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Abstract 

Using micro-level panel data of about 35,000 firms from the German Cost Structure 
Census, we analyze the differences of technical efficiency across industries. Technical 
efficiency is estimated by firms’ fixed effects. One striking result is that the distribution of 
technical efficiency across industries is positively skewed. This is because the efficiency 
distribution is truncated at the lower end due to the least efficient firms which exit the 
market. We investigate the causes of technical efficiency differences across industries. Our 
econometric analyses provide evidence that capital and human capital intensity, the degree 
of vertical specialization as well as new firm formation rate are important for explaining 
the average technical efficiency of an industry. 
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1. Introduction 

Firms are not equally efficient. Empirical studies find indeed considerable 

variation of the efficiency of firms within (Fritsch & Stephan, 2004b) as well 

as across industries. 1 An important category in this respect is technical 

efficiency. Technical efficiency is defined as the generation of the maximum 

output from a given bundle of resources. A firm is technically inefficient if it 

fails to obtain the maximum possible output. The reasons for technical 

inefficiency can be manifold and comprise all kinds of ‘mismanagement’ such 

as inappropriate work organization, deficiencies in the choice and use of 

technology (cf. Fritsch & Mallok, 2002), bottlenecks with regards to material 

flows etc. In this paper we investigate the extent and the causes of inter-

industry differences of technical efficiency. We have two main presumptions 

regarding the determinants of average technical efficiency that we aim to test 

empirically. The first is that accumulation of both tangible and intangible 

capital (human and knowledge capital) is conducive for a high level of 

technical efficiency. The second is that the average level of technical efficiency 

is higher in more competitive industries because firms with inefficient practices 

(slack and suboptimal use of inputs) are forced to improve their performance or 

to exit the market. 

Our study contributes to the literature on the determinants of technical 

efficiency in several respects. First, we use a unique micro panel of about 

35,000 German enterprises over the period 1992 to 2002. This data contains 

rich information about the cost structure for each of the firms and can be 

regarded as representative for the German manufacturing sector. Second, our 

approach is not based on a stochastic frontier production function like the 

majority of previous studies, rather we estimate technical efficiency as firm-

specific fixed effects. Since this method does not require an a priori assumption 

                                                 

1 See for example Caves & Barton (1990), Mayes, Harris & Lansbury (1994) and the 
contributions in Caves (1992) and in Mayes (1996). For an overview see Caves & Barton 
(1990, 15-20) and Caves (1992). 
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about the distribution of technical efficiency within an industry it is less 

restrictive. Furthermore, we do not need to assume that a firm's level of 

technical efficiency is uncorrelated with its factor inputs. Thirdly, we examine 

the causes of cross-industry differences of technical efficiency not only for the 

average value but also for the relatively efficient and the relatively inefficient 

firms, i.e. at the upper and lower end of the efficiency distribution of the 

industry. 

One striking result of our study is that the distribution of average technical 

efficiency across industries is truncated at the lower part, and, hence, that the 

efficiency distribution is positively skewed or “skewed to the right” in most of 

the industries. This means that if the values of a distribution are in increasing 

order from the left to the right, a positively skewed distribution has the longer 

tail at the right side where the values are above the median. This result is 

noteworthy because most previous studies have (implicitly) assumed a 

negatively skewed distribution of technical efficiency across firms by applying 

a stochastic frontier model.2 Given that the distribution is not negatively 

skewed in at least 95 percent of the industries, we suspect that the results of 

analyses based on a stochastic frontier function are probably misleading. 

The remainder is organized as follows. Methodical issues in the assessment 

of technical efficiency are discussed in more detail in Section 2. Section 3 

introduces the data and our empirical approach for measuring technical 

efficiency. Results of the estimated production function are reported in Section 

4. Section 5 gives an overview on the extent of efficiency variation between 

industries. Section 6 reviews the main hypotheses on the causes of cross-

industry efficiency variation. Results of the empirical analysis are presented 

and discussed in Section 7. Finally, Section 8 draws some conclusions and 

indicates directions for further research. 

                                                 

2 If the distribution is negatively skewed the longer tail is at the left side with values below the 
median. 
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2. Measuring technical (in-)efficiency 

An assessment of technical (in-)efficiency of firms or industries requires the 

measurement of efficiency and the identification of a point of reference for 

evaluating the relative efficiency level of the unit under inspection. This can be 

done in a number of different ways (see Mayes, Harris & Landsbury, 27-54, for 

an overview). All these approaches define technical efficiency as the highest 

output level that can be attained by using a given combination of inputs. Any 

deviation from this maximum is then regarded as inefficiency. The maximum 

technical efficiency in an industry can be directly obtained by estimating a 

frontier production function, i.e. a function for the input-output relationship of 

the most efficient firm(s). 

