Innovation and Productivity in SMEs.
Empirical Evidence for Italy

Bronwyn H. Hall,* Francesca Lotti,§* and Jacques Mairesse*

Abstract

Innovation in SMEs exhibits some peculiar features that most traditional indicators of innovation activity do not capture. Therefore, in this paper, we develop a structural model of innovation which incorporates information on innovation success from firm surveys along with the usual R&D expenditures and productivity measures. We then apply the model to data on Italian SMEs from the “Survey on Manufacturing Firms” conducted by Mediocredito-Capitalia covering the period 1995-2003. The model is estimated in steps, following the logic of firms’ decisions and outcomes. We find that international competition fosters R&D intensity, especially for high-tech firms. Firm size, R&D intensity, along with investment in equipment enhances the likelihood of having both process and product innovation. Both these kinds of innovation have a positive impact on firm’s productivity, especially process innovation. Among SMEs, larger and older firms seem to be less productive.

Keywords: R&D, Innovation, Productivity, SMEs, Italy.

JEL classification: L60, O31, O33.

* Corresponding author.

Department of Economics, University of California at Berkeley - 549 Evans Hall, Berkeley, CA 94720-3880; Maastricht University - Maastricht, The Netherlands; NBER - Cambridge, Mass. USA; IFS – London, UK. Email: bhhall@econ.berkeley.edu

§ Economic Research Department, Bank of Italy. Via Nazionale 91 – 00184 Rome, Italy. Email: francesca.lotti@bancaditalia.it

* CREST (ENSAE, Paris) – 15, Boulevard Gabriel Peri, 92245 Malakoff Cedex, France; UNU-MERIT, Maastricht University - Maastricht, The Netherlands; NBER - Cambridge, Mass. USA. Email: jacques.mairesse@ensae.fr
1. **Introduction**

In the past decade, labor productivity growth in Italy has been one of the lowest in the EU; low growth has been particularly strong in manufacturing, where the growth rate even turned negative in the period from 2000 to 2005 (see Figure 1). Such a poor performance raises unavoidable policy concerns about the underlying reasons for it. Is the labor productivity slowdown due to the decline in total factor productivity (see Daveri and Jona-Lasinio 2005)? Or, more precisely, is it a consequence of the exhaustion of the so-called “capital deepening” phase that supported labor productivity growth during the Eighties (as documented by Pianta and Vaona, 2007)? Alternatively, is it simply due to input reallocation following a change in the relative price of labor with respect to capital after the labor market reforms of the early 1990s (Brandolini et al., 2007)? Or does the explanation lie in the evergreen motto that Italian firms exhibit insufficient R&D investment (European Commission, 2006)?

The latter aspect has been largely explained by the unquestionable fragmentation of the Italian production system. According to the latest available data from the Census, more than 99% of active firms (out of 4 million) have fewer than 250 employees (95% have fewer than 10 employees, see Figure 2). If there were a positive relationship between innovation activity – including R&D – and firm size, the size distribution of Italian firms could help to explain why Italy is lagging behind in terms of aggregate R&D investment.

Nevertheless, many scholars have argued that small firms are the engines of technological change and innovative activity, at least in certain industries (see the series of works by Acs and Audretsch, 1988, 1990). But at the same time, innovation in small and medium enterprises exhibits some peculiar features that most traditional indicators of innovation activity would not capture, incurring the risk of underestimating their innovation effort. In fact, innovation often occurs without the performance of formal R&D, and this is particularly true for SMEs. Despite the existence of a large number of policies designed to promote and facilitate the operation of the innovation process within SMEs, especially in Italy, the knowledge about how SMEs actually undertake innovative activities remains quite limited, causing a significant bias in the treatment of
the R&D – innovation relationship (see Hoffman et al, 1998 for a literature review on this topic in the UK).

This paper is not an attempt to verify or disprove the Schumpeterian hypothesis, i.e. to study the relationships between firm size and innovative activity at the firm level; instead it investigates how and when innovation takes place in SMEs and whether – and how – innovation outcomes impact SME firms’ productivity. We caution the reader that because we rely mainly on dummy variables for the present of innovation success, we are in fact unable to say very much about the size-innovation relationship per se. In general larger firms have more than one innovative activity, which implies a higher probability that one of them at the least is successful and that the innovation dummy is one.

The remainder of the paper is organized as follows. In Section 2 we put our modeling approach and our results into perspective by giving a summary – far from being exhaustive – of the previous empirical studies on the R&D innovation–productivity relationships. In Section 3, we first explain our data and how we bring it into play in our modeling approach; we then present in turn our main results on the R&D investment equations, the innovation equations and the productivity equation; and finally we discuss and give evidence on the robustness of these results and compare them to the comparable findings of Griffith and al. (2006). In Section 4 we conclude with a discussion of the results and with directions for further research.

2. Previous studies of the innovation – productivity link

Measuring the effects of innovative activities on firms’ productivity has been an active area for research for several decades both as a policy concern and as a challenge for econometric applications. Notwithstanding a large number of empirical studies available, measuring the effect of innovation (product and process) on productivity at the firm level (see Griliches, 1995), the literature still does not provide a unique answer in terms of the magnitude of this impact. Because of the variability and uncertainty that is inherent in innovation, this fact is not unexpected: at best, economic research should
give us a distribution of innovation outcomes and tell us how they have changed over time. Recent firm level studies, Lichtenberg and Siegel (1991) on the U.S., Hall and Mairesse (1995) and Mairesse and Mohnen (2005) on France, Harhoff (1998) and Bönte (2003) on Germany, Klette and Johansen (1996) on Norway, Van Leeuwen and Klomp (2006) on the Netherlands, Janz et al (2004) on Germany and Sweden, Lööf and Heshmati (2002) on Sweden, Lotti and Santarelli (2001) and Parisi et al (2006) on Italy, find that the effect of R&D on productivity is positive,\(^1\) although some have suggested that the returns to R&D have declined over time (Klette and Kortum, 2004). The majority of the empirical analyses rely on an extended production-function approach, which includes R&D (or alternative measures of innovation effort) as another input to production.

However, it is widely recognized that R&D does not capture all aspects of innovation, which often occurs through other channels. This is particularly true for small and medium-size firms, and could lead to a severe underestimation of the impact of innovation on productivity. In order to overcome this problem, subsequent studies have moved from an input definition of innovation activities to an output approach, by including in the regressions the outcome of the innovation process rather than its input. The rationale behind this line of reasoning is simple: if it is not possible to measure the innovative effort a firm exerts because of the presence of latent and unobservable variables, one should look at the results of R&D investment: training, technology adoption, sales of products new to the market or the firm. All these activities may be signs of successful innovative effort, but if one considers R&D only, a lot of this informal activity is going to be missing from the analysis (Blundell et al., 1993, Crépon, Duguet and Mairesse, 1998). As suggested by Kleinknecht (1987), official R&D measures for SMEs may underestimate their innovation activities, and the underestimate is likely to be larger at the left end of the firm size distribution.

Crépon, Duguet and Mairesse (1998) take a further step in this literature combining the aforementioned approaches. They propose and estimate a model – CDM model hereinafter - that establishes a relationship among innovation input (mostly, but not

\(^1\) For a survey of previous empirical results, see Mairesse and Sassenou (1991) and Griliches (1998).
limited, to R&D), innovation output and productivity. This structural model allows a closer look at the black box of the innovation process at the firm level: it not only analyzes the relationship between innovation input and productivity, but it also sheds some light on the process in between the two.

The CDM approach is based on a simple three-step modeling of the logic of firms’ innovation decisions and outcomes. The first step corresponds to firm decision whether to engage in R&D or not and on how much resources to invest. Given the firm’s decision to invest in innovation, the second step consists in a knowledge production function (as in Pakes and Griliches, 1984) which relates innovation output to innovation input and other factors. In the third step, an innovation augmented Cobb-Douglas production function specifies the effect of innovative output on the firm’s productivity. The model is tailored to take advantage of innovation survey data, which provide measures of other aspects of innovation and not only on R&D expenditures. Given the increased diffusion of this type of micro data across countries and among scholars, many empirical explorations of the impact of innovation on productivity have relied on the CDM framework.²

In particular, Parisi, Schiantarelli and Sembenelli (2006) apply a modified version of the CDM model to a sample of Italian firms (using two consecutive waves of the Mediocredito-Capitalia survey, the same source we are using in our empirical analysis), enriching the specification with a time dimension.³ They find that process innovation has a large and significant impact on productivity and that R&D is positively associated with the probability of introducing a new product, while the likelihood of having process innovation is directly linked to firm’s investment in fixed capital. In comparing those results to the ones we obtain in this paper, one has to keep in mind that, due to the design of the survey itself, the panel used by Parisi, Schiantarelli and Sembenelli is

³ Although the Mediocredito-Capitalia survey is not a panel itself, it contains repeated observation for a number of firms which is enough to allow the estimation of a dynamic framework. See Section 3 of this paper for further information on the data.
tilted towards medium and large firms much more than the original Mediocredito-Capitalia sample.

