparison of model specifications and spatial weight matrices 
Data Model W1 W2 W3 Enemy W1 +  

Enemy 
W1 +  
Superpower 

W1 + Do-  
minance 

W1 + Enemy  
+ 
Superpowers 

Row 
total 

 
COW 
Static model 

SAR 0.1449 0.0000 0.0000 0.0000 0.0224 0.1435 0.2838 0.0244 0.6190 
SDM 0.0054 0.0000 0.0000 0.0000 0.0026 0.0052 0.0119 0.0028 0.0279 
SEM 0.0625 0.0000 0.0000 0.0000 0.0098 0.0676 0.1603 0.0111 0.3113 
SDEM 0.0074 0.0000 0.0000 0.0000 0.0033 0.0073 0.0202 0.0036 0.0418 

 
COW 
Dynamic model 

SAR 0.2335 0.0000 0.0000 0.0000 0.0315 0.2547 0.4171 0.0350 0.9719 
SDM 0.0002 0.0000 0.0000 0.0000 0.0000 0.0002 0.0004 0.0000 0.0009 
SEM 0.0043 0.0000 0.0000 0.0000 0.0016 0.0056 0.0118 0.0018 0.0252 
SDEM 0.0004 0.0000 0.0000 0.0000 0.0001 0.0004 0.0010 0.0001 0.0020 

 
WB/SIPRI 
Static model 

SAR 0.0016 0.0061 0.5162 0.0020 0.0019 0.0015 0.0016 0.0019 0.5328 
SDM 0.0081 0.0004 0.0520 0.0294 0.0055 0.0072 0.0081 0.0047 0.1155 
SEM 0.0013 0.0044 0.2510 0.0040 0.0013 0.0013 0.0013 0.0013 0.2660 
SDEM 0.0084 0.0003 0.0235 0.0275 0.0053 0.0076 0.0086 0.0086 0.0857 

 
WB/SIPRI 
Dynamic model 

SAR 0.0382 0.0645 0.2365 0.0353 0.0390 0.0383 0.0381 0.0390 0.5288 
SDM 0.0001 0.0002 0.0259 0.0287 0.0001 0.0001 0.0001 0.0001 0.0551 
SEM 0.0411 0.0480 0.0835 0.0387 0.0382 0.0413 0.0411 0.0382 0.3701 
SDEM 0.0001 0.0002 0.0181 0.0272 0.0001 0.0001 0.0001 0.0001 0.0459 

The highest probability in each row is in bold and the probabilities in each block sum to 1. 
Source: Own calculations, based on LeSage (2014, 2015). 
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Cross-sectional dependence tests of Pesaran (2015) in Econometric Reviews 
The CD test uses the correlation coefficients between the time-series for each panel unit, which 

for N regions results in N x (N-1) correlations between region r and all other regions, for r=1 to 

N-1. Denoting these estimated correlation coefficients between the time-series for region r to j as 

𝜌𝜌�𝑟𝑟𝑟𝑟, the Pesaran (2015, eq.10) CD test is defined as CD =  �2𝑇𝑇 𝑁𝑁(𝑁𝑁 − 1)⁄ ∑ ∑ 𝜌𝜌�𝑟𝑟𝑟𝑟𝑁𝑁
𝑗𝑗=𝑟𝑟+1

𝑁𝑁−1
𝑟𝑟=1 , 

where T is the number of observations on each region over the observation period 1973-2013. 

This test statistic has the limiting N(0,1) distribution as T goes to infinity first, and then N. This 

implies that the critical values of this two-sided test are -1.96 and 1.96 at the five percent 

significance level.  

The local CD test (dependent on W) takes the form �𝑇𝑇 𝑆𝑆⁄ ∑ ∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝜌𝜌�𝑟𝑟𝑟𝑟𝑁𝑁
𝑗𝑗=1

𝑁𝑁−1
𝑟𝑟=1  (Moscone and 

Tosetti, 20009, eq.22), where S is the sum of the elements of the spatial weight matrix and thus 

equal to N2. 
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α-estimator of Bailey et al. (2017) in Journal of Applied Econometrics 
To test whether the strength of the found cross-sectional dependence, we apply the 

exponent α-test of Bailey et al. (2015).1F

2 This test statistic can take values on the 

interval (0,1] and measures the rate at which the variance of the cross-sectional 

averages tends to zero; 𝛼𝛼 ≤ 1/2 points to weak cross-sectional dependence only and 

𝛼𝛼 = 1 to strong cross-sectional dependence. Values in between indicate moderate to 

strong cross-sectional dependence and require additional research to discriminate 

between weak and strong cross-sectional dependence.  