The majority of analyses that have applied this approach estimated a 

stochastic form of a frontier production function. A stochastic frontier 

production function is based on the assumption that the input-output 

relationship is not completely deterministic, but subject to influences that 

appear to be erratic. This approach of estimating maximum technical efficiency 

has the advantage that extreme outliers of highly efficient firms or data errors 

do not automatically serve as the efficiency benchmark. However, in order to 

separate the impact of technical inefficiency from the ordinary stochastic 

effects, an a priori assumption about the distribution of technical inefficiency is 

required. Because the factual efficiency of a firm cannot exceed the possible 

maximum, the distribution must be truncated at this maximum. The usual 

hypothesis in this respect is that most firms cluster close to the efficiency 

frontier and that their frequency decreases with rising inefficiency. Such a 

distribution of the residuals is negatively skewed, i.e. it has the ‘longer tail’ on 

the low efficiency side. If the distribution of residuals is not skewed but 

symmetric, the level of technical inefficiency in the respective industry is 

assumed to be not significant.3 A positively skewed distribution of residuals is 

                                                 

3 A measure of skewness can then be used as an indicator for the level of technical inefficiency 
in the respective industry; cf. Caves & Barton (1990, 47-49) or Mayes, Harris & Lansbury 
(1994, 50-52). 
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not consistent with the underlying assumptions. In an analysis of technical 

inefficiency within German manufacturing industries based on a deterministic 

production function, Fritsch & Stephan (2004b) found that in about 95 percent 

of the industries the distribution was skewed to the right.4 This implies that for 

the overwhelming majority of industries an assessment of technical efficiency 

by means of a stochastic production frontier function is based on an 

inappropriate assumption so that the results could be misleading. 

In order to assess technical efficiency in our sample of firms, we estimate a 

deterministic production function of the Cobb-Douglas type5 with panel data 

for firms. This means that we avoid any a priory assumption about the 

distribution of technical efficiency as would be necessary when estimating a 

stochastic frontier production function. The production function can be written 

as 

(1) itkitkitiit xy εβλα ∑ +++= lnlnln , ,,,1 pk K= ,,,1 Ni K= .,,1 Tt K=   

The term ity  represents output of firm i in period t, kitx denotes production input 

k, βk gives the output elasticity of input k , tλ represent a time-specific effect, 

and iα  stands for a specific firms’ technical efficiency. There are N firms and 

Ti observations for each firm. 

                                                 

4 All the industries were from manufacturing. The analysis was based on the same data as is 
used in this paper. 
5 Attempts of estimating other types of production functions did not lead to satisfactory results. 
Estimates of a translog-type of production function frequently had rather implausible estimates 
(e.g. negative elasticities of production for certain inputs or scale elasticities larger than one). 
We suspect that the problems we experienced in estimating such other forms of production 
function than Cobb-Douglas were caused by the relatively high number of different inputs we 
are using and the statistical relationships between these inputs. Non-linear forms of a 
production function, e.g. CES, could not be estimated due to computational limitations of 
processing such estimations with the large number of firms we have in our data. 
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Figure 1: The efficiency distribution curve 

 

Like Schmidt & Sickles (1984), we use the fixed-effects of firms as 

measures of technical efficiency. Since our approach is based on micro-data of 

individual firms, we obtain the distribution of technical efficiency estimates for 

each industry. Therefore it is possible to use a novel concept for measuring an 

industries’ technical efficiency that is based on this distribution as described by 

the efficiency distribution curve. Figure 1 shows an example of the efficiency 

distribution curve for a (fictive) sample of firms in a particular industry with 

diverging efficiency levels (see also, Fritsch & Stephan, 2004b).6 In this graph 

the firms are arranged according to their efficiency in descending order, 

starting with the most efficient firm. This most efficient firm constitutes the 

100 percent benchmark for measuring relative technical efficiency of the other 

firms in the respective industry. Hence, efficiency of a firm is measured in 

relation to the value of the most efficient firm that represents the 100 percent 

value in this distribution. The length of the line for each firm corresponds to 

the relative size measured as share of gross production in the respective 

                                                 

6 This exposition is inspired by diagrams in Salter (1969). Salter displayed productivity levels 
of firms in ascending order, starting with the least efficient firm. 
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industry (see Figure 1).7 Small firm are accordingly represented by short lines, 

and large firms by longer lines. The resulting curve provides an informative 

portrayal of the distribution of efficiency within the respective industry.8  

For the econometric analyses of cross-industry differences, average 

technical efficiency is computed at the 5 percent, 50 percent and at the 95 

percent output level of each industry. Thus, we compare not only the average 

(median) efficiency level across industries, but also the relatively high and 

relatively low efficient firms. 

Another important type of efficiency – allocative efficiency – concerns the 

choice of inputs. A firm is allocatively inefficient if the input combination is 

not optimal, given input prices and their marginal productivity of the different 

inputs in the production process.9 A firm is allocatively efficient but technically 

inefficient if it chooses an optimal input combination but does not attain the 

highest possible isoquant of its production function (see Badunenko, Fritsch & 

Stephan, 2004).  