To our knowledge, none of the empirical papers investigating the relationship between innovation and productivity has dealt specifically with small and medium-sized firms. On one hand, this paper is aimed at filling this gap, since innovation in SMEs is even more difficult to measure; on the other, like Griffith et al (2007), we try to improving on the CDM original specification by considering separately both product and process innovation.

3. **Data and main results**

3.1 **Descriptive statistics**

The data we use come from the 7th, 8th and 9th waves of the “Survey on Manufacturing Firms” conducted by Mediocredito-Capitalia (an Italian commercial bank). These three surveys were carried out in 1998, 2001, and 2004 respectively, using questionnaires administered to a representative sample of Italian manufacturing firms. Each survey covered the three years immediately prior (1995-1997, 1998-2000, 2001-2003) and although the survey questionnaires were not identical in all three of the surveys, the questions providing the information used in this work were unaffected. All firms with more than 500 employees were included, whereas smaller firms were selected using a sampling design stratified by geographical area, industry, and firm size. We merged the data from these three surveys, excluding firms with incomplete information or with extreme observations for the variables of interest.\(^4\) We focus on SMEs, which represent nearly 90% of the whole sample, imposing a threshold of 250 employees, in line with the definition of the European Commission; we end up with an overall unbalanced

\(^4\) We require that sales per employee be between 2000 and 10 million euros, growth rates of employment and sales of old and new products between -150 % and 150 %, and R&D employment share less than 100 %. We also replaced R&D employment share with the R&D to sales ratio for the few observations where it was missing. For further details, see Hall, Lotti and Mairesse (2008). In addition, we restrict the sample by excluding a few observations with zero or missing investment.
panel of 9,674 observations on 7,375 firms, of which only 361 are present in all three waves. Table 1 contains some descriptive statistics, for both the unbalanced and the balanced panel. Not surprisingly, in both cases, the firm size distribution is skewed to the right, with an average of respectively 50 and 53 employees and a median of respectively 32 and 36. Firms in the low-tech sector tend to be slightly smaller, with average employment of 47 and median employment of 30 (Table 2).\footnote{We adopt the OECD definition for high- and low-tech industries. \textit{High-tech industries:} encompasses high and medium-high technology industries (chemicals; office accounting & computer machinery; radio, TV & telecommunication instruments; medical, precision & optical instruments; electrical machinery and apparatus, n.e.c.; machinery & equipment; railroad & transport equipment, n.e.c.). \textit{Low-tech industries:} encompasses low and medium-low technology industries (rubber & plastic products; coke, refined petroleum products; other non-metallic mineral products; basic metals and fabricated metal products; manufacturing n.e.c.; wood, pulp & paper; food, beverages & tobacco products; textile, textile products, leather & footwear).} In the unbalanced sample, 62\% of the firms have successful product and/or process innovation, but only 41\% invest in R&D. Such difference is evidence for the importance of informal innovation activities. Although a sizeable share of firms invests on R&D, only a small fraction seems to do it continuously: out of 361 firms in our balanced panel, 34\% invest in R&D in every period under examination. For 21\% of the firms product and process innovations go together, while 27\% are process innovators only. Concerning competition, more than 42\% of the firms in the sample have national competitors, while 18\% and 14\% have European and international competitors, respectively. Interestingly, low-tech firms tend to compete more within the national boundaries, while almost half of the high-tech firms operate in European or international markets, in line with Janz et al. (2004).

For comparability with the samples used by Griffith et al. (2006) for France, Germany, Spain and the UK, in Table A1 of the appendix we show the means for our entire sample, including non-SMEs and excluding firms with fewer than 20 employees. Even if the share of innovators – product and process – are not dissimilar, Italian firms display a significantly lower R&D intensity but roughly comparable investment intensities. These figures can be partially explained by the different firm size distribution within each country: around 60 of the firms in the Italian sample for the year 2000 belong to the smaller class size (20-49 employees), a figure much larger than
that for other countries. Interestingly, labor productivity is somewhat higher for the Italian firms.

3.2 Data and model specification

As discussed earlier, in order to analyze the relationship between R&D, innovation and productivity at the firm level, we rely on a modified version of the model proposed by Crépon, Duguet and Mairesse (1998). This model - specifically tailored for innovation survey data and built to take into account the econometric issues that arise in this context - is made up by three building blocks, following the sequence of firms’ decisions in terms of innovation activities and outcomes. The first one concerns R&D activities, i.e. the process that leads the firm to decide whether to undertake R&D projects or not, and how much to invest on R&D. The second one consists of a two-equations knowledge production function in which R&D is one of the inputs and process and product innovation are the two outputs. The third consists of a simple extended production function in which knowledge (i.e., process and product innovation) is an input.

We perform our analysis for the whole sample of firms, and for high- and low- tech firms, since the effect of R&D on productivity can vary a lot with the technological content of an industry (see Verspagen, 1995 for a cross country, cross sector study and, more recently, an analysis based on micro data by Potters et al, 2008).

Because of the way our data, and innovation survey data in general, are collected, our analysis here is essentially cross-sectional. Although there are three surveys covering 9 years, the sampling methodology is such that few firms appear in more than one survey (as we saw in Table 1, fewer than 5 % of the firms and about 10 % of the observations are in the balanced panel). Due to the resulting small sample size and very limited information in the time series dimension we found that controlling for fixed firm effects was not really possible in practice. Other difficulties arise from the fact that the process and product innovation indicators are defined over three year periods, while the income

6 We do not yet know how much of the difference is due to differences in sampling strategy across the different countries.
statement data, when available, are on a yearly basis. As a robustness check we estimated the same three-equation model using lagged R&D intensity instead of contemporaneous R&D intensity in order to account for a plausible delay between R&D and innovation output. Given the low volatility of R&D investment over time, the results were very similar to those reported below.\(^7\)

3.3 The R&D equations

The firm R&D decisions can modeled in terms of two equations: a selections equation and an intensity equation. The selection equation can be specified as:

\[
RDI_i = \begin{cases}
1 & \text{if } RDI_i^* = w_i \alpha + \varepsilon_i > \bar{c} \\
0 & \text{if } RDI_i^* = w_i \alpha + \varepsilon_i \leq \bar{c}
\end{cases}
\]

(1)

where \(RDI_i\) is an (observable) indicator function that takes value 1 if firm \(i\) has (or reports) positive R&D expenditures, \(RDI_i^*\) is a latent indicator variable such that firm \(i\) decides to perform (or to report) R&D expenditures if they are above a given threshold \(\bar{c}\), \(w_i\) is a set of explanatory variables affecting R&D and \(\varepsilon_i\) the error term.

The R&D intensity equation can be specified as:

\[
RD_i = \begin{cases}
RD_i^* = z_i \beta + \varepsilon_i & \text{if } RDI_i = 1 \\
0 & \text{if } RDI_i = 0
\end{cases}
\]

(2)

where \(RD_i^*\) is the unobserved latent variable accounting for firm’s innovative effort, \(z_i\) is a set of determinants of R&D expenditures. Assuming that the error terms in (1) and (2) are bivariate normal with zero mean and variance equal to unity, the system of equation (1) and (2) can be estimated by maximum likelihood. In the literature, this model is sometimes referred to as a Heckman selection model (Heckman, 1979) or Tobit type II model (Amemiya, 1984).

Before estimating the selection model, we performed a non parametric test for the presence of selection bias in the R&D intensity equation (see Das, Newey and Vella, 2003).

\(^7\) Although we did not include these results in the paper for the sake of brevity, they are available from the authors.
2003, and Vella, 1998 for a survey). In so doing, we first estimate a probit model in which the presence of positive R&D expenditures is regressed on a set of firm characteristics: firm size, age and their squares, a set of dummies indicating competitors’ size and location, dummy variables indicating (i) whether the firm received government subsidies, and (ii) whether the firm belongs to an industrial group; the results are reported in Table A2 in the appendix. From this results, we recover for each firm the predicted probability of having R&D and the corresponding Mills’ ratio, and then we estimate a simple linear regression (by OLS) for R&D intensity, including in this regression the predicted probabilities from the R&D decision equation, the Mills’ ratio, their squares and interaction terms. The presence of selectivity bias is tested for by looking at the significance of those “probability terms”. The results are reported in Table A2 in the appendix. As one can see, the probability terms are never significant, either singly or jointly. Therefore we adopted the linear regression (OLS) specification for the R&D intensity decision without any correction for selectivity bias. In Table 3 we report the estimates performed using the pooled overall high- and low-tech samples, and including in the regression year and 2-digit industry dummies as well as “wave dummies” as controls. Wave dummies are a set of indicators for firm’s presence or absence in the three waves of the survey.

