Can vessels contribute to economic cross border CO$_2$ transport systems?

Presentation at the Berlin Conference on Energy and Electricity Economics (BELEC 2015)
Cross-Border Coordination for Sustainable Energy Security – Theory and Policy Lessons from Different Sectors

29 May 2015 | Joachim Geske
Introduction

- CCS: CO$_2$ emission goals + avoid expensive adjustment of technological processes
- optimization of the transport infrastructure + transport modes
- potential offshore CO$_2$ storage sites: expensive, acceptance, EOR.
- Transport modes suitable for million tonnes of CO$_2$ to offshore storage sites: pipelines and vessels (Svensson et al, 2004)
- cost models for pipelines are common practice (Knoope et al., 2013).
- cost effectiveness of the transport by vessel is addressed in specific cases of distance, total transport volume, vessel capacity and fleet size.
- determination of vessel capacities is missing. Except: (Nilsson, 2010)
 \rightarrow little is known about the size of optimally dimensioned vessels and cost savings potential
Introduction

1. Preparation:
 a. a cost model including all elements of the vessel CO₂ transport chain
 b. parameters
 c. optimization of the vessel capacity and fleet scheduling

2. Application
 a. comparison of vessel and pipeline transport for transport distance and capacity
 b. case I: cost assessment of transport options from the Iberian Peninsula to the North Sea (EOR)
 c. case II: embedding the vessel and pipeline cost models in a multimodal CO₂ transport optimization model
 i. Portugal
 ii. Morocco
 iii. Iberian Peninsula - North Sea

3. Conclusion

“COMET: Integrated infrastructure for CO₂ transport and storage in the west MEdiTerranean (2010-2012)”.

Vessel transport CO$_2$: liquid phase, 5 bar, -50 °C.

Liquefaction
compression, cooling and expansion. prevent hydration, freezing, corrosion. contamination \rightarrow dry ice formation.

Storage
discontinuous sea transport, intermediate storage required. storage tanks operated for LPG storage.

Loading
pumps and pipelines, a loading arm. loading time; fees are generally charged.

Vessel / Fleet
Fleet size, vessel capacity, transport volume, transport distance, velocity of vessel and the time for un/loading

Unloading
unloading procedure varies: complex offshore CO$_2$ compression – less expensive onshore unloading
1. Preparation: b. Parameters

Loading time: 10 h

Construction cost: $500 \text{ €/t } C_{Ship} + 30 \text{ Mio €}$
1. Preparation: c. Optimization

Example:
- \(\text{TOTEX}_{vt}(4\text{Mt/y}, C_{Ship}, 200\text{Km}) / (4\text{Mt/y}) \)
- red curve: + harbor fee
2. Application: a. vessel/pipeline

Iso vessel capacity curves
2. Application: b. Case I/North Sea

- **Storage sites:**
- **Transport to the North Sea:**
- **Transport modes:**
- **Volume Mt/y,**
 - Scenario:
 - 2020: 11
 - 2030: 57
 - 2040: 101
 - 2050: 142

- **Cost:** 4-9 €/t (on average 7 €/t)
- **EOR revenues:** -11 to 21 €/t (on average 6 €/t, IPCC, 2005)
- it cannot be excluded that EOR revenues exceed transport costs.

CO₂ Europipe (2011)
- **1300-2300 Km**
- offshore, on/offshore, vessel
2. Application: c. Case II/System

COMET: Scenarios Spain, Portugal and Morocco
- Storage/Geology: saline aquifers, hydrocarbon fields, on-/off-shore; storage capacity, injection rate, # wells → cost of exploration, implementation and operation
- Capture: Identification of emission clusters, capture costs
- Transport: Transportation routes, costs, GIS
- Cost minimal combination in a spatially dispersed energy system model.

Design of multimodal CO₂ transport infrastructure
- unsteady vessel transp.- steady on an. level
- segmentation of the grid – linearity
- addition of a second (modal) layer
2. Application: c. Case II/System

- **10% cost decrease to 9€/t S42; (S03 : 12€/t)**
- breakeven
2. Application: c. Case II/System

Potential Infrastructure

- 2050: 0.8 Mt/y
- vessel transport option → 36 €/t (-20%)

- transboundary CO₂ transport to Portuguese S42: Costs -56% (S42: 10 €/t, lower storage cost) at equal 360 Km H67-S42 to 20 €/t
2. Application: c. Case II/System

2050: 42 Mt/y
vessel Option: system cost 260 Mio €, 31 Mt/y, transported to the North Sea, storage cost -7.1 €/t
3. Conclusion

- Cost savings potential of optimized CO$_2$ vessel transport can reach up to 40%
- A reliable cost estimation should account for the dimensioning of vessels
- Vessel transport is advantageous for long distances and small volumes
- Vessels connect the West Mediterranean region and the North Sea cost-effectively
- It could be profitable if CO$_2$ is used for Enhanced Oil Recovery
- Definition of a multimodal (vessel and pipeline) CO$_2$ transport optimization model
- Vessel transport can save up to 20% points of total cost in the West Mediterranean region
- Savings are achievable by substitution and complementarity
- CO$_2$ transport from the West Mediterranean region to Europe could be profitable, however, a crowding out is likely
- Value of vessel transport limited but: Option Value!
3. Conclusion

Published as:
3. Quantifying the Option Value of Vessel transport (?)

Thank you!