                                                 

7 Other possible measures of size to be used here are the number of employees and the volume 
of turnover that represents the importance of the relevant firm on the market. The number of 
employees is highly correlated with gross production and measures virtually the same thing, 
i.e. the level of economic activity in the firm. Using the volume of gross production or the 
amount of turnover as a measure of size may lead to considerably diverging results according 
to the firms’ share of value added. If firms differ with regard to their vertical range of 
manufacture, turnover does not provide comparable information about the amount of economic 
activity. A further advantage of gross production as a measure of size is that gross production 
is not affected by stock-keeping behavior. 
8 The efficiency distribution curve can be used to derive a measure of efficiency heterogeneity 
within an industry, that accounts for the relative size of the individual firms, and that is also 
rather robust with regard to extreme values. This measure is defined as the area between the 
efficiency distribution curve and the efficiency level of the median output share firm in the 
industry (the shaded area in Figure 1). We label this measure h-area, where h stands for 
heterogeneity (cf. Fritsch & Stephan, 2004a, 2004b). In contrast to other measures of 
heterogeneity such as the standard deviation or the coefficient of variation, this area measure is 
sensitive to the size of the firms. For example, it takes into account whether the highly efficient 
firms have a relatively large share or only a small share of the industries’ total output. This 
implies that the measure is reasonably robust with regard to small firms with extreme values 
that may not be considered as being representative of the industry. 
9 See Caves & Barton (1990, 9-11) or Mayes, Harris & Lansbury (1994, 12-26). The concept of 
technical inefficiency was introduced by Farrell (1957). 
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3. Data and measurement issues 

Our estimates of firm-level efficiency are based on micro data of the German 

Cost Structure Census10 of manufacturing for the period 1992-2002. Most of 

the other variables used in the empirical analysis are also obtained from this 

data unless indicated otherwise. The Cost Structure Census is raised and 

compiled by the German Federal Statistical Office (Statistisches Bundesamt). 

The survey comprises yearly information of all large German manufacturing 

firms with 500 and more employees. In order to limit the reporting effort for 

the smaller firms to a reasonable level, firms with 20-499 employees are 

included as a random sample that can be assumed representative for this size 

category as a whole. Firms with less than 20 employees are not included.11 As  

Table 1: Frequency of firms with regard to the numbers of observations in the sample 

Number of 
observations 

(years) 

Number of 
firms 

Share of all 
firms (percent)

Cumulated 
share of all 

firms (percent) 

2 10,384 29.4 29.4 

3 5,635 15.96 45.36 

4 4,948 14.01 59.37 

5 4,537 12.85 72.22 

6 3,737 10.58 82.8 

7 1,780 5.04 87.84 

8 1,056 2.99 90.83 

9 1303 3.69 94.52 

10 439 1.24 95.76 

11 1496 4.24 100 

Total 35,315 100 – 

 

                                                 

10 Aggregate figures are published annually in Fachserie 4, Reihe 4.3 "Kostenstrukturerhebung 
im Verarbeitenden Gewerbe" of the German Statistisches Bundesamt. 
11 Beginning with the year 2001 the data also contains firms with 1-19 employees. These firms 
are, however, not included in our analysis because due to a rotating sampling scheme only one 
observation is available for most of these small firms. 



 
 
 

8

a rule, the smaller firms report for four subsequent years and are then 

substituted by other small firms (rotating panel).12 Because the estimation of 

firm-specific fixed effects requires at least two observations, firms with only 

one observation are excluded in our sample that comprises a total of about 

35,000 firms. Table 1 shows the frequency of firms with different numbers of 

observations in our data set. 

Our measure of output is gross production. This comprises mainly the 

turnover plus the net-change of the stock of final products. We do not include 

turnover from activities that are classified as miscellaneous such as license 

fees, commissions, rents and leasing etc. because we assume that such revenue 

can only be poorly explained by means of a production function. Our data 

contains information for a number of input categories. These categories are 

payroll, employers’ contribution to the social security system, fringe benefits, 

expenditure for material inputs, self-provided equipment and goods for resale, 

for energy, for external wagework, external maintenance and repair, tax 

depreciation of fixed assets, subsidies, rents and leases, insurance costs, sales 

tax, other taxes and public fees, interest payments on outside capital as well as 

“other” costs for instance license fees, bank charges, postage or expenses for 

marketing and transport. Further information available in the Cost Structure 

Census is industry affiliation, location of headquarter, stock of raw materials, 

of goods for resale and of final output, R&D expenditure and number of R&D 

employees.13 The information on employment comprises the number of active 

owners, the number of employees, of trainees, of part-time employees, of home 

workers and the number of temporary workers. 

Some of the cost categories like expenditure for external wagework and for 

external maintenance and repair contain a relatively high share of reported zero 

values because many firms do not utilize these types of inputs. Because all 

                                                 

12 Due to mergers or insolvencies some firms have less than four observations. Note, however, 
that firms are legally obliged to respond to the Cost Structure Census, so there are actually no 
missing observations due to non-response. 
13 Information on the resources devoted to R&D is raised in the Cost Structure Census since 
1999. 
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inputs of the Cobb-Douglas production function are included as logarithms, 

such zero inputs lead to missing values and result in the exclusion of the 

respective firm from the analysis. Moreover, zero input values are not 

consistent with a Cobb-Douglas production technology and would imply zero 

output. In order to reduce the number of reported zero input quantities we 

aggregated the inputs into the following categories: material inputs 

(intermediate material consumption plus commodity inputs), labor 

compensation (salaries and wages plus employer's social insurance 

contributions), energy consumption, user cost of capital (depreciation plus 

rents and leases), external services (e.g., repair costs and external wagework) 

and other inputs related to production (e.g., transportation services, consulting 

or marketing). All input and output series were deflated using the producer 

price index for the respective industry. 