Table 3 shows that the presence of EU and international competitors is strongly positively related to R&D effort: engaging in exporting activity implies investing more in R&D (see Baldwin, Beckstead, and Caves, 2002, and Baldwin and Gu, 2004, for an exploration using Canadian data), and this effect is particularly strong for high-tech firms, where competing internationally is associated with a doubling of R&D intensity. Non-exporting firms, i.e. those operating in a market that is mainly local, have, on average, lower R&D intensity.

8 Note that this is a generalization of Heckman’s two step procedure for estimation when the error terms in the two equations are jointly normally distributed. The test here is valid even if the distribution is not normal.

9 For instance, a firm present in all the three waves will have a “111” code, “100” if present in the first only, “110” if in the first and in the second only, and so forth. These codes are transformed into a set of six dummies ($2^3 = 8$ minus the 000 case and the exclusion restriction).
We also find that having received a subsidy boosts significantly R&D intensity, as could be expected. Being part of an industrial group increases R&D intensity, but the coefficient is barely statistically significant.

We also included age classes dummies in the regression (the base group are younger firms, defined as those with less than 15 years): although the coefficients are not statistically significant, they seem to indicate that older firms may have a slightly lower incentive to do R&D than younger firms. We find also that “other things be equal” larger firms tend to do relatively less R&D per employee than small firms (the 11-20 size class), and this is particularly true for low-tech firms (for a discussion of the relationship between size and R&D investment at the firm level, see Cohen and Klepper, 1996).

3.4 Innovation equations

In order to account for firm innovations that are not necessarily based on formal R&D activities, which are likely to be especially important for SMEs, we do not restrict estimation to R&D performing firms only. Following the original CDM model, we thus specify the innovation equation in terms of the latent R&D intensity variable, and not the observed R&D intensity. Also, like in Griffith and al. (2006), we specify separately an equation for product innovation and one for process innovation, which can thus be written as:

\[
\begin{align*}
PROD_i &= \mathbf{RD}_i^* \gamma + x_i \delta + u_{1i} \\
PROC_i &= \mathbf{RD}_i^* \gamma + x_i \delta + u_{2i}
\end{align*}
\]

Where \(\mathbf{RD}_i^* \) is the latent innovation effort proxied by the predicted value of R&D intensity from the first step model, \(x_i \) a set of covariates and \(u_{1i} \) and \(u_{2i} \) the error terms, such that \(\text{Cov}(u_{1i}, u_{2i}) = \rho \). Including the predicted R&D intensity in the regression accounts for the fact that all firms may have some kind of innovative effort, although only some of them invest in R&D and report it. Using the predicted value instead of the

\(^{10}\) Due to the large number of missing observation, we could not use a narrower definition of subsidies.
realized value is also a sensible way to instrument the innovative effort in the knowledge production function in order to deal with simultaneity problem between R&D effort and the expectation of innovative success.

Equation (3) is estimated as a bivariate probit model, assuming that most of the firm characteristics which affect product and process innovation are the same, although of course their impact may differ. The only exception is the investment rate, which is assumed to be related to process innovation but not to product innovation. Table 4 (as in Table 3) reports the results from the overall, and the high-tech and low-tech sample. The estimated correlation coefficient ρ is always positive and significant, which implies that process and product innovation are influenced to some extent by the same unobservable factors. Marginal effects are reported in square brackets. For an example of how to interpret these effects, the first two columns say that a doubling of predicted R&D intensity is associated with a 0.19 increase in the probability of process innovation and a 0.25 increase in the probability of product innovation.

As expected, the R&D intensity predicted by the first equation has a positive and sizeable impact on the likelihood of having product and process innovation, higher for product innovation, for all three groups of firms. Interestingly, the impact of R&D on process innovation in low tech firms is more than double that for high-tech firms (0.24 versus 0.10). Firms in low tech industries, on average, have lower R&D intensity, but their R&D effort leads to a higher probability of having at least one process innovation when compared to high-tech firms. A number of interpretations suggest themselves: one possibility is that innovating in this sector takes less R&D because it involves changes to the organization of production that are not especially technology-linked. A second related interpretation is provided by the dual role of R&D (Cohen and Levinthal, 1989): investment in research is fundamental for product innovation, but at the same time, it increases firm’s ability to absorb and adopt those technologies developed somewhere else which are likely to become process innovation.

As suggested in the introduction, firm size is strongly associated with innovative success, especially among low-tech firms. Note that this result does not contradict that for R&D intensity, because innovation is measured by a dummy variable. Although larger firms may have somewhat lower R&D effort given their size, in absolute terms they do more R&D, so they have a higher probability of innovative success. Finally,
with the exception of product innovation in firms older than 25 years, the age of the firm is not particularly associated with innovation of either kind.

We also note that investment intensity is positively associated with process innovation in both high and low tech firms. We defer a fuller discussion of the issues associated with the presence of investment in the process innovation equation (and also in the product innovation equation) until after we present the productivity results.

3.5 The productivity equation

The productivity equation is specified as a simple Cobb-Douglas technology with constant returns to scale, and with labor, capital, and knowledge inputs, which can be written as:

\[
 y_i = \pi_1 k_i + \pi_2 \text{PROD}_i + \pi_3 \text{PROC}_i + \nu_i
\]

(4)

where \(y_i \) is labor productivity (real sales per employee, in logs), \(k_i \) is investment intensity, our proxy for physical capital, \(\text{PROD}_i \) and \(\text{PROC}_i \) are knowledge inputs, proxied by the predicted probability of product and process innovation. Using these predicted probabilities instead of the observed indicators is a way to address the issue of potential endogeneity (and measurement errors in variables) of the knowledge inputs. We thus generate the two predicted probabilities of innovation from the two estimated innovation equation as being respectively the probability of process innovation alone and the probability of product innovation, whether or not it is accompanied by process innovation.\(^\text{11}\) Results are reported in Table 5 for specifications with and without investment as a proxy for capital; as before, estimates are reported separately for all firms, and for firms in high- and low-tech industries. Our preferred specifications, in columns (1a), (2a) and (3a), include investment intensity.

When investment is not included in the regression, i.e. in columns (1a), (2a) and (3a), process innovation displays a sizeable and positive impact on productivity. Process

\(^{11}\) The first is estimated probability of process and not product from the bivariate probit model in Table 4, and the second is the marginal probability of product innovation from the same model.
innovators have a productivity level approximately two and one half times that of non-innovators, *ceteris paribus*. On the contrary, when investment is included, the coefficients of process innovation are not significant. These differences clearly arise from the inclusion of the same investment variable in the process innovation equation with the consequence that process innovation in the productivity equation already encompasses the effect of investment in new machinery and equipment. However, since the investment rate is a better measure than the process innovation dummy, when both variables are included its effect tends to dominate.

Product innovation enhances productivity considerably, although to a lesser extent than process innovation when investment is included in the productivity equation. The impact is slightly stronger for firms in the high-tech firms than in the low-tech industries. Because in particular, much of product innovation is directed towards higher quality products and product differentiation, it is not surprising that it shows up quite differently than process innovation in the productivity relation. Table A3 in the appendix confirms that the contribution of product innovation to productivity is much more robust to the inclusion of investment intensity in the productivity equation, included in the product and process innovation equations.

Another interesting and robust finding is that, among SMEs, relatively larger firms seem to be significantly less productive than smaller ones. It is also noteworthy, age impacts productivity negatively for firms in the high-tech industries.

3.6 Investment and innovation

In our preferred specification in Table 4, we assumed that capital investment – which to a great extent means the purchase of new equipment – should contribute significantly to process innovation, but not to product innovation. In fact, we found a small marginal impact of investment on process innovation that was approximately the same for high and low-tech industries (0.05).

Because the assumption that investment is associated with process and not with product innovation may be somewhat arbitrary, we performed some robustness checks reported in Table A3 in the appendix, experimenting with different alternatives. Columns (1)-(4) of that Table reports all the possible combinations in the second step: whether
investment is devoted to process innovation only (column 1), to product innovation only (column 2), to both (column 3) or to none (column 4). In the same columns we show the productivity equation, estimated using each of these different models to predict the probability of process and product innovation. In the bottom panel of the Table, we also report an alternative specification of the productivity equation without investment. Although column (1) still represents our preferred specification, column (3) suggests that physical investment has a small (0.02) positive impact on product innovation as well. Turning to the productivity equation, it can be noted that the inclusion of investment wipes out the significance of process innovation, since investment is one of its main determinants, but not of product innovation, which is more dependent on R&D investment. Excluding investment from the productivity equation reveals that the process innovation associated with investment is more relevant for productivity than predicted product innovation (compare the process innovation coefficients for step 3 in columns 1 and 3).

