Long-term Effects of Congestion Management – Modeling Framework and Large Scale Application

Berlin Conference on Energy and Electricity Economics 2015

Simeon Hagspiel, Joachim Bertsch, Lisa Just

Institute of Energy Economics at the University of Cologne (EWI)
Outline

1. Background, literature and contribution

2. Economic framework

3. Large scale application

4. Conclusions
Outline

1. Background, literature and contribution
2. Economic framework
3. Large scale application
4. Conclusions
Background

• In *liberalized* power systems, generation and transmission services are necessarily *unbundled*…
• … but remain tightly *interlinked*
 – e.g., TSOs influenced by level and locality of generation and load
 – e.g., generating firms impacted by trade restrictions

→ Congestion management in the transmission network is of crucial importance for the efficiency of those inter-linkages
Literature

• Different designs have been suggested, analyzed and followed (e.g. uniform zonal pricing with redispatch or nodal pricing)
• Literature has either focused on short-term efficiency of congestion management or specific issues of timing investments
Contributions

• Generalized and flexible *economic modeling framework* based to capture generation, transmission, and their inter-linkages

• Consistent analysis of *short and long-term effects* of different congestion management designs
 – Identification and isolation of *frictions* and sources of *inefficiencies* inherent to the different designs
 – *Comparative analysis* including a *benchmark* against the first-best welfare-optimal result

• Calibration and numerical solution for a detailed representation of the CWE region, consisting of 70 nodes and 174 power lines; Analysis of six relevant congestion management designs until 2030
Outline

1. Background, literature and contribution
2. Economic framework
3. Large scale application
4. Conclusions
Dimensions of designing congestion management

1st dimension: market area

Nodal versus Zonal
Dimensions of designing congestion management

2nd dimension: short-term TSO measures

Redispatch versus G-component
Dimensions of designing congestion management

3rd dimension: degree of coordination between TSOs

National versus Cross-border
Dimensions of designing congestion management

Settings covered by our analysis

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Market area and coupling</th>
<th>TSO scope</th>
<th>TSO measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Nodal markets</td>
<td>One TSO</td>
<td>Grid expansion</td>
</tr>
<tr>
<td>II - NTC</td>
<td>Zonal markets, NTC-based coupling</td>
<td>One TSO</td>
<td>Grid expansion, zonal redispatch</td>
</tr>
<tr>
<td>II - FB</td>
<td>Zonal markets, Flow-based coupling</td>
<td>One TSO</td>
<td>Grid expansion, zonal redispatch</td>
</tr>
<tr>
<td>III - NTC</td>
<td>Zonal markets, NTC-based coupling</td>
<td>Zonal TSOs</td>
<td>Grid expansion, zonal redispatch</td>
</tr>
<tr>
<td>III - FB</td>
<td>Zonal markets, Flow-based coupling</td>
<td>Zonal TSOs</td>
<td>Grid expansion, zonal redispatch</td>
</tr>
<tr>
<td>IV</td>
<td>Zonal markets</td>
<td>Zonal TSOs</td>
<td>Grid expansion, zonal g-component</td>
</tr>
</tbody>
</table>
Further assumptions

• Agents act *rationally* and *simultaneously* while taking into account the activities of the other agents

• *No* consideration of *sequential moving* and issues of *timing*

• *Perfect competition* on the generation stage

• *Perfect regulation* of the TSOs (aligned with social objectives)

• All agents are *price-taking*; prices are determined by an independent institution through market clearing

• Solution is an inter-temporal equilibrium
 → unique for convex functions ⇔ unique ordering of settings
Setting I: Nodal pricing

Two alternative formulations

<table>
<thead>
<tr>
<th>Integrated</th>
<th>Decomposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 Integrated Problem</td>
<td>P1’a Generation</td>
</tr>
<tr>
<td>$\min_{\bar{G}, G, T_{i,j}, \bar{P}{i,j}} \quad X = \sum_i \delta_i \bar{G}i + \sum_i \gamma_i G_i + \sum{i,j} \mu{i,j} \bar{P}_{i,j}$</td>
<td>$\min_{\bar{G}, G, T_{i,j}} \quad X = \sum_i \delta_i \bar{G}i + \sum_i \gamma_i G_i + \sum{i,j} \kappa_{i,j} f(T_{i,j})$</td>
</tr>
<tr>
<td>s.t. $G_i - \sum_j T_{i,j} = d_i \quad \forall i \quad \mid \lambda_i$</td>
<td>s.t. $G_i - \sum_j T_{i,j} = d_i \quad \forall i \quad \mid \lambda_i$</td>
</tr>
<tr>
<td>$G_i \leq \bar{G}_i \quad \forall i$</td>
<td>$G_i \leq \bar{G}_i \quad \forall i$</td>
</tr>
<tr>
<td>$</td>
<td>P_{i,j}</td>
</tr>
</tbody>
</table>

\rightarrow **Equivalent problem!**

- **Integrated** = **Decomposed**, due to perfect exchange of (price) information
- Both formulations represent **first-best design**
Setting I versus Setting II