Table 2: Cost shares of inputs in total production 

Variable Mean Median Standard 
deviation

Minimum Maximum Coefficient 
of variation

Material inputs 0.410 0.407 0.165 0.018 0.854 40.303 

Labor compensation 0.330 0.320 0.136 0.053 0.840 41.318 

Energy consumption 0.021 0.013 0.023 0.001 0.170 110.663 

User cost of capital 0.067 0.056 0.042 0.008 0.277 63.353 

External services 0.047 0.028 0.053 0.001 0.334 112.786 

Other inputs 0.092 0.079 0.059 0.010 0.362 63.601 

 

Including the yearly depreciation values as proxy variables for capital input 

leads to implausibly low estimates for the output elasticity of capital. We 

presume that the reason for these low values is the relatively high year by year 

variation of depreciations. In order to reduce this volatility, we calculated 

average yearly depreciations by adding up for each year the depreciations in 

the current year and of all the preceding years that we have information about. 
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This sum was then divided by the number of years with observations.14 Using 

this average value of yearly depreciations results in a considerably higher 

estimate of output elasticity of capital in the production function. 

Average cost shares of these input categories and other summary statistics 

for the cost shares are reported in Table 2. The dominant cost categories are 

material inputs and payroll, which together add up to about 75 percent of 

expenses. All cost shares sum up to 0.967. The difference from unity of about 

3.3 percent can be interpreted as the share of gross profits in production. Firms 

with less than 500 employees, which are only included in the Cost Structure 

Census as a representative random sample, have been multiplied with weights 

greater or equal to one for the estimation of the production function. These 

weights represent the relationship between the number of firms in the 

respective industry and size category in the full population, and the number of 

firms of respective size and industry that is included in our sample.15 Since 

these weights are rather stable over time, we use the weights for the year 1997 

for all estimations.  

The sample contains a number of observations with extreme values that 

proved to have a considerable impact on the estimated parameters of the 

production function and led to implausible results. We therefore exclude those 

‘outliers’ from the analysis for which the cost for a certain input category in 

relation to gross output is less than the lowest (1 percent) and the highest (99 

percent) percentile. In total, these excluded cases (plus firms with zero values 

for certain input categories) make about 10 percent of all observations. We find 

that the exclusion of these extreme cases leads to considerable improvement of 

the estimation results. 

                                                 

14 Example: Assume that the data set provides information on depreciations of a certain firm 
for the years ‘93, ‘94, ‘95 and ‘96. Average yearly depreciation for the year ‘95 is the average 
of the years ‘93 – ‘95. For the year ‘96 it is the average of the years ‘93-‘96 etc. For the year 
‘93 the average equals the value for this year. 
15 Example: If only 25 percent of the firms of a particular size class are included in the sample 
each observation is multiplied by a factor of 4. 
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4. Production function estimates 

In order to generate the fixed effects as a measure of technical efficiency, a 

Cobb-Douglas production function according to (1) was estimated on the basis 

of the micro-data for individual firms. Table 3 displays the parameter 

estimates. The second column reports the results for a pooled OLS estimation. 

The third column displays the results for the panel approach with fixed effects 

for individual firms. These serve as our measures of firms’ technical 

efficiency.16 In both versions we included dummy variables for the different  

Table 3: Estimates for logarithmic Cobb-Douglas production functiona 

 Variable 
Pooled Regression 

Estimate       t-value 
LSDV 

Estimate       t-value 
Intercept 1.803**       (278.99) fixed effects** 
Material inputs 0.373**       (645.33) 0.377**       (374.28) 
Labor compensation 0.353**       (368.65) 0.412**       (212.51) 
Energy consumption 0.017**       (32.93) 0.020**       (23.46) 
User cost of capital 0.086 **      (110.99) 0.067**       (43.75) 
External services 0.057**       (144.24) 0.046**       (108.06) 
Other inputs 0.101**       (163.08) 0.070**       (94.05) 
1992 dummy 0.014**       (6.52) 0.028**       (20.28) 
1993 dummy -0.005**     (-2.31) 0.008**       (5.45) 
1994 dummy -0.0003**   (-0.16) 0.012**       (8.93) 
1995 dummy 0.007**       (3.28) 0.020**       (15.25) 
1996 dummy 0.001           (0.56) 0.014**       (10.43) 
1997 dummy 0.018**       (8.60) 0.019**       (12.82) 
1998 dummy 0.018**       (8.50) 0.018**       (12.46) 
1999 dummy 0.019**       (8.91) 0.019**       (16.99) 
2000 dummy 0.017**       (8.16) 0.019**       (16.38) 
2001 dummy 0.012**       (5.79) 0.012**       (10.89) 
R² 0.9836 0.9964 
F-test fixed effects ― 12.83** 
F-test CRS (value RS) 1332.39**    (0.9861) 21.6**     (0.9922) 
Number of observations 156,053 156,053 

t-values in parentheses. *: statistically significant at the 5 percent level. **: statistically 
significant at the 1 percent level. 

                                                 

16 Least Squares Dummy Variables method for panel data; see Baltagi (2001) and Coelli et al. 
(1998) for this approach. 
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years of the observation period, with 2002 being the year of reference. The fit 

of the regressions (R2) is remarkably high and the dummies for the different 

years are highly significant.17 The sum of the estimated output elasticities 

amounts to 0.98 for the pooled regression and to 0.99 for the panel regression. 