3.7 Further robustness checks

The estimation method used in the body of the paper is sequential, with three steps: 1) the R&D intensity equation estimated only on firms that report doing R&D continuously; 2) a bivariate probit for process and product innovation that contains R&D predicted by the first step for all firms; and 3) a productivity equation that contains the predicted probabilities for process innovation alone and product innovation with or without process innovation. Because the last two steps contain fitted or predicted values, their standard errors will be underestimated by our sequential estimation method. In order to assess the magnitude of this underestimation, we re-estimated our preferred model specification (1a) on all firms simultaneously using maximum likelihood.

The likelihood function consists of the sum of a normal density for the R&D equation, a bivariate probit for process and product innovation, and a normal density for the productivity equation; it does not allow for correlation of the disturbances between the three blocks, although the resulting standard errors are robust to such correlation. In this likelihood function, the equation for R&D is directly entered into the innovation equations, and that for innovation probability directly into the productivity equation, so
the coefficient standard errors take account of the estimation uncertainty in the first two stages.

The results of estimation on the pooled model are shown in column (2) of Tables A4 in the appendix, with the sequential estimation results in column (1) for comparison. Although the results for the key coefficients are similar and have approximately the same significance, the standard errors from pooled maximum likelihood are considerably larger, especially for the predicted process and product probabilities. So this should be kept in mind when interpreting the results in the tables of the paper.

Table A4 also shows the results of another experiment -- in this paper we chose to proxy capital intensity by investment intensity, in order to be comparable to the results in Griffith et al. 2006. However, in our data we also have a measure of capital available, constructed from investment using the usual declining balance method with a depreciation rate of 5% and an initial stock from the balance sheet of the firm in 1995 or the year it entered the survey. Columns (3)-(5) of the table show the results of estimating specifications containing capital stock at the beginning of the period and using the pooled maximum likelihood method. Column (3) simply replaces investment with capital stock, while column (4) uses investment as an instrument for process innovation, but capital in the production function. Column (5) includes both investment and capital in both equations.

The results are somewhat encouraging: capital stock is clearly preferred in the production function. In fact, when it is included, investment enters only via its impact on process innovation. On the other hand, investment is a better predictor of process innovation, although capital still plays a role. However, recall that innovation is measured over the preceding three years, so that some of the investment associated with process innovation is likely to be already included in beginning of year capital. Our conclusion is that there is a strong association of process innovation with capital investment, and that such process innovation has a large impact on productivity.

12 The sample size in this table is 9,014, reduced from 9,674 in the main tables of the paper due to the absence of lagged capital (beginning of year capital) for some of the observations.
3.8 Comparison to Griffith et al. 2006

The results shown in the previous section can help in shedding some light on the R&D–innovation–productivity relationship in Italian firms. Interesting insights can be gained from the differential impact of R&D on process and product innovation, as well as their different impact on productivity. Nevertheless, at this point, it is worth asking a further question: is the R&D–innovation–productivity link different for Italian firms when they are compared to other European countries? In order to answer this question, we built a slightly different sample of firms from our data that removed firms with fewer than 20 employees and included firms with more than 250 employees.\footnote{The overlap of this sample with the sample used in the main body of the paper is 75 \%.} Using this sample, we are able to compare our estimates to those for France, Germany, Spain and the UK (Griffith et al, 2006). Table 6 presents the results of this comparison.\footnote{For precise comparability with the earlier paper, in this table we estimated the process and product innovation equations using single probits rather than a bivariate probit. This is consistent, but not efficient, given the correlation between the two equations.} The last two columns are for Italy, the column before the last being for the same period (1998-2000), and the last one for our overall sample for the three periods 1995-1997, 1998-2000, and 2001-2003 pooled together.

The Table shows that the results for Italy are roughly comparable with those for the other countries, but that the period (1998-2000) seems to be a bit of an outlier. We do not have an explanation for this fact other than to point out that this period corresponds to the introduction of the euro. We therefore focus on the results for the overall sample. R&D intensity is somewhat more strongly associated with process innovation than in the UK, and much less strongly than in the other countries. Investment intensity is more strongly related to process innovation than in the other countries. Also noteworthy is that for Italy, the explanatory power of the innovations equations is considerably lower.

In the productivity equation, only investment intensity enters, although product innovation has a large but insignificant impact, larger than that for any of the other countries. Together with the results for the innovation equations, this suggests that the variability in the R&D-innovation-productivity relationships is much greater for Italy.
than for the other countries. However, there is nothing obviously different about the relationship itself when compared to its peers in Europe, apart from the fact that R&D appears less closely linked to process innovation in Italian firms.

Conclusions and policy discussion

In this paper we have proposed and estimated a structural model that links R&D decisions, innovation outcomes and productivity at the firm level. Based upon a modified version of the model earlier developed by Crépon, Duguet and Mairesse (1998), we were able to take into account also those firms which do not do (or report) explicitly R&D. Innovation activity, especially among small firms, can operate along several dimensions besides formal R&D.

Although preliminary, our results indicate that firm size is negatively associated with the intensity of R&D, but positively with the likelihood of having product or process innovation. We have argued that these two findings are not inconsistent, given the nature of the variables. Having received a subsidy boosts R&D efforts – or just the likelihood of reporting, more in high tech industries, even if the share of targeted firms is roughly the same in high and low tech industries (46 vs. 45 %). Given firms’ unwillingness to reveal more details about the subsidies received, we can only speculate about the possibility that high tech firms are more likely to receive funding for innovation and R&D than low tech firms. International (including European) competition fosters R&D intensity, especially in high-tech firms. We find that R&D has a strong and sizeable impact on firm’s ability to produce process innovation, and a somewhat higher impact on product innovation. Investment in new equipment and machinery matters more for process innovation than for product innovation.

While interpreting these results, one should keep in mind the dual nature of R&D. In fact, R&D investments contribute to develop the firm’s ability to identify, assimilate, and exploit knowledge from other firms and public research organizations (Cohen and Levinthal (1989)). In other words, a minimum level of R&D activity is a necessary condition to benefit from spillovers and to appropriate public knowledge. On the other hand, more recent studies have suggested the emergence of a different knowledge paradigm, i.e. the one of innovation without research, particularly well suited for SMEs
(Cowan and van de Paal, 2000), based on “the recombination and re-use of known practices” (David and Foray, 1995).

Finally, we find that product innovation has a positive impact on firms’ labor productivity, but that process innovation has a larger effect via the associated investment. Moreover, larger and older firms seem to be, to a certain extent, less productive, *ceteris paribus*.

With respect to the broader questions that motivated this investigation, we note that in most respects Italian firms resemble those in other large European countries. However that they do somewhat less R&D, and their R&D is less tightly linked to process innovation, but they are no less innovative, at least according to their own reports. Surprisingly, the firms in our sample, are more rather than less productive than firms in other countries. Like Italian industry as a whole, they experienced a negative labor productivity growth during the 2000-2003 period, but apparently with no consequences on innovation activity and its estimated impact on productivity. Thus, we do not find any strong evidence of innovation “underperformance”, other than the observation that those firms in our sample which do R&D do somewhat less on average than firms in comparable European countries.

In general, “underinvestment” relative to others may be due to demand factors (perceived market size, consumer tastes, etc.) and supply factors (high costs of capital or other inputs, availability of inputs, and the regulatory environment). Stepping outside traditional economic analysis, factors such as having goals other than profit maximization, limited information about opportunities, or even social and cultural norms can also influence investment in innovation. Choosing among these alternatives definitively is beyond the scope of this paper, but we can offer a few tentative thoughts.

There is limited evidence that lower rates of R&D investment in larger Italian firms is due to the fact that they face a higher cost of capital than other firms in continental Europe. In a comparative analysis, Hall and Oriani (2006) find high marginal stock market values for Italian R&D investment in large firms that do not have a majority shareholder, which suggests a high required rate of return and therefore a high cost of capital. However for the other firms (closely held), R&D is not valued at all, which carries the implication that investment in these firms may not be profit driven. These conclusions suggests that a “bank-centered” capital market system, such as the Italian
one, with a shortage of specialized suppliers like venture capitalists (Rajan and Zingales, 2003), is less capable of valuing R&D projects (Hall, 2002). Smaller firms and family-controlled with a pyramidal structure, which are quite common in Italy, are likely to be affected by credit rationing problems and/or to have goals other than profit-maximization. But this is to some extent speculative, and we hope to explore the question further in the future.

Acknowledgements

We would like to thank the Mediocredito-Capitalia (now Unicredit) research department for having kindly supplied firm level data for this project. We thank also Susanto Basu, Ernie Berndt, Piergiuseppe Morone, Stéphane Robin, Mike Scherer, Enrico Santarelli, Alessandro Sembenelli, Marco Vivarelli, and participants at the NBER Productivity Seminars, at the workshop “Drivers and Impacts of Corporate R&D in SMEs” held in Seville at IPTS. The views expressed by the authors do not necessarily reflect those of the Bank of Italy.

