Development of Sports Activity in the Course of Life
The Role of Age, Period and Cohort Effects

0 Summary:
On the basis of data sets of the German Socio-Economic Panel Study (GSOEP), longitudinal and multi-step cohort analyses of the development of sports activity in the course of life were conducted. According to the results, some classical findings of sport science must be revised. It is for example not true that there is a steady decrease in regular sports activity in the course of life. Not only age effects but period and cohort effects, too, have a considerable effect on the amount of regular sports activity. Period and cohort influences can even overcompensate the age effects.

1 Classical finding:
Sports involvement declines within the course of life (c.f. fig. 1).

2 Problem:
The classical finding is based on cross-sectional analyses. But in cross-sectional analyses age and cohort effect are mixed up. Thus, it is not clear to what extent differences between age groups are related to age or cohort effects. However, in order to predict the development of sport markets in ageing societies the relative influence of age, period and cohort effects on sports involvement of populations has to be known.

3 Main Questions:
- How strong is the influence of age, period and cohort effects on the sports involvement of populations?
- Is sports involvement really decreasing in the course of life?
- What does that mean with regard to the development of sport markets in ageing societies?

4 Methodological steps:
2. Longitudinal analyses
4. Multi-step cohort analyses

5 Logistical Analyses:
Among the total population the share of regular sports activity had decreased significantly in the cohort of the 16 to 24 years old people from 38.7 % in 1985 to 32.5 % in 2001. Nevertheless the share of sports activity remains relatively constant from 1996 on. From a certain point in time, the quota of sports involved people seems to be stable in this cohort. According to the next four cohorts, the result of the cross-sectional analyses, namely a decrease of sports activity during the course of life, cannot be verified. The quota of regularly active people in those cohorts is at the same level or had even increased over the next 16 years. Only the cohort of the more than 64 years old ones does show a statistically significant decrease of sports activity by ageing. But in this case it has to be taken into account that the members of this cohort are altogether 80 years or older in 2001. Therefore these longitudinal results imply that merely two important phases exist for the preservation of regular sports activity in the life-course: the third as well the seventh life decade. There is no considerable decrease in sports activity to be found in between. Thus, the results of the cross-sectional analyses cannot be confirmed.

However, certain variations can be found in a gender-related perspective. First, have a look to the male population. Here, a much stronger decrease in sports activity in the cohort of the 16 to 24 years old men is to be stated. Also there is a significant decrease of sports activity in the cohort of the 25 to 44 years old men.

For the female population the results are fundamentally different. Here the quota of active individuals decreases only little in age. That especially applies to the groups of 25-34 and 35-44 years old women. Here, the increases are even statistically significant. Only in the cohort of the over 64 years old ones sports activity decreases by ageing. Thus, for the female population only the seventh life decade represents a critical phase for the preservation of sports activity. All in all a decreasing quota of sports activity with growing age can not be found among the female population. The habit of sports activity in the life course seems to be very stable.

The results of the multi-step cohort analyses show that age as well as period and cohort effects have a significant influence on sports activity. According to the statistical model, cohort effects have the strongest impact. But we have to take into consideration, that the measured cohort effect perhaps may be a spurious effect. Because of the comparatively short research period (only 16 years), some potential period effects such as changed age norms or improved sport opportunities for senior citizens could empirically have mixed up with cohort effects.

In comparison to the results for the entire population the gender specific results are characterized by some peculiarities. Thus, no significant influence of period effects can be found concerning the sports activity of men. Furthermore not the cohort, but age has by far the greatest impact among men. Concerning women age as well as cohort and period effects are statistically significant. But here, the cohort and not the age has the highest impact whether women are regularly practising sports or not. Thus, in particular effects of age in the life course of men and especially cohort effects for women are important for the development of sports activity.

7 Conclusion
Regular sports activity is not at all decreasing continuously in the course of life. Merely for men, especially young men, this classical assumption can be verified. Concerning the female population the classical assumption is to fail. Here sports activity is stable in the course of life. Thus, beside age effects also period and cohort effects have a major impact on sports activity.

In this connection period and cohort effects can compensate age effects, partly they can even overcompensate them as the development among women shows.

Whereas sports activity among men is mainly influenced by age effects, sports activity among women is mainly influenced by cohort effects.

It is to conclude that the classical assumption of sport science concerning a general decrease of sports activity in the course of life should not be supported any longer. Aspects of social change have an essential effect on the development of sports activity in the course of life. Thus, there is no automatism that a ageing society leads to a decreasing sport market.

christoph.breuer@phil.tu-chemnitz.de