According to neoclassical production theory profit maximizing firms will 

choose that combination of inputs for which the cost share of each input equals 

the respective elasticity of production. The relatively close correspondence of 

the estimated production elasticities and the average cost shares of the 

respective input (Table 2) indicates that the parameters of our production 

functions are in a plausible range and that the model is apparently properly 

specified. Generally, the fixed-effects panel estimates are somewhat closer to 

the cost shares but the differences to the results of pooled regression are rather 

small. The positive values of most year dummies indicate a higher productivity 

in the respective year than in the reference year 2002. This suggests that these 

dummies are not simply a measure of technical progress, because the ongoing 

advancement over time would lead to negative values of the year dummies. For 

this reason, we assume that the values of the year dummies reflect mainly the 

macro-economic conditions which were relatively unfavorable with a 

considerable underutilization of capacities in 2002 as well as in the year 1993, 

for which a negative value of the respective dummy variable was found. 

5. The extent and distribution of technical efficiency differences across 
industries 

We have already mentioned (Section 2) the common assumption that the 

distribution of technical efficiencies within an industry is skewed to the left. 

This means that the values of technical efficiency of most firms is clustered 

near the efficiency frontier and that their frequency declines with rising 

inefficiency. The distribution should, therefore, have a longer tail at the left 

                                                 

17 Note that a Hausman-Wu test indicated correlation between fixed effects and the other 
explanatory variables (results are available from the authors upon request). Thus, a random 
effects model or a stochastic frontier framework would not be appropriate in this case. 
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hand side. Such a kind of skewness constitutes indeed a precondition for 

estimating a stochastic frontier production function (Greene, 1997). In analyses 

of the distribution of technical efficiency within industries we have found, 

however, that in 95 percent of the industries this distribution is skewed to the 

right (Fritsch & Stephan, 2004b). Fritsch & Stephan (2004b) explain this 

skewness to the right by a truncation of the efficiency distribution at low 

efficiency values. Such a truncation of low efficient firms occurs because these 

firms are not able to earn their cost and are, therefore, forced to exit the market. 

Since factor costs such as wages are about the same for all industries, this 

lower efficiency frontier should be located at about the same level of technical 

efficiency (for a more detailed explanation see Fritsch & Stephan, 2004b). 

Figure 2 shows the distribution of technical efficiency at different relative 

efficiency levels across the 241 four-digit NACE industries.18 In our analysis of 

cross-industry differences we compare different points of the intra-industry 

distribution according to the efficiency distribution curve (Figure 1). If firms in 

each industry are weighted with their output and sorted according to the value 

of the firm-specific effect in descending order, technical efficiency at the 5 

percent output level is the value of the firm which represents the 5th percentile 

of this distribution. It is the level of technical efficiency between the most 

efficient 5 percent of industry output and the less efficient firms. Accordingly, 

technical efficiency at the 50 percent output level is the value of the median 

output unit and the value for the 95 percent output level is the technical 

efficiency at the 95th percentile, i.e. at the lower end of the efficiency scale. 

For each of these output levels, technical efficiency of an industry is expressed 

in relation to the industry with the highest value of fixed effect which is 

assigned a value of one. Therefore, the measure of an industries’ relative level 

of technical efficiency can assume values between zero and unity. 

                                                 

18 Note that industries with less than five firms were excluded. We also excluded manufacture 
of tobacco products (NACE 16.00) because this industry is an extreme outlier with a high level 
of technical efficiency. This high level of technical efficiency is probably a result of the 
relatively high advertisement costs which are not properly taken into account in the input 
variables of our production function. 
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a) At  output level 5 percent 

 

b) At  output level 50 percent 
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c) At  output level 95 percent 

Figure 2: The distribution of technical efficiency at different output levels across industries 

 

For all output levels, we observe that the distribution of average efficiency 

is skewed to the right and is particularly characterized by some ‘outlier’ 

industries with relatively high levels of technical efficiency. Thus, the 

distribution of technical efficiency is positively skewed not only within 

industries but also across industries. The reason for this positive skewness is 

the truncation of the intra-industry distribution of technical efficiency at the 

lower end, caused by the exit of low efficient firms which do not manage to be 

sufficiently profitable to survive competition. Because this kind of truncation 

pertains to the firms at the lower end of the intra-industry efficiency 

distribution, the skewness of the cross-industry distribution should be less 

pronounced at higher intra-industry levels of efficiency. The skewness statistics 

for the three efficiency distributions (Table 4) are in accordance with this 

prediction. We observe positive values of skewness statistics indicating longer 
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tails of the distribution at the right hand side for all three distributions. As 

could be expected, the value of the skewness statistic is highest for the 

distribution of technical efficiency at the 95 percent output level where 

truncation should be most significant. Another noteworthy result is that the 

variation of technical efficiency among industries is much larger for the firms 

with a relatively high level of technical efficiency (output level 5 percent) as 

compared to the relatively low efficient firms (95 percent output level). This is 

also to be expected given the truncation of the efficiency distribution at the 

lower end. There is a pronounced positive relationship between the relative 

technical efficiency of the different levels (Table 5). The correlation of relative 

positions across industries is relatively high. Thus, industries with a significant 

share of highly efficient firms are likely to also have relatively high efficient 

firms at the lower part of the distribution curve. 