 

𝛼𝛼 = 1 + 1
2
ln𝜎𝜎𝑥𝑥�

2

ln (𝑁𝑁) −
1
2

𝑐𝑐𝑁𝑁
(𝑁𝑁ln𝑁𝑁)𝜎𝜎𝑥𝑥�

2 − 1
2
ln𝑢𝑢𝑣𝑣2

ln (𝑁𝑁)     

 

                                                 
2 Gauss code to calculate the CD and the α-tests are made available in an online appendix to their paper. 
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The first component is the dominating term, the second and third components are bias 
correction terms. These three components are added to the constant 1. Prior to any 
calculations, the data need to be standardized for each single unit in the sample, to get 
𝑥𝑥𝑖𝑖𝑖𝑖 ≡ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑖𝑖)/1

𝑁𝑁∑ (𝑥𝑥𝑖𝑖𝑖𝑖−𝑥̅𝑥𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 . It is to be noted that standardization is not required for 

the CD test since the pairwise correlation coefficients do change when the data are 
standardized.  

The term 𝜎𝜎𝑥̅𝑥2  in the first component is defined as 𝜎𝜎𝑥̅𝑥2 = 1
𝑇𝑇
∑ (𝑥̅𝑥𝑡𝑡𝑇𝑇
𝑡𝑡=1 − 𝑥̅𝑥)2 , where 

𝑥̅𝑥 = 1
𝑇𝑇
∑ 𝑥̅𝑥𝑡𝑡𝑇𝑇
𝑡𝑡=1 . These expressions state that, firstly, the cross-sectional average (𝑥̅𝑥𝑡𝑡 ) 

needs to be determined in each time period, secondly, the overall average 𝑥̅𝑥 over these 
T cross-sectional averages and, finally, the standard deviation 𝜎𝜎𝑥̅𝑥2  of this overall 
average. Due to the standardization of the data 𝜎𝜎𝑥̅𝑥2 < 1, as a result of which ln𝜎𝜎𝑥̅𝑥2 < 0 

and  1 + 1
2
ln𝜎𝜎𝑥𝑥�

2

ln (𝑁𝑁) < 1. 
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Testing for common-factors: CD-test and exponent α-estimator 
Elhorst, J.P., Gross M., Tereanu E. (2018) Spillovers in space and time: where spatial econometrics and 

Global VAR models meet. European Central Bank, Frankfurt. Working Paper Series No 2134. 

https://www.ecb.europa.eu/pub/pdf/scpwps/ecb.wp2134.en.pdf?b33bf8d0dc4c5addae515ce126b98b7d. 

Interplay between cross-section dependence, CF, weight structure and estimation 
α can be estimated consistently only for 1/2 < 𝛼𝛼 ≤ 1. Use Pesaran’s CD test to find out whether 
α is smaller or greater than ½. 

α 
Cross section 

dependence 
 Weight structure 

0<α<0.5 weak 
sparse: local, mutually 

dominant units 

0.5<α<0.75 moderate still quite sparse 

0.75<α<1 quite strong dense 

1 strong 
CS averages or PC        

 (no weights involved) 
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A regional unemployment model simultaneously accounting for 

serial dynamics, spatial dependence and common factors† 
 

Solmaria Halleck Vega and J. Paul Elhorst 

 
Key words: Regional unemployment, strong and weak cross-sectional 
dependence, dynamic spatial panel models, the Netherlands  
 

JEL classification: C23, C33, C38, R23 

________________________________  

†Regional Science and Urban Economics 60 (2016) 85-95. 
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Regional unemployment rates tend to be strongly correlated over 
time: Serial dynamics. 
 