Nodal pricing

P1'a Generation

\[
\begin{align*}
 \min_{\overline{G}_i, G_i, T_{i,j}} & \quad X = \sum_i \delta_i \overline{G}_i + \sum_i \gamma_i G_i + \sum_{i,j} \kappa_{i,j} f(T_{i,j}) \\
 \text{s.t.} & \quad G_i - \sum_j T_{i,j} = d_i \quad \forall i \quad |\lambda_i| \\
 & \quad G_i \leq \overline{G}_i \quad \forall i
\end{align*}
\]

P1'b Transmission

\[
\begin{align*}
 \min_{\overline{P}_{i,j}} & \quad Y = \sum_{i,j} \mu_{i,j} \overline{P}_{i,j} \\
 \text{s.t.} & \quad |P_{i,j}| = f(T_{i,j}) \leq \overline{P}_{i,j} \quad \forall i, j \quad |\kappa_{i,j}|
\end{align*}
\]

Zonal pricing with redispatch

P2a Generation

\[
\begin{align*}
 \min_{\overline{G}_i, G_i, T_{m,n}} & \quad X = \sum_i \delta_i \overline{G}_i + \sum_i \gamma_i G_i + \sum_{m,n} \kappa_{m,n} T_{m,n} \\
 \sum_{i \in I_m} G_i - \sum_{n} T_{m,n} = \sum_{i \in I_m} d_i \quad \forall m \quad |\lambda_m| \\
 & \quad G_i \leq \overline{G}_i \quad \forall i
\end{align*}
\]

P2b Transmission

\[
\begin{align*}
 \min_{\overline{P}_{i,j}, R_i} & \quad Y = \sum_{i,j} \mu_{i,j} \overline{P}_{i,j} + \sum_i \gamma_i R_i \\
 \text{s.t.} & \quad |P_{i,j}| = \overline{f}(G_i, d_i) \leq \overline{P}_{i,j} \quad \forall i, j \quad |\kappa_{i,j}| \\
 & \quad \sum_{i \in I_m} R_i = 0 \quad \forall m \\
 & \quad 0 \leq G_i + R_i \leq \overline{G}_i \quad \forall i \\
 & \quad \kappa_{m,n} = g(\kappa_{i,j})
\end{align*}
\]

- Setting II averages nodal prices to zonal prices → **loss of information**
- Redispatch unable to fully resolve inefficiency
Outline

1. Background, literature and contribution
2. Economic framework
3. Large scale application
4. Conclusions
Large-scale application – CWE region

Model
• EWI-DIMENSION coupled with Energynautics grid model via PTDF

Configuration
• CWE region: 70 nodes, 174 lines
• 2011, 2020 and 2030 analyzed
• 9 type-days (8 normal / 1 extreme)

Numerical solution
• Decomposition into master (gen.) and subproblem(s) (trans.)
→ Consistent implementation of the economic framework
→ Iterative PTDF update (Hagspiel et al. (2014))
Results: Comparison of total system costs

<table>
<thead>
<tr>
<th>Market area and coupling</th>
<th>TSO scope</th>
<th>TSO measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Nodal markets</td>
<td>One TSO</td>
<td>Grid expansion</td>
</tr>
<tr>
<td>II - NTC Zonal markets, NTC-based coupling</td>
<td>One TSO</td>
<td>Grid expansion, zonal redispatch</td>
</tr>
<tr>
<td>II - FB Zonal markets, Flow-based coupling</td>
<td>One TSO</td>
<td>Grid expansion, zonal redispatch</td>
</tr>
<tr>
<td>III - NTC Zonal markets, NTC-based coupling</td>
<td>Zonal TSOs</td>
<td>Grid expansion, zonal redispatch</td>
</tr>
<tr>
<td>III - FB Zonal markets, Flow-based coupling</td>
<td>Zonal TSOs</td>
<td>Grid expansion, zonal redispatch</td>
</tr>
<tr>
<td>IV Zonal markets</td>
<td>Zonal TSOs</td>
<td>Grid expansion, zonal g-component</td>
</tr>
</tbody>
</table>
Outline

1. Background, literature and contribution
2. Economic framework
3. Large scale application
4. Conclusions
Conclusions

• Modeling framework for short and long-term effects of various congestion management designs
 – Generalized and consistent analytical formulation
 – Numerically tractable by suggested algorithm
• Nodal pricing is first-best; alternative designs hide information and induce inefficiencies
• Major deteriorative factors for efficiency: non-coordinated TSOs and low trading capacities offered to the market; relative effect rather small
• Findings corroborate ongoing efforts to implement flow-based market coupling (even though not first-best) and closer TSO coordination
• Possible extensions: Strategic behavior (e.g. different regulation regimes); Tradeoff with implementation costs (e.g. public acceptance)
Thank you for your attention! Questions and comments are very welcome.