References

Table 1 – Descriptive statistics, unbalanced and balanced sample

<table>
<thead>
<tr>
<th>Period: 1995-2003</th>
<th>Unbalanced sample</th>
<th>Balanced sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of observations (firms)</td>
<td>9,674 (7,375)</td>
<td>1,083 (361)</td>
</tr>
<tr>
<td>Continuous R&D engagement (in %)</td>
<td>41.49</td>
<td>26.04</td>
</tr>
<tr>
<td>R&D intensity (for R&D doing firms, in logs)(^{(a)})</td>
<td>1.08</td>
<td>1.02</td>
</tr>
<tr>
<td>Innovator (process and/or product, in %)</td>
<td>62.05</td>
<td>66.39</td>
</tr>
<tr>
<td>Process innovation (in %)</td>
<td>50.75</td>
<td>53.65</td>
</tr>
<tr>
<td>Product innovation (in %)</td>
<td>34.85</td>
<td>40.63</td>
</tr>
<tr>
<td>Process & product innovation (in %)</td>
<td>20.94</td>
<td>25.39</td>
</tr>
<tr>
<td>Process innovation only (in %)</td>
<td>27.21</td>
<td>25.76</td>
</tr>
<tr>
<td>Share of sales with new products (in %)</td>
<td>22.16</td>
<td>22.98</td>
</tr>
<tr>
<td>Labor productivity: mean/median(^{(a)})</td>
<td>4.99 / 4.94</td>
<td>4.94 / 4.85</td>
</tr>
<tr>
<td>Investment intensity: mean/median(^{(a)})</td>
<td>7.90 / 4.05</td>
<td>6.92 / 4.01</td>
</tr>
<tr>
<td>Public support (in %)</td>
<td>45.49</td>
<td>50.51</td>
</tr>
<tr>
<td>Regional competitors (in %)</td>
<td>16.84</td>
<td>14.87</td>
</tr>
<tr>
<td>National competitors (in %)</td>
<td>42.24</td>
<td>41.37</td>
</tr>
<tr>
<td>European competitors (in %)</td>
<td>17.53</td>
<td>18.10</td>
</tr>
<tr>
<td>International (non EU) competitors (in %)</td>
<td>13.56</td>
<td>17.17</td>
</tr>
<tr>
<td>Large competitors (in %)</td>
<td>36.18</td>
<td>34.16</td>
</tr>
<tr>
<td>% of firm in size class (11-20)</td>
<td>30.04</td>
<td>19.67</td>
</tr>
<tr>
<td>% of firm in size class (21-50)</td>
<td>38.85</td>
<td>44.04</td>
</tr>
<tr>
<td>% of firm in size class (51-250)</td>
<td>31.11</td>
<td>36.29</td>
</tr>
<tr>
<td>% of firm in age class (<15 yrs)</td>
<td>32.45</td>
<td>24.10</td>
</tr>
<tr>
<td>% of firm in age class (15-25 yrs)</td>
<td>30.48</td>
<td>31.12</td>
</tr>
<tr>
<td>% of firm in age class (>25)</td>
<td>37.07</td>
<td>44.78</td>
</tr>
<tr>
<td>Number of employees: mean/median</td>
<td>49.45 / 32</td>
<td>53.48 / 36</td>
</tr>
<tr>
<td>Group (in %)</td>
<td>20.07</td>
<td>16.25</td>
</tr>
</tbody>
</table>

\(^{(a)}\) Units are logs of euros (2000) per employee.
Table 2 – Descriptive statistics, high tech and low tech industries.

<table>
<thead>
<tr>
<th>Period: 1995-2003</th>
<th>High tech firms</th>
<th>Low tech firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of observations (firms)</td>
<td>2,870 (2,165)</td>
<td>6,804 (5,210)</td>
</tr>
<tr>
<td>Continuous R&D engagement (in %)</td>
<td>58.75</td>
<td>34.22</td>
</tr>
<tr>
<td>R&D intensity (for R&D doing firms, in logs)</td>
<td>1.20</td>
<td>0.98</td>
</tr>
<tr>
<td>Innovator (process and/or product, in %)</td>
<td>69.41</td>
<td>58.95</td>
</tr>
<tr>
<td>Process innovation (in %)</td>
<td>54.25</td>
<td>49.28</td>
</tr>
<tr>
<td>Product innovation (in %)</td>
<td>43.80</td>
<td>31.06</td>
</tr>
<tr>
<td>Process & product innovation (in %)</td>
<td>25.57</td>
<td>18.72</td>
</tr>
<tr>
<td>Process innovation only (in %)</td>
<td>26.20</td>
<td>27.90</td>
</tr>
<tr>
<td>Share of sales with new products (in %)</td>
<td>22.63</td>
<td>21.88</td>
</tr>
<tr>
<td>Labor productivity: mean/median</td>
<td>4.93 / 4.89</td>
<td>5.02 / 4.96</td>
</tr>
<tr>
<td>Investment intensity: mean/median</td>
<td>6.22 / 3.36</td>
<td>8.62 / 4.38</td>
</tr>
<tr>
<td>Public support (in %)</td>
<td>46.27</td>
<td>45.16</td>
</tr>
<tr>
<td>Regional competitors (in %)</td>
<td>12.30</td>
<td>18.75</td>
</tr>
<tr>
<td>National competitors (in %)</td>
<td>36.45</td>
<td>44.68</td>
</tr>
<tr>
<td>European competitors (in %)</td>
<td>25.40</td>
<td>14.21</td>
</tr>
<tr>
<td>International (non EU) competitors (in %)</td>
<td>19.86</td>
<td>10.91</td>
</tr>
<tr>
<td>Large competitors (in %)</td>
<td>42.54</td>
<td>33.50</td>
</tr>
<tr>
<td>% of firm in size class (11-20)</td>
<td>27.25</td>
<td>31.22</td>
</tr>
<tr>
<td>% of firm in size class (21-50)</td>
<td>36.86</td>
<td>39.68</td>
</tr>
<tr>
<td>% of firm in size class (51-250)</td>
<td>35.89</td>
<td>29.10</td>
</tr>
<tr>
<td>% of firm in age class (<15 yrs)</td>
<td>32.79</td>
<td>32.30</td>
</tr>
<tr>
<td>% of firm in age class (15-25 yrs)</td>
<td>31.67</td>
<td>29.98</td>
</tr>
<tr>
<td>% of firm in age class (>25)</td>
<td>35.54</td>
<td>37.71</td>
</tr>
<tr>
<td>Number of employees: mean/median</td>
<td>54.17 / 35</td>
<td>47.46 / 30</td>
</tr>
<tr>
<td>Group (in %)</td>
<td>25.26</td>
<td>17.89</td>
</tr>
</tbody>
</table>

(a) Units are logs of euros (2000) per employee.
Table 3 – R&D intensity (STEP 1): OLS model. Dependent variable, R&D intensity

<table>
<thead>
<tr>
<th>R&D expenditure per employee</th>
<th>All firms</th>
<th>High Tech</th>
<th>Low Tech</th>
</tr>
</thead>
<tbody>
<tr>
<td>(in logarithms)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(Large firm competitors)</td>
<td>0.062</td>
<td>0.197</td>
<td>-0.028</td>
</tr>
<tr>
<td></td>
<td>(0.073)</td>
<td>(0.109)</td>
<td>(0.098)</td>
</tr>
<tr>
<td>D(Regional competitors)</td>
<td>0.094</td>
<td>0.548</td>
<td>-0.049</td>
</tr>
<tr>
<td></td>
<td>(0.167)</td>
<td>(0.320)</td>
<td>(0.197)</td>
</tr>
<tr>
<td>D(National competitors)</td>
<td>0.138</td>
<td>0.638*</td>
<td>-0.037</td>
</tr>
<tr>
<td></td>
<td>(0.147)</td>
<td>(0.290)</td>
<td>(0.172)</td>
</tr>
<tr>
<td>D(European competitors)</td>
<td>0.511***</td>
<td>0.834**</td>
<td>0.448*</td>
</tr>
<tr>
<td></td>
<td>(0.154)</td>
<td>(0.287)</td>
<td>(0.187)</td>
</tr>
<tr>
<td>D(International competitors)</td>
<td>0.570***</td>
<td>1.034***</td>
<td>0.357</td>
</tr>
<tr>
<td></td>
<td>(0.159)</td>
<td>(0.296)</td>
<td>(0.195)</td>
</tr>
<tr>
<td>D(Received subsidies)</td>
<td>0.389***</td>
<td>0.619***</td>
<td>0.213*</td>
</tr>
<tr>
<td></td>
<td>(0.072)</td>
<td>(0.111)</td>
<td>(0.095)</td>
</tr>
<tr>
<td>D(Member of a group)</td>
<td>0.198*</td>
<td>0.247</td>
<td>0.165</td>
</tr>
<tr>
<td></td>
<td>(0.084)</td>
<td>(0.128)</td>
<td>(0.114)</td>
</tr>
<tr>
<td>Size class (21-50 empl.)</td>
<td>-0.271**</td>
<td>-0.141</td>
<td>-0.349**</td>
</tr>
<tr>
<td></td>
<td>(0.104)</td>
<td>(0.164)</td>
<td>(0.134)</td>
</tr>
<tr>
<td>Size class (51-250 empl.)</td>
<td>-0.271*</td>
<td>-0.123</td>
<td>-0.379**</td>
</tr>
<tr>
<td></td>
<td>(0.109)</td>
<td>(0.167)</td>
<td>(0.145)</td>
</tr>
<tr>
<td>Age class (15-25 yrs)</td>
<td>-0.009</td>
<td>0.032</td>
<td>-0.032</td>
</tr>
<tr>
<td></td>
<td>(0.094)</td>
<td>(0.141)</td>
<td>(0.127)</td>
</tr>
<tr>
<td>Age class (>25 yrs)</td>
<td>-0.061</td>
<td>-0.147</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.090)</td>
<td>(0.135)</td>
<td>(0.120)</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.061</td>
<td>0.065</td>
<td>0.038</td>
</tr>
<tr>
<td>Number of observations</td>
<td>4,015</td>
<td>1,687</td>
<td>2,328</td>
</tr>
</tbody>
</table>