Table 1. Regional unemployment correlations over time 

Year 1973 1974 1976 1981 1991 2001 2013 

1973 1.00       
1974 0.82 1.00      
1976 0.67 0.95 1.00     
1981 0.45 0.73 0.83 1.00    
1991 0.34 0.43 0.41 0.67 1.00   
2001 0.37 0.35 0.36 0.57 0.73 1.00  
2013 -0.21 0.16 0.34 0.55 0.62 0.30 1.00 
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Regional unemployment rates in the Netherlands, 1973-2013 

 

Regional unemployment rates parallel the national unemployment 

rate: Strong cross-sectional dependence.  CD=46.31, α=1.008 

(se=0.019)
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Regional unemployment rates are correlated across space: Weak cross-sectional 
dependence. CDlocal(Binary contiguity)=20.38 
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A unified methodology to simultaneously address the three key stylized facts, 

known as serial dynamics, strong and weak cross-sectional dependence. 

 

To deal with these stylized facts, Bailey, Holly and Pesaran (2015, Journal of Applied 

Econometrics) propose a separation of two model stages: first, accounting for common 

factors (strong cross-sectional dependence) and second, accounting for spatial effects 

(weak cross-sectional dependence) and serial dynamics. However, it is more likely that 

weak and strong cross-sectional dependence are interdependent. The impact of the 

national economy on its regions may affect the mutual structure among them, while a 

change in this mutual structure may affect the impact of the national economy.  
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Unified approach 
 
Stage 1: 𝑢𝑢𝑟𝑟𝑟𝑟 = 𝛾𝛾0𝑟𝑟 + 𝛾𝛾1𝑟𝑟

1
𝑅𝑅
∑ 𝑢𝑢𝑗𝑗𝑗𝑗 ≈𝑅𝑅
𝑗𝑗=1 𝛾𝛾0𝑟𝑟 + 𝛾𝛾1𝑟𝑟𝑢𝑢𝑁𝑁𝑁𝑁 .         →       𝑒̂𝑒𝑟𝑟𝑟𝑟 = 𝑢𝑢𝑟𝑟𝑟𝑟 − 𝛾𝛾�0𝑟𝑟 − 𝛾𝛾�1𝑟𝑟𝑢𝑢𝑁𝑁𝑁𝑁 

Stage 2: 𝑒̂𝑒𝑟𝑟𝑟𝑟 = 𝛼𝛼0 + 𝛼𝛼1𝑒̂𝑒𝑟𝑟𝑟𝑟−1 + 𝛼𝛼2 ∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝑅𝑅
𝑗𝑗=1 𝑒̂𝑒𝑗𝑗𝑗𝑗 + 𝛼𝛼3 ∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝑅𝑅

𝑗𝑗=1 𝑒̂𝑒𝑗𝑗𝑗𝑗−1 + (𝝁𝝁𝒓𝒓) + (𝝀𝝀𝒕𝒕) + 𝜀𝜀𝑟𝑟𝑟𝑟 

(Dynamic spatial panel data model without exogenous explanatory variables) 

Elements of W specified as a binary contiguity matrix (1 share a common border, 0 otherwise) 

_____________________________________________________________________________________ 

Substitute 1 in 2 

 (𝑢𝑢𝑟𝑟𝑟𝑟 − 𝛾𝛾0𝑟𝑟 − 𝛾𝛾1𝑟𝑟𝑢𝑢𝑁𝑁𝑁𝑁) = 𝛼𝛼0 + 𝛼𝛼1(𝑢𝑢𝑟𝑟𝑟𝑟−1 − 𝛾𝛾0𝑟𝑟 − 𝛾𝛾1𝑟𝑟𝑢𝑢𝑁𝑁𝑁𝑁−1) + 𝛼𝛼2 ∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝑅𝑅
𝑗𝑗=1 �𝑢𝑢𝑗𝑗𝑗𝑗 − 𝛾𝛾0𝑗𝑗 −

 𝛾𝛾1𝑟𝑟𝑢𝑢𝑁𝑁𝑁𝑁� + 𝛼𝛼3 ∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝑅𝑅
𝑗𝑗=1 �𝑢𝑢𝑗𝑗𝑗𝑗−1 − 𝛾𝛾0𝑗𝑗 − 𝛾𝛾1𝑟𝑟𝑢𝑢𝑁𝑁𝑁𝑁−1� + 𝜀𝜀𝑟𝑟𝑟𝑟 

and rearrange terms 

𝑢𝑢𝑟𝑟𝑟𝑟 =  𝛼𝛼0 + 𝛾𝛾0𝑟𝑟 − 𝛼𝛼1𝛾𝛾0𝑟𝑟 − 𝛼𝛼2 ∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝑅𝑅
𝑗𝑗=1 𝛾𝛾0𝑗𝑗 − 𝛼𝛼3 ∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝑅𝑅

𝑗𝑗=1 𝛾𝛾0𝑗𝑗  

+ 𝛼𝛼1𝑢𝑢𝑟𝑟𝑟𝑟−1 + 𝛼𝛼2 ∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝑢𝑢𝑗𝑗𝑗𝑗𝑅𝑅
𝑗𝑗=1 +𝛼𝛼3 ∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝑅𝑅

𝑗𝑗=1 𝑢𝑢𝑗𝑗𝑗𝑗−1  

+ 𝛾𝛾1𝑟𝑟(1 − 𝛼𝛼2)𝑢𝑢𝑁𝑁𝑁𝑁 + 𝛾𝛾1𝑟𝑟(−𝛼𝛼1 − 𝛼𝛼3)𝑢𝑢𝑁𝑁𝑁𝑁−1 + 𝜀𝜀𝑟𝑟𝑟𝑟  
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𝑢𝑢𝑟𝑟𝑟𝑟 =  𝛼𝛼0 + 𝛾𝛾0𝑟𝑟 − 𝛼𝛼1𝛾𝛾0𝑟𝑟 − 𝛼𝛼2 ∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝑅𝑅
𝑗𝑗=1 𝛾𝛾0𝑗𝑗 − 𝛼𝛼3 ∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝑅𝑅

𝑗𝑗=1 𝛾𝛾0𝑗𝑗�����������������������������������  

                                                         𝜇𝜇𝑟𝑟′  

+ 𝛼𝛼1𝑢𝑢𝑟𝑟𝑟𝑟−1 + 𝛼𝛼2 ∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝑢𝑢𝑗𝑗𝑗𝑗𝑅𝑅
𝑗𝑗=1 +𝛼𝛼3 ∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝑅𝑅

𝑗𝑗=1 𝑢𝑢𝑗𝑗𝑗𝑗−1  

+ 𝛾𝛾1𝑟𝑟(1 − 𝛼𝛼2)���������𝒖𝒖𝑵𝑵𝑵𝑵  + 𝛾𝛾1𝑟𝑟(−𝛼𝛼1 − 𝛼𝛼3)�����������𝒖𝒖𝑵𝑵𝑵𝑵−𝟏𝟏 + 𝜀𝜀𝑟𝑟𝑟𝑟  

              β4r                                            β5r 

The first composite term in the resulting equation is a heterogeneous constant, which can be accounted for 

by controlling for spatial (regional) fixed effects. The next three terms (second line) show that the regional 

unemployment rate at time t depends on its serially lagged value, spatially lagged value, and its value lagged 

both in space and time. In addition, the last two terms (last line) show that the regional unemployment rate 

also depends on the national unemployment rate at times t and t-1 with coefficients 𝛾𝛾1𝑟𝑟(1 − 𝛼𝛼2)  and 

𝛾𝛾1𝑟𝑟(−𝛼𝛼1 − 𝛼𝛼3), respectively. They are accounted for by β4r and β5r. 
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Table Simultaneous approach to strong and weak cross-sectional dependence 
Strong cross-sectional dependence    𝜸𝜸𝟏𝟏𝟏𝟏   𝜸𝜸𝟏𝟏𝟏𝟏    

 β4r   Β5r   β4r /(1-α2) Β5r/(-α1-α3)  
Groningen 0.913 (0.114) -0.675 (0.152)  1.034 (0.169)  0.910  (0.054)  
Friesland 0.986 (0.112) -0.736 (0.143)  1.118 (0.157)  0.991  (0.045)  
Drenthe 1.020 (0.113) -0.906 (0.145)  1.155 (0.156)  1.221  (0.035)  
Overijssel 1.092 (0.111) -0.919 (0.134)  1.237 (0.146)  1.238  (0.032)  
Flevoland 0.925 (0.108) -0.824 (0.131)  1.048 (0.162)  1.111  (0.035)  
Gelderland 0.881 (0.109) -0.726 (0.127)  0.998 (0.168)  0.978  (0.040)  
Utrecht 0.696 (0.107) -0.590 (0.128)  0.789 (0.196)  0.794  (0.054)  
North-Holland 0.814 (0.108) -0.636 (0.132)  0.922 (0.174)  0.857  (0.050)  
South-Holland 0.764 (0.108) -0.628 (0.126)  0.866 (0.181)  0.846  (0.048)  
Zeeland 0.637 (0.111) -0.550 (0.127)  0.722 (0.215)  0.740  (0.059)  
North-Brabant 1.079 (0.106) -0.949 (0.123)  1.223 (0.142)  1.279  (0.028)  
Limburg 0.926 (0.113) -0.839 (0.126)  1.050 (0.166)  1.130  (0.033)  