Table 4: Parameters of the distribution of technical efficiency at different output levels across 
industries 

Statistic 

TE at 
output level 

5 % 

TE at 
output level 

50 % 

TE at 
output level 

95 % 
Mean 0.572 0.569 0.572 

Standard deviation 0.099 0.078 0.068 
Coefficient of variation 17.23 13.65 11.94 

Skewness 1.430 2.069 2.225 
Kurtosis 3.383 6.138 10.082 
Range 0.590 0.533 0.636 

99th percentile 0.990 0.826 0.820 
95th percentile 0.739 0.711 0.688 
90th percentile 0.690 0.662 0.648 

Median 0.555 0.547 0.558 
10th percentile 0.473 0.502 0.512 
5th percentile 0.451 0.491 0.496 
1st percentile 0.420 0.471 0.470 

Minimum 0.410 0.467 0.364 

Table 5: Correlation of relative efficiency levels across industries†  

 
TE at output 
level 5 % 

TE at output 
level 50 % 

TE at output 
level 95 % 

TE at output level 5 % 1 0.7183 0.4944 
TE at output level 50 %  1 0.7309 

† Pearson correlation coefficients. n = 241. All reported correlations are statistically significant at the 1 
percent level. 
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Table 6: Average level and distribution of technical efficiency in two-digit industries†

 Technical efficiency at 
output level 

h-area 

Industry [NACE code]  

Number
of firms

5 % 50 % 95 %  
Mining of coal; extraction 
of peat [10] 67 0.734 0.612 0.603 0.122 
Other mining and quarrying 
[14] 301 0.914 1.000 0.828 0.188 
Food and beverages [15] 3,965 0.905 0.864 0.814 0.111 
Textiles [17] 1,405 0.821 0.681 0.674 0.122 
Apparel, fur [18] 914 0.909 0.795 0.782 0.159 
Leather; luggage, saddlery, 
footwear [19] 361 0.850 0.721 0.740 0.200 
Wood and cork (except 
furniture) [20] 1,193 0.860 0.673 0.688 0.129 
Pulp and paper [21] 934 0.864 0.692 0.701 0.122 
Publishing, printing, 
reproduction [22] 1,691 0.848 0.823 0.716 0.119 
Coke, refined petroleum 
products and nuclear fuel 
[23] 57 1.000 0.936 1.000 0.176 
Chemicals [24] 1,500 0.832 0.720 0.720 0.095 
Rubber and plastics [25] 2,020 0.830 0.644 0.680 0.111 
Other non-metallic mineral 
products [26] 2,120 0.856 0.694 0.706 0.121 
Basic metals [27] 1,020 0.851 0.773 0.698 0.131 
Fabricated metal products 
(except machinery and 
equipment) [28] 4,732 0.845 0.674 0.680 0.092 
Machinery and equipment 
[29] 5,251 0.816 0.628 0.666 0.080 
Office machinery and 
computers [30] 199 0.834 0.675 0.704 0.180 
Electrical machinery [31] 1,740 0.832 0.611 0.655 0.066 
Radio, television and 
communication equipment 
[32] 486 0.808 0.768 0.743 0.149 
Medical, precision and 
optical instruments [33] 1,500 0.820 0.679 0.671 0.099 
Motor vehicles, trailers and 
semi-trailers [34] 1,251 0.885 0.642 0.728 0.069 
Other transport equipment 
[35] 372 0.775 0.588 0.667 0.105 
Furniture; manufacturing 
n.e.c. [36] 2,103 0.835 0.677 0.667 0.074 
Recycling [37] 96 0.968 0.791 0.863 0.199 

 

† The two-digit industries NACE 11, 12 are excluded because of an insufficient number of 
observations. NACE 16 (tobacco) is excluded because of extreme values. 
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Table 6 exhibits average technical efficiencies for the two-digit industries 

at different output levels. It also gives the number of firms at this 2-digit level. 

Furthermore, the corresponding within-industry heterogeneity of technical 

efficiency is reported, as indicated by the h-area measure. At the 2-digit level, 

the differences of technical efficiency across industries are less pronounced 

than at the 4-digit level. Again, variation is much higher at the 5 percent output 

level (i.e. among the firms with relatively high levels of technical efficiency) as 

compared to the 95 percent level (the relatively inefficient firms). Relatively 

large levels of within-industry heterogeneity of technical efficiency can be 

found for the leather industry (NACE 19) as well as for the recycling industry 

(NACE 37) whereas, for instance, the automobile industry (NACE 34) is quite 

homogenous in this respect. 

6. Hypotheses and variables 

Differences of technical efficiency across industries may have a number of 

explanations.19 One can expect that factor inputs such as tangible and 

intangible capital will have a strong impact on the level of technical efficiency. 