Coefficients and their standard errors are shown. The standard errors are robust to heteroskedasticity and clustered at the firm level. * = significant at 10%, ** = significant at 5%, *** = significant at 1% . Industry, wave, and time dummies are included in all equations. Reference groups: D(provincial competitors), Size class (11-50 empl), Age class (<15 yrs).
Table 4 – A bivariate probit for process and product innovation dummies (STEP 2): all firms, high- and low-tech firms

<table>
<thead>
<tr>
<th></th>
<th>All firms</th>
<th>High-tech firms</th>
<th>Low-tech firms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(1a)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>(in logs)</td>
<td>(in logs)</td>
<td>(in logs)</td>
</tr>
<tr>
<td></td>
<td>0.483*** [0.193]</td>
<td>0.686*** [0.250]</td>
<td>0.256*** [0.102]</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td>(0.045)</td>
<td>(0.056)</td>
</tr>
<tr>
<td></td>
<td>Investment per employee</td>
<td>Investment per employee</td>
<td>Investment per employee</td>
</tr>
<tr>
<td></td>
<td>(in logs)</td>
<td>(in logs)</td>
<td>(in logs)</td>
</tr>
<tr>
<td></td>
<td>0.125*** [0.050]</td>
<td>0.120*** [0.047]</td>
<td>0.129*** [0.051]</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.021)</td>
<td>(0.013)</td>
</tr>
<tr>
<td></td>
<td>Size class (21-50 empl.)</td>
<td>Size class (21-50 empl.)</td>
<td>Size class (21-50 empl.)</td>
</tr>
<tr>
<td></td>
<td>(in logs)</td>
<td>(in logs)</td>
<td>(in logs)</td>
</tr>
<tr>
<td></td>
<td>0.255*** [0.101]</td>
<td>0.310*** [0.115]</td>
<td>0.159* [0.063]</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.035)</td>
<td>(0.062)</td>
</tr>
<tr>
<td></td>
<td>Size class (51-250 empl.)</td>
<td>Size class (51-250 empl.)</td>
<td>Size class (51-250 empl.)</td>
</tr>
<tr>
<td></td>
<td>(in logs)</td>
<td>(in logs)</td>
<td>(in logs)</td>
</tr>
<tr>
<td></td>
<td>0.446*** [0.175]</td>
<td>0.504*** [0.189]</td>
<td>0.276*** [0.108]</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.038)</td>
<td>(0.068)</td>
</tr>
<tr>
<td></td>
<td>Age class (15-25 yrs)</td>
<td>Age class (15-25 yrs)</td>
<td>Age class (15-25 yrs)</td>
</tr>
<tr>
<td></td>
<td>(in logs)</td>
<td>(in logs)</td>
<td>(in logs)</td>
</tr>
<tr>
<td></td>
<td>0.009 [0.004]</td>
<td>0.050 [0.018]</td>
<td>0.004 [0.001]</td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td>(0.034)</td>
<td>(0.061)</td>
</tr>
<tr>
<td></td>
<td>Age class (>25 yrs)</td>
<td>Age class (>25 yrs)</td>
<td>Age class (>25 yrs)</td>
</tr>
<tr>
<td></td>
<td>(in logs)</td>
<td>(in logs)</td>
<td>(in logs)</td>
</tr>
<tr>
<td></td>
<td>-0.003 [-0.001]</td>
<td>0.129*** [0.047]</td>
<td>0.094 [0.037]</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.034)</td>
<td>(0.062)</td>
</tr>
<tr>
<td>Rho</td>
<td>0.400***</td>
<td>0.345***</td>
<td>0.430***</td>
</tr>
<tr>
<td>Pseudo R-squared</td>
<td>0.10</td>
<td>0.08</td>
<td>0.09</td>
</tr>
<tr>
<td>Number of obs. (firms)</td>
<td>9,674 (7,375)</td>
<td>2,870 (2,165)</td>
<td>6,804 (5,210)</td>
</tr>
</tbody>
</table>

Coefficients, marginal effects and standard errors are shown. Marginal effects in square brackets. The standard errors are robust to heteroskedasticity and clustered at the firm level. * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Industry, wave, and time dummies are included in all equations. Reference groups: D(provincial competitors), Size class (11-50 empl), Age class (<15 yrs).
Table 5 – Production function (STEP 3): all firms, high- and low-tech firms

<table>
<thead>
<tr>
<th>Dep. variable: labor productivity (sales per employee in logs)</th>
<th>All firms</th>
<th>High-tech firms</th>
<th>Low-tech firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted probability of process innovation only</td>
<td>2.624***</td>
<td>2.742***</td>
<td>2.797***</td>
</tr>
<tr>
<td></td>
<td>(0.146)</td>
<td>(0.304)</td>
<td>(0.171)</td>
</tr>
<tr>
<td>Predicted probability of product innovation</td>
<td>0.961***</td>
<td>1.314***</td>
<td>0.900***</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td>(0.149)</td>
<td>(0.118)</td>
</tr>
<tr>
<td>Investment per employee (in logs)</td>
<td>0.099***</td>
<td>0.073***</td>
<td>0.109***</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.015)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>Size class (21-50 empl.)</td>
<td>-0.184***</td>
<td>-0.140***</td>
<td>-0.204***</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.029)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>Size class (51-250 empl.)</td>
<td>-0.313***</td>
<td>-0.177***</td>
<td>-0.391***</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.037)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>Age class (15-25 yrs)</td>
<td>-0.006</td>
<td>-0.0579*</td>
<td>0.0174</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.026)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>Age class (>25 yrs)</td>
<td>0.008</td>
<td>-0.0764**</td>
<td>0.0469*</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.027)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.209</td>
<td>0.194</td>
<td>0.227</td>
</tr>
<tr>
<td>Number of observations (firms)</td>
<td>9,674 (7,375)</td>
<td>2,870 (2,165)</td>
<td>6,804 (5,210)</td>
</tr>
</tbody>
</table>

Coefficients and their standard errors are shown. The standard errors are robust to heteroskedasticity and clustered at the firm level. * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Industry, wave, and time dummies are included in all equations. Reference groups: D(provincial competitors), Size class (11-50 empl), Age class (<15 yrs).
Table 6 – Comparison with Griffith et al. (2006)

<table>
<thead>
<tr>
<th>Period: 1998-2000</th>
<th>France</th>
<th>Germany</th>
<th>Spain</th>
<th>UK</th>
<th>Italy</th>
<th>Italy(^{(a)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of observations</td>
<td>3,625</td>
<td>1,123</td>
<td>3,588</td>
<td>1,904</td>
<td>2,594</td>
<td>8,377</td>
</tr>
</tbody>
</table>

Process innovation equation

<table>
<thead>
<tr>
<th></th>
<th>France</th>
<th>Germany</th>
<th>Spain</th>
<th>UK</th>
<th>Italy</th>
<th>Italy(^{(a)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D intensity(^{(b)})</td>
<td>0.303 ***</td>
<td>0.260 ***</td>
<td>0.281 ***</td>
<td>0.161 ***</td>
<td>0.146 ***</td>
<td>0.192 ***</td>
</tr>
<tr>
<td>Investment intensity(^{(b)})</td>
<td>0.023 ***</td>
<td>0.022 ***</td>
<td>0.029 ***</td>
<td>0.037 ***</td>
<td>0.054 ***</td>
<td>0.049 ***</td>
</tr>
<tr>
<td>Pseudo R-squared</td>
<td>0.213</td>
<td>0.202</td>
<td>0.225</td>
<td>0.184</td>
<td>0.050</td>
<td>0.091</td>
</tr>
</tbody>
</table>