             
Weak cross-sectional dependence           
α1 0.664 (0.038)           
α2 0.118 (0.059)           
α3 0.079 (0.082)           
R2 0.956            
Log-Likelihood -362.3            
Notes: Standard errors are reported in parentheses; spatial fixed effects included. The bias corrected ML  
estimator developed in Yu et al. (2008) is applied.  

CD = -0.020 and CDlocal = -1.034 based on residuals of the model 
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Special case: Two-stage approach strong and weak cross-sectional 
dependence of Bailey et al. (2015): 
 
 

 𝛽𝛽4𝑟𝑟/(1 − 𝛼𝛼2) =  𝛽𝛽5𝑟𝑟/(−𝛼𝛼1 − 𝛼𝛼3) for 𝑟𝑟 = 1, … ,𝑅𝑅 
 

𝑒̂𝑒𝑟𝑟𝑟𝑟 = 𝑢𝑢𝑟𝑟𝑟𝑟 − 𝛾𝛾�0𝑟𝑟 − 𝛾𝛾�1𝑟𝑟𝑢𝑢𝑁𝑁𝑁𝑁 
 

𝑒̂𝑒𝑟𝑟𝑟𝑟 = 𝛼𝛼0 + 𝛼𝛼1𝑒̂𝑒𝑟𝑟𝑟𝑟−1 +  𝛼𝛼2�𝑤𝑤𝑟𝑟𝑟𝑟

𝑅𝑅

𝑗𝑗=1

𝑒̂𝑒𝑗𝑗𝑗𝑗 + 𝛼𝛼3�𝑤𝑤𝑟𝑟𝑟𝑟

𝑅𝑅

𝑗𝑗=1

𝑒̂𝑒𝑗𝑗𝑗𝑗−1 + (𝜇𝜇𝑟𝑟) + (𝜆𝜆𝑡𝑡) + 𝜀𝜀𝑟𝑟𝑟𝑟 
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Table. Strong cross-sectional dependence: First stage 
 γ0r  γ1r  
     

Groningen -0.069 (0.377) 1.362 (0.058) 
Friesland -1.418 (0.377) 1.341 (0.058) 
Drenthe 0.004 (0.377) 1.160 (0.058) 
Overijssel -0.819 (0.377) 1.208 (0.058) 
Flevoland 0.284 (0.377) 1.098 (0.058) 
Gelderland -0.940 (0.377) 1.108 (0.058) 
Utrecht -0.788 (0.377) 0.914 (0.058) 
North-Holland -0.781 (0.377) 1.063 (0.058) 
South-Holland -0.200 (0.377) 0.945 (0.058) 
Zeeland 0.026 (0.377) 0.842 (0.058) 
North-Brabant -0.974 (0.377) 1.119 (0.058) 
Limburg 0.603 (0.377) 1.011 (0.058) 
R2 0.918    
Log-Likelihood -537.0    
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Table. Weak cross-sectional dependence: Second stage 

  Panel B 

  (3)   

  0.001   
  (0.024)   
  0.643   
  (0.036)   
  0.147   
  (0.057)   
  0.054   
  (0.081)   

  No   

  No   

  0.455   
  -379.8   

Notes: Standard errors are reported in 
parentheses.  
 

 
 
 
 

A LR test whether these 12 coefficients 

in both columns are the same can be based on 

the log-likelihood function value of the 

simultaneous model (-362.3) and that of the 

de-factoring model including spatial fixed 

effects (-379.2). This yields 33.9 with 12 df 

and p=0.00, indicating that the two-stage 

model needs to be rejected in favor of the 

simultaneous model and that the national rate 

has a different impact on the provinces in 

time t compared to t-1.  
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Spatial panel dynamic approach: 𝛽𝛽4𝑟𝑟 = 𝛽𝛽5𝑟𝑟 = 0, but time-period fixed effects can partly (but not 
fully) mitigate the effects of omitting the national unemployment rate from the model, albeit 𝛾𝛾1𝑟𝑟 = 1 is unrealistic. 
𝑢𝑢𝑟𝑟𝑟𝑟 = 𝛼𝛼0 + 𝛼𝛼1𝑢𝑢𝑟𝑟𝑟𝑟−1 + 𝛼𝛼2 ∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝑅𝑅

𝑗𝑗=1 𝑢𝑢𝑗𝑗𝑗𝑗 + 𝛼𝛼3 ∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝑅𝑅
𝑗𝑗=1 𝑢𝑢𝑗𝑗𝑗𝑗−1 + 𝜇𝜇𝑟𝑟 + 𝝀𝝀𝒕𝒕+𝜀𝜀𝑟𝑟𝑟𝑟    

 
Table. Weak cross-sectional dependence 

  Panel A 

  (1) (2) 

α0     
      
α1 0.679 0.716 
  (0.039) (0.037) 
α2 0.756 0.252 
  (0.025) (0.073) 
α3 -0.460 -0.002 
  (0.047) (-0.038) 

Spatial fixed effects 
Yes Yes 

Time fixed effects 
No Yes 

R2 0.942 0.955 
Log-Likelihood -481.3 -368.9 
Notes: Standard errors are reported in parentheses;  

Time period fixed effects 
may partly cover common 
factors. However, it is 
important to note this is a 
homogeneous approach in 
the sense that it assumes 
that the impact of common 
factors is the same across 
regions, which is not 
likely to be the case in 
many applied settings. 
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-If time-period fixed effects are controlled for, the spatial 
autoregressive coefficient estimate is much lower with a value of 
0.252 (0.073), that is, compared to the dynamic spatial panel data 
model without time-period fixed effects, while the lagged spatial 
autoregressive coefficient decreases considerably in magnitude and 
becomes insignificant. This confirms the importance of including 
time-period fixed effects to partly cover for the fact that regional 
unemployment rates tend to increase and decrease together along 
the national evolution of this variable over time.  
 
-It also corroborates Lee and Yu’s (2010a) finding that if this 
common effect is not taken into account and therefore not 
separated out from the local spatial interaction effects among the 
regions, the latter may be severely overestimated as is clearly 
shown by the numbers above.  
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-However, the impact of this common effect is assumed to be the 
same across regions, 𝛾𝛾1𝑟𝑟 = 1  for 𝑟𝑟 = 1,⋯ ,𝑁𝑁 , which is not 
realistic, especially considering the regional cyclical sensitivity and 
the common factor literature. This also follows from the CD and α 
tests applied to the residuals of this model: CD = 2.052, CDlocal = 
0.812, and α=0.722 with standard error 0.076. Local spatial 
dependence appears to be effectively covered, but the CD test still 
provides evidence in favor of common factors, while the α-test, 
despite its decrease when applied to the raw data, still points to 
moderate cross-sectional dependence. 
- Conclusion: Common factors  are to be preferred over time 
dummies.  
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-According to the two-step approach the impact of the national 
unemployment rate is strongest for Groningen with 1.362, while the 
elasticity amounts to 1.119 for North-Brabant.  
-According to the simultaneous approach, we obtain 1.034 for 
Groningen and 1.223 for North-Brabant. Focusing on the coefficients in 
the last column of Table 4 which are more reliable, we obtain 0.910 for 
Groningen and 1.279 for North-Brabant.  
-Groningen is therefore less cyclically sensitive, while North-
Brabant is more sensitive. This change may reflect that the Northern 
provinces such as Groningen suffer more from long-standing 
disadvantage relative to the nation, such as structural unemployment, 
than the results of the two-stage approach suggest. 
-The estimate of the contemporaneous spatial interaction effect (weak 
cross-sectional dependence) falls from 0.252 when ignoring strong 
cross-sectional dependence- but when accounting for spatial and time-
period fixed effects-, to 0.147 when using the two-step approach, and 
finally to 0.118 when accounting for weak and cross-sectional 
dependence simultaneously. 
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Conclusion 

To better explain the evolution of a cross-section of regional 
unemployment rates over time, a unified approach is needed 
that simultaneously accounts for both strong and weak cross-
sectional dependence, as well as serial dynamics.  

Otherwise the results will be biased! 

Can be extended with X and WX variables. 

Cross-sectional averages can be replaced by principal 
components. 