Regarding physical capital intensity, a comprehensive equipment of the 

workforce with capital goods may indicate a broad application of available 

technology that can lead to highly efficient production. We therefore expect a 

positive impact of high capital intensity on technical efficiency. Our measure 

for capital intensity is a firms’ average yearly depreciation over gross 

production. Furthermore, the effect of high human capital intensity, i.e. the 

share of skilled labor that is used in the production process, on technical 

efficiency is expected to be positive. We use the share of employees with a 

university degree as the indicator for the knowledge intensity. One may expect 

that a high intensity of Research and Development (R&D) in an industry has a 

positive effect on average efficiency. This may particularly hold for process 

innovation activity that is directly aimed at improving productivity. However, 

Albach (1980) and Caves & Barton (1990) found a negative impact of R&D 

                                                 

19 See Caves (1992) for a review of hypotheses and the empirical evidence. 
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intensity on technical efficiency. In explaining this negative effect Caves & 

Barton (1990, 76) suppose that R&D expenditures made in a certain industry 

are only a poor predictor of the innovativeness of that industry because large 

parts of the innovation output is applied in other industries. We measure the 

intensity of innovation activity with the average yearly share of R&D 

expenditure in the years 1999-2002 on gross production (source: Cost Structure 

Census). 

Market structure and competition should also have a considerable effect on 

the level of an industry’s technical efficiency. If competition is intense, firms 

with slack in the utilization of inputs are not sufficiently profitable and will 

sooner or later have to exit the market. One main aspect of competition is 

market contestability. A high start-up rate in an industry indicates a high level 

of contestability implying strong competitive pressure. We may, therefore, 

expect a positive relationship between the level of start-ups and average 

technical efficiency. The start-up rate is calculated here as the average yearly 

number of newly founded businesses in the period 1998-2001 over the average 

number of employees in the respective industry.20 According to the 

presumption that competition stimulates firms’ technical efficiencies, we also 

expect an increase of technical efficiency as market concentration decreases. 

One may, however, also argue that an ‘atomistic’ market structure with a high 

number of small suppliers is characterized by a relatively low level of 

competitive pressure and that, under such circumstances, an increase of 

concentration may lead to some intensification of this competitive pressure. 

Such a stimulating effect of concentration on the intensity of competition and 

efficiency may occur until a certain concentration level is reached, from which 

point on increased market power leads to reduction of competitive pressure and 

allows for inefficiencies. Therefore, the relationship between market structure, 

as measured by the Herfindahl index, and the average level of inefficiency of 

an industry could be u-shaped. The Herfindahl index has been calculated on the 

                                                 

20 The data are taken from the establishment file of the German Social Insurance Statistics; see 
Fritsch & Brixy (2004) for a description of this data source. 
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basis of the Cost Structure Census. A measure of the competitive pressure that 

is created by international competition is the ratio of imports to domestic 

production. The higher the import quota the more intense the competition of 

foreign suppliers, inducing a relatively high level of technical efficiency in the 

surviving firms. 

Table 7: Overview of hypotheses about the effects of different factors on the average level of 
efficiency across industries 

Determinants of technical efficiency Expected sign for relationship 
with technical efficiency 

Tangible and intangible capital  
Physical capital intensity + 
Human capital intensity + 
R&D intensity – / + 
Market structure and competition  
New firm formation rate + 
Market concentration – / + 
Import share + 
Production technology  
Average firm size – / + 
Vertical specialization + 
Further industry characteristics  
Entrepreneurial character of an industries’ 
technological regime 

+ 

Output growth rate – / + 

 

Another group of factors that may affect the level of technical efficiency in 

an industry consists of production technology (e.g. the extent of economies of 

scale) and the degree of vertical specialization. The degree of vertical 

specialization in an industry can be measured, for example, as the ratio of 

intermediate inputs to internal wage cost. This measure reflects the degree of 

labor division and outsourcing in an industry. A relatively high ratio of 

intermediate inputs to internal wage cost indicates a high level of outsourcing 

and division of labor. Since labor division and specialization can be assumed to 

be conducive to technical efficiency the relationship should be positive. If large 
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firm size allows for the realization of cost advantages, the relationship between 

an industry’s average firm size21 and the level of technical efficiency should be 

positive (Caves & Barton, 1990, 82-84). There are, however, at least two 

reasons for expecting a negative relationship. First, large firms may, because of 

their size, suffer more from bureaucratic frictions and lacking motivation of 

personnel than smaller firms. And second, if small firms run into economic 

problems due to a low technical efficiency, they are much more likely to exit 

the market than larger firms.22 Due to this effect of market selection, the 

surviving small firms that we observe may on average show a higher level of 

technical efficiency than the larger firms. 

Two further industry characteristics may also have significant effect on the 

level of technical efficiency: the characteristics of an industry’s technological 

regime and its output growth rate. An industry under a routinized technological 

regime can be expected to be rather homogeneous due to intensive price 

competition among large suppliers of rather similar goods that are 

manufactured with highly standardized processes (Audretsch, 1995, 39-64; 

Winter, 1984). For this reason and due to a relatively high share of R&D that is 

devoted to process innovation in such a regime, the average technical 

efficiency level of the industry should be relatively high. Under an 

entrepreneurial regime, products and processes are more diverse inducing a 

relatively high importance of competition by quality as compared to price 

competition. Moreover, processes are less standardized. This high level of 

heterogeneity can be expected to result in an average level of efficiency that is 

relatively low.  

The development stage or maturity of an industry is reflected by the 

average of firms’ growth rates. However, the effect of the industry’s growth 

rate on the average technical efficiency level is unclear. On the one hand, 

                                                 

21 Measured as mean of the log(number of employees); source: Cost Structure Census. 
22 Large firms are much more able to shrink as a reaction to economic problems than smaller 
firms which have a higher risk of falling below the minimum efficient size when reducing 
output. 
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growth may induce high investment and speedy adoption of new technology. 