Product innovation equation

<table>
<thead>
<tr>
<th></th>
<th>France</th>
<th>Germany</th>
<th>Spain</th>
<th>UK</th>
<th>Italy</th>
<th>Italy(^{(a)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D intensity(^{(b)})</td>
<td>0.440 ***</td>
<td>0.273 ***</td>
<td>0.296 ***</td>
<td>0.273 ***</td>
<td>0.192 ***</td>
<td>0.303 ***</td>
</tr>
<tr>
<td>Pseudo R-squared</td>
<td>0.360</td>
<td>0.313</td>
<td>0.249</td>
<td>0.258</td>
<td>0.058</td>
<td>0.081</td>
</tr>
</tbody>
</table>

Labor Productivity equation

<table>
<thead>
<tr>
<th></th>
<th>France</th>
<th>Germany</th>
<th>Spain</th>
<th>UK</th>
<th>Italy</th>
<th>Italy(^{(a)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment intensity(^{(b)})</td>
<td>0.130 ***</td>
<td>0.109 ***</td>
<td>0.061 ***</td>
<td>0.059 ***</td>
<td>0.129</td>
<td>0.109 ***</td>
</tr>
<tr>
<td>Process Innovation</td>
<td>0.069 **</td>
<td>0.022</td>
<td>-0.038</td>
<td>0.029</td>
<td>-0.874</td>
<td>0.011</td>
</tr>
<tr>
<td>Product Innovation</td>
<td>0.060 ***</td>
<td>-0.053</td>
<td>0.176 ***</td>
<td>0.055 ***</td>
<td>1.152</td>
<td>0.384</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.290</td>
<td>0.280</td>
<td>0.180</td>
<td>0.190</td>
<td>0.166</td>
<td>0.227</td>
</tr>
</tbody>
</table>

This table is based on tables in Griffith et al. 2006. Data are from the third Community Innovation Survey (CIS 3) for France, Germany, Spain, and the U.K. Results for Italy come from Tables 3-5 of this paper. \(^{(a)}\) This column shows data for all 3 periods in Italy (1995-1997, 1998-2000, 2001-2003).

\(^{(b)}\) Units are logs of euros (2000) per employee. * Significant at 10%, ** significant at 5%, *** significant at 1%
Figure 1 – Value added per employee. Percentage change, annual rate (1995-2000 and 2000-2005). Total manufacturing.

Source: OECD Factbook, April 2008. Permanent link http://dx.doi.org/10.1787/271772787380
Figure 2 – Size distribution of Italian firms (2001) and share of firms with innovation by size class (2002-2004).

Appendix

Variable Definitions

R&D engagement: dummy variable that takes value 1 if the firm has positive R&D expenditures over the three year of each wave of the survey.

R&D intensity: R&D expenditures per employee, in real terms and in logs.

Process innovation: dummy variable that takes value 1 if the firm declares to have introduced a process innovation during the three years of the survey.

Product innovation: dummy variable that takes value 1 if the firm declares to have introduced a product innovation during the three years of the survey.

Innovator: dummy variable that takes value 1 if the firm has process or product innovation.

Share of sales with new products: percentage of the sales in the last year of the survey coming from new or significantly improved products (in percentage).

Labor productivity: real sales per employee, in logs.

Investment intensity: investment in machinery per employee, in logs.

Public support: dummy variable that takes value 1 if the firm has received a subsidy during the three years of the survey.

Regional – National – European –International (non EU) competitors: dummy variables to indicate the location of the firm’s competitors.

Large competitors: dummy variable that takes value 1 if the firm declares to have large firms as competitors.

Employees: number of employees, headcount.

Age: firm’s age (in years).

Size classes: [11-20], [21-50], [51-250] employees.

Age classes: [<15], [15-25], [>25] years.

Industry dummies: a set of indicators for a 2-digits industry classification.

Time dummies: a set of indicators for the year of the survey.
Wave dummies: a set of indicators for firm’s presence or absence in the three waves of the survey

High-tech firms: encompasses high and medium-high technology industries (chemicals; office accounting & computer machinery; radio, TV & telecommunication instruments; medical, precision & optical instruments; electrical machinery and apparatus, n.e.c.; machinery & equipment; railroad & transport equipment, n.e.c.).

Low-tech firms: encompasses low and medium-low technology industries (rubber & plastic products; coke, refined petroleum products; other non-metallic mineral products; basic metals and fabricated metal products; manufacturing n.e.c.; wood, pulp & paper; food, beverages & tobacco products; textile, textile products, leather & footwear).

Capital stock: fixed capital stock, in real terms, computed by a perpetual inventory method with constant depreciation rate ($\delta=0.05$). The starting value is the accounting value as reported in firm’s balance sheets.
Table A1 – A comparison of selected variables for France, Germany, Spain, UK and Italy.

<table>
<thead>
<tr>
<th>Period: 1998-2000</th>
<th>France</th>
<th>Germany</th>
<th>Spain</th>
<th>UK</th>
<th>Italy</th>
<th>Italy (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of observations (firms)</td>
<td>3,625</td>
<td>1,123</td>
<td>3,588</td>
<td>1,904</td>
<td>2,594</td>
<td>8,377</td>
</tr>
<tr>
<td>Continuous R&D engagement (in %)</td>
<td>35.0</td>
<td>39.5</td>
<td>20.9</td>
<td>26.7</td>
<td>49.8</td>
<td>48.9</td>
</tr>
<tr>
<td>R&D per employee (for R&D-doers, mean)†</td>
<td>6.9</td>
<td>5.2</td>
<td>4.3</td>
<td>3.6</td>
<td>2.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Innovator (process and/or product, in %)</td>
<td>52.9</td>
<td>65.8</td>
<td>51.2</td>
<td>41.5</td>
<td>54.7</td>
<td>66.9</td>
</tr>
<tr>
<td>Process innovation (in %)</td>
<td>32.3</td>
<td>42.3</td>
<td>34.7</td>
<td>27.1</td>
<td>44.7</td>
<td>55.4</td>
</tr>
<tr>
<td>Product innovation (in %)</td>
<td>44.6</td>
<td>54.7</td>
<td>33.6</td>
<td>28.6</td>
<td>33.3</td>
<td>39.9</td>
</tr>
<tr>
<td>Share of sales with new products for firms with product innovation (in %)</td>
<td>16.5</td>
<td>29.5</td>
<td>32.7</td>
<td>30.8</td>
<td>32.2</td>
<td>22.5</td>
</tr>
<tr>
<td>Labor productivity (mean)†</td>
<td>165.3</td>
<td>145.6</td>
<td>137.7</td>
<td>143.4</td>
<td>173.8</td>
<td>187.1</td>
</tr>
<tr>
<td>Investment per employee (mean)†</td>
<td>6.0</td>
<td>8.3</td>
<td>8.3</td>
<td>6.3</td>
<td>8.0</td>
<td>7.9</td>
</tr>
<tr>
<td>Public support for innovation (in %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td>5.5</td>
<td>15.8</td>
<td>14.0</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National</td>
<td>15.4</td>
<td>21.2</td>
<td>12.5</td>
<td>3.6</td>
<td>49.9 (a)</td>
<td>50.6 (a)</td>
</tr>
<tr>
<td>EU</td>
<td>5.1</td>
<td>8.1</td>
<td>3.3</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of firm in size class (20-49)</td>
<td>30.4</td>
<td>28.8</td>
<td>47.8</td>
<td>38.6</td>
<td>60.6</td>
<td>44.9</td>
</tr>
<tr>
<td>% of firm in size class (50-250)</td>
<td>39.6</td>
<td>42.8</td>
<td>37.5</td>
<td>39.3</td>
<td>27.8</td>
<td>36.7</td>
</tr>
<tr>
<td>% of firm in size class (>250)</td>
<td>30.0</td>
<td>28.5</td>
<td>14.7</td>
<td>22.1</td>
<td>11.1</td>
<td>18.4</td>
</tr>
</tbody>
</table>

This table is a slightly modified version of Table 3 in Griffith et al. 2006. Data are from the third Community Innovation Survey (CIS 3) for France, Germany, Spain, and the UK. Data for Italy are from the Mediocredito Surveys. Among the several variables included in the original table, we selected only those comparable to our data. Data are not population-weighted. (a) This figure encompasses all the subsidies, regardless their source. (b) This column shows data for all 3 periods in Italy (1995-1997, 1998-2000, 2001-2003). †Units are logs of euros (2000) per employee.
Table A2 – A non-parametric selectivity test