Simeon Hagspiel
Email: simeon.hagspiel@ewi.uni-koeln.de
Tel.: +49 221 27729-222

Financial support by the “Energy Storage Initiative” through grant 03ESP239 is gratefully acknowledged.
Analytical formulation of Setting III

Coupled zonal markets, zonal TSOs, redispatch

P3a Generation

\[
\begin{align*}
\min_{G_i, \hat{G}_i, T_{m,n}} & \quad X = \sum_i \delta_i \hat{G}_i + \sum_i \gamma_i G_i + \sum_{m,n} \kappa_{m,n} T_{m,n} \\
\text{s.t.} & \quad \sum_{i \in I_m} G_i - \sum_n T_{m,n} = \sum_{i \in I_m} d_i \quad \forall m \quad |\lambda_m| \\
& \quad G_i \leq \hat{G}_i \quad \forall i
\end{align*}
\]

P3b Transmission

\[
\begin{align*}
\min_{P_{i,j} \in I_m, R_i \in I_m} & \quad Y_m = \sum_{i,j \in I_m} \mu_{i,j} \bar{P}_{i,j} + \sum_{i,j \in I_{m,cb}} \sigma_{i,j} \mu_{i,j} \bar{P}_{i,j} + \sum_{i \in I_m} \gamma_i R_i \quad \forall m \\
\text{s.t.} & \quad |P_{i,j}| = \hat{f}(G_i, d_i) \leq \bar{P}_{i,j} \quad \forall i, j \in I_m \quad |\kappa_{i,j} \in I_m| \\
& \quad \sum_{i \in I_m} R_i = 0 \\
& \quad 0 \leq G_i + R_i \leq \hat{G}_i \quad \forall i \in I_m \\
& \quad \kappa_{m,n} = g(\kappa_{i,j})
\end{align*}
\]
Analytical formulation of Setting IV

Coupled zonal markets, zonal TSOs, g-component

\[P_{4a} \quad \text{Generation} \]

\[\min_{\overline{G}_i, G_i, T_{m,n}} X = \sum_i \delta_i \overline{G}_i + \sum_i \gamma_i G_i + \sum_{i,j} \kappa_{i,j} \hat{f}(G_i, d_i) \]

s.t. \[\sum_{i \in I_m} G_i - \sum_n T_{m,n} = \sum_{i \in I_m} d_i \quad \forall m \quad |\lambda_m| \]
\[G_i \leq \overline{G}_i \quad \forall i \]

\[P_{4b} \quad \text{Transmission} \]

\[\min_{P_{i,j} \in I_m \cdot I_m, cb} Y_m = \sum_{i,j \in I_m} \mu_{i,j} \overline{P}_{i,j} + \sum_{i,j \in I_m, cb} \sigma_{i,j} \mu_{i,j} \overline{P}_{i,j} \quad \forall m \]

s.t. \[|P_{i,j}| = \hat{f}(G_i, d_i) \leq \overline{P}_{i,j} \quad \forall i, j \in I_m, I_m, cb \quad |\kappa_{i,j} \in I_m, I_m, cb| \]
Convergence and optimality
Results: Aggregated line capacities, AC and DC

<table>
<thead>
<tr>
<th>Market area and coupling</th>
<th>TSO scope</th>
<th>TSO measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Nodal markets</td>
<td>One TSO</td>
</tr>
<tr>
<td>II - NTC</td>
<td>Zonal markets, NTC-based coupling</td>
<td>One TSO</td>
</tr>
<tr>
<td>II - FB</td>
<td>Zonal markets, Flow-based coupling</td>
<td>One TSO</td>
</tr>
<tr>
<td>III - NTC</td>
<td>Zonal markets, NTC-based coupling</td>
<td>Zonal TSOs</td>
</tr>
<tr>
<td>III - FB</td>
<td>Zonal markets, Flow-based coupling</td>
<td>Zonal TSOs</td>
</tr>
<tr>
<td>IV</td>
<td>Zonal markets</td>
<td>Zonal TSOs</td>
</tr>
</tbody>
</table>
Results: Exemplary grid expansion and regional allocation of renewable energies

<table>
<thead>
<tr>
<th>Market area and coupling</th>
<th>TSO scope</th>
<th>TSO measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Nodal markets</td>
<td>One TSO</td>
<td>Grid expansion</td>
</tr>
<tr>
<td>II - NTC Zonal markets, NTC-based coupling</td>
<td>One TSO</td>
<td>Grid expansion, zonal redispach</td>
</tr>
<tr>
<td>II - FB Zonal markets, Flow-based coupling</td>
<td>One TSO</td>
<td>Grid expansion, zonal redispach</td>
</tr>
<tr>
<td>III - NTC Zonal markets, NTC-based coupling</td>
<td>Zonal TSOs</td>
<td>Grid expansion, zonal redispach</td>
</tr>
<tr>
<td>III - FB Zonal markets, Flow-based coupling</td>
<td>Zonal TSOs</td>
<td>Grid expansion, zonal redispach</td>
</tr>
<tr>
<td>IV Zonal markets</td>
<td>Zonal TSOs</td>
<td>Grid expansion, zonal g-component</td>
</tr>
</tbody>
</table>