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Prob(R&D>0)</th>
<th>R&D expend. per employee</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(Large firms)</td>
<td>0.150***</td>
<td>0.305</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.436)</td>
</tr>
<tr>
<td>D(Regional)</td>
<td>-0.138*</td>
<td>-0.230</td>
</tr>
<tr>
<td></td>
<td>(0.056)</td>
<td>(0.408)</td>
</tr>
<tr>
<td>D(National)</td>
<td>0.012</td>
<td>0.0879</td>
</tr>
<tr>
<td></td>
<td>(0.051)</td>
<td>(0.085)</td>
</tr>
<tr>
<td>D(European)</td>
<td>0.339***</td>
<td>0.826</td>
</tr>
<tr>
<td></td>
<td>(0.057)</td>
<td>(0.988)</td>
</tr>
<tr>
<td>D(International)</td>
<td>0.391***</td>
<td>0.927</td>
</tr>
<tr>
<td></td>
<td>(0.060)</td>
<td>(1.142)</td>
</tr>
<tr>
<td>D(Public subsidies for innovation)†</td>
<td>0.324***</td>
<td>0.761</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.943)</td>
</tr>
<tr>
<td>Group</td>
<td>0.145***</td>
<td>0.339</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.423)</td>
</tr>
<tr>
<td>Size class (21-50 empl.)</td>
<td>0.147***</td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.431)</td>
</tr>
<tr>
<td>Size class (51-250 empl.)</td>
<td>0.482***</td>
<td>0.759</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(1.402)</td>
</tr>
<tr>
<td>Age class (15-25 yrs)</td>
<td>0.022</td>
<td>0.0258</td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.089)</td>
</tr>
<tr>
<td>Age class (>25 yrs)</td>
<td>0.064</td>
<td>0.0684</td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.197)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.563***</td>
<td>499.4</td>
</tr>
<tr>
<td></td>
<td>(0.163)</td>
<td>(424.583)</td>
</tr>
</tbody>
</table>

Predicted Pr(R&D>0)	157.1
	(130.890)
Inverse Mill’s ratio	92.21
	(81.214)
Square Predicted Pr(R&D>0)	-399.9
	(336.616)
Square Inverse Mill’s ratio	183.7
	(152.908)
Predicted Pr(R&D>0) * Inverse Mill’s ratio	499.4
	(424.583)

Industry, Time & Wave dummies: Yes
R-squared or pseudo R-squared: 0.114, 0.143
Number of observations: 9,674

Standard errors are robust and clustered at the firm level. * = significant at 10%, **=significant at 5%, ***=significant at 1%. From this probit model we computed, for each observation in the sample, the inverse Mills’ ratio, the predicted probability of having positive R&D and their quadratic and interaction terms. †This figure encompasses all the subsidies, regardless their source.
Table A3 – Robustness check for step 2 and 3.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 - Process Innovation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted R&D intensity</td>
<td>0.483*** [0.193]</td>
<td>0.544*** [0.217]</td>
<td>0.476*** [0.190]</td>
<td>0.547*** [0.218]</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td>(0.045)</td>
<td>(0.045)</td>
<td>(0.045)</td>
</tr>
<tr>
<td>Investment intensity</td>
<td>0.125*** [0.050]</td>
<td>-</td>
<td>0.137*** [0.055]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td></td>
<td>(0.011)</td>
<td></td>
</tr>
<tr>
<td>Step 2 - Product Innovation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted R&D intensity</td>
<td>0.686*** [0.250]</td>
<td>0.677*** [0.247]</td>
<td>0.660*** [0.241]</td>
<td>0.691*** [0.252]</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td>(0.046)</td>
<td>(0.046)</td>
<td>(0.045)</td>
</tr>
<tr>
<td>Investment intensity</td>
<td>-</td>
<td>0.021* [0.008]</td>
<td>0.055*** [0.020]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.011)</td>
<td>(0.011)</td>
<td></td>
</tr>
<tr>
<td>Step 3 - Productivity including investment in the equation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted process inno</td>
<td>0.193</td>
<td>-0.395</td>
<td>0.010</td>
<td>-0.432</td>
</tr>
<tr>
<td></td>
<td>(0.267)</td>
<td>(0.275)</td>
<td>(0.255)</td>
<td>(0.277)</td>
</tr>
<tr>
<td>Predicted product inno</td>
<td>0.597***</td>
<td>0.554***</td>
<td>0.599***</td>
<td>0.538***</td>
</tr>
<tr>
<td></td>
<td>(0.093)</td>
<td>(0.087)</td>
<td>(0.095)</td>
<td>(0.086)</td>
</tr>
<tr>
<td>Investment intensity</td>
<td>0.099***</td>
<td>0.099***</td>
<td>0.093***</td>
<td>0.105***</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.006)</td>
<td>(0.009)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Step 3 - Productivity without investment in the equation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted process inno</td>
<td>2.624***</td>
<td>-1.318***</td>
<td>2.286***</td>
<td>-0.171</td>
</tr>
<tr>
<td></td>
<td>(0.146)</td>
<td>(0.279)</td>
<td>(0.168)</td>
<td>(0.280)</td>
</tr>
<tr>
<td>Predicted product inno</td>
<td>0.961***</td>
<td>0.895***</td>
<td>1.133***</td>
<td>0.773***</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td>(0.087)</td>
<td>(0.079)</td>
<td>(0.087)</td>
</tr>
</tbody>
</table>

Coefficients, marginal effects for step 2 in square brackets, and standard errors are shown. The standard errors are robust to heteroskedasticity and clustered at the firm level. * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Industry, wave, and time dummies are included in all equations. Reference groups: (provincial competitors), Size class (11-50 empl), Age class (<15 yrs). Specifications (1)-(4) encompass alternative assumptions for investment, whether it is devoted to process or product innovation, neither, or both.
Table A4 - Robustness check using lagged capital and ML estimation (9014 observations)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>with investment</td>
<td>with investment</td>
<td>with capital</td>
<td>with both in process, capital in productivity</td>
<td>with both</td>
</tr>
<tr>
<td>Method of estimation:</td>
<td>Sequential pooled ML</td>
<td>pooled ML</td>
<td>pooled ML</td>
<td>pooled ML</td>
<td>pooled ML</td>
</tr>
<tr>
<td>Step 2 - Process Innovation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted R&D intensity</td>
<td>0.440*** (0.048)</td>
<td>0.400*** (0.074)</td>
<td>0.416*** (0.078)</td>
<td>0.399*** (0.073)</td>
<td>0.389*** (0.075)</td>
</tr>
<tr>
<td>Log investment per employee</td>
<td>0.131*** (0.011)</td>
<td>0.142*** (0.013)</td>
<td>0.145*** (0.011)</td>
<td>0.120*** (0.013)</td>
<td></td>
</tr>
<tr>
<td>Log capital stock† per employee</td>
<td></td>
<td>0.098*** (0.013)</td>
<td></td>
<td></td>
<td>0.041*** (0.014)</td>
</tr>
<tr>
<td>Step 2 - Product Innovation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted R&D intensity</td>
<td>0.652*** (0.047)</td>
<td>0.656*** (0.094)</td>
<td>0.655*** (0.094)</td>
<td>0.658*** (0.093)</td>
<td>0.661*** (0.095)</td>
</tr>
<tr>
<td>Step 3 - Productivity equation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted process inno without product inno</td>
<td>0.517* (0.279)</td>
<td>0.712* (0.443)</td>
<td>0.902* (0.515)</td>
<td>1.108*** (0.159)</td>
<td>0.855* (0.477)</td>
</tr>
<tr>
<td>Predicted product inno</td>
<td>0.677*** (0.108)</td>
<td>1.081*** (0.310)</td>
<td>0.792* (0.337)</td>
<td>0.881*** (0.314)</td>
<td>0.830*** (0.370)</td>
</tr>
<tr>
<td>Log investment per employee</td>
<td>0.081*** (0.011)</td>
<td>0.072*** (0.017)</td>
<td></td>
<td></td>
<td>0.018 (0.015)</td>
</tr>
<tr>
<td>Log capital stock† per employee</td>
<td></td>
<td></td>
<td>0.108*** (0.016)</td>
<td>0.111*** (0.007)</td>
<td>0.101*** (0.010)</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-27,119.9</td>
<td>-27,110.0</td>
<td>-26,979.0</td>
<td>-26,908.5</td>
<td>-26,901.3</td>
</tr>
</tbody>
</table>

The method of estimation in the last three columns is pooled maximum likelihood applied to the 3 steps, with the coefficient constraints imposed but without allowing for correlation among their disturbances. This method yields standard errors that account for the use of predicted variables in steps 2 and 3.

Coefficients and their standard errors are shown. The standard errors are robust to heteroskedasticity and clustered at the firm level. Marginal effects in square brackets.

* = significant at 10%, ** = significant at 5%, *** = significant at 1%.

Industry, wave, and time dummies are included in all equations.
Reference groups: D(provincial competitors), Size class (11-50 empl), Age class (<15 yrs).

† Capital measured at the beginning of the period.