On the other hand, economic prosperity may be associated with only low 

pressure to modernize machinery and, thus, allows for relatively low efficiency 

and a correspondingly high degree of heterogeneity. We include other industry 

characteristics such as the share of West German firms and the type of 

produced good (intermediate, investment goods, durable and non-durable 

consumer goods) as control variables in the regression. An overview on our 

hypotheses is given in Table 7. Table A1 in the Appendix gives the definition 

of the independent variables as used in the empirical analysis. Table A2 

provides descriptive statistics of the independent variables and Table A3 gives 

the correlations and tolerance factors of all right-hand side variables. The 

values for the tolerance factor indicate that multicollinearity between the 

explanatory variables is not significant.23 

7. Econometric results 

For analyzing the determinants of technical efficiency across industries, 

regressions based on three different methods were estimated. The first method 

was ordinary least squares (OLS). Since OLS is rather sensitive with regard to 

extreme values, we also applied Reweighted Least Squares (RLS) to test 

whether the results are robust with regard to such extreme observations. RLS is 

based on Least Trimmed Squares (LTS) regression results (see Rousseeuw & 

Leroy, 1987, for details). As a third method we performed regressions based on 

the rank values of the variables (Conover & Iman, 1982; Iman & Conover, 

1979; Table 8). This approach may have two advantages. First, like LTS 

regression, rank regression is rather robust with regard to outliers. Secondly, 

because values are rank transformed, non-linear monotonous relationships may 

be identified that would not have been found with the other two regression 

methods. However, as far as ‘true’ relationships are linear, rank regression will 

                                                 

23 As suggested by Besley et al. (1980), the critical value for the tolerance indicating severe 
multicollinearity is 0.1 or below. For all variables, tolerances are well above 0.1. That 
multicollinearity is negligible for the chosen specifications is also confirmed by the condition 
indices for the regressions, which are all well below the critical value of 100. 
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Table 8: Estimations on the determinants of differences in technical efficiency at the 5 
percent output level across industries† 

 OLS RLS Rank 
  Estimate t-value Estimate t-value Estimate t-value 
Intercept 0.530** (7.70) 0.443** (9.70) 98.1 (1.75)
Vertical specialization 0.029** (6.32) 0.032** (10.62) 0.378** (5.47)
Capital intensity 1.838** (5.54) 0.953** (3.72) 0.159* (2.23)
Human capital 
intensity 0.506** (4.96) 0.058 (0.71) 0.356** (4.55)
R&D intensity -0.615 -(0.77) 0.883 (1.60) -0.138 -(1.86)
Average firm size -0.028** -(3.36) -0.009 -(1.67) -0.254** -(3.18)
New firm formation 4.128* (2.20) 4.750** (3.80) 0.139 (1.91)
Herfindahl index -0.139** -(2.63) -0.173** -(4.84) -0.167* -(2.47)
Average sales growth -0.430** -(2.91) -0.151 -(1.46) -0.054 -(0.87)
Share of West German 
Firms 0.030 (0.57) 0.048 (1.40) -0.019 -(0.32)
Dummy for 
intermediate products -0.006 -(0.28) 0.000 -(0.02) -0.076 -(0.52)
Dummy for producers 
of investment goods -0.037 -(1.47) -0.014 -(0.85) -0.318* -(2.00)
Dummy for producers 
of non-durable 
consumer goods 0.027 (1.14) 0.029 (1.86) 0.182 (1.23)
R-squared (adj.) 0.392 0.503 0.327 
Error degrees of 
freedom 228 201 228 
Root mean squared 
error 0.079 0.05 58.7 
Number of 
observations 241 214 241 
† t-values in parentheses. *: statistically significant at the 5 percent level. **: statistically significant at the 1 percent 

level. For all reported regressions, specification tests according to White (1980, p. 822) do not reject the null 
hypothesis that the errors are homoscedastic and independent of the regressors. These test results are available from 
the authors upon request.  

 

be relatively inefficient. The dependent variables of the regressions are 

technical efficiencies at the 5, 50 and 95 percent output level of industries. The 

estimation results are shown in Tables 8 to 10. Table 11 gives an overview on 

the results. 

Regarding the importance of tangible and intangible capital intensity for 

average technical efficiency, we find a significant positive impact from both 

physical and human capital intensity. The relationship between an industry’s 

R&D intensity and its technical efficiency is not statistically significant for 

average technical efficiency the 5 and 50 percent output level. This is in line 

with the descriptive evidence of Table 6, which indicates that R&D intensive 
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Table 9: Estimations on the determinants of differences in technical efficiency at the 50 
percent output level across industries† 

 OLS RLS Rank 
  Estimate t-value Estimate t-value Estimate t-value 
Intercept 0.448** (10.22) 0.434** (18.07) -25.5 -(0.52) 
Vertical specialization 0.039** (13.38) 0.037** (22.54) 0.505** (8.42) 
Capital intensity 1.429** (6.75) 0.912** (6.03) 0.188** (3.02) 
Human Capital 
Intensity 0.249** (3.84) 0.078 (1.71) 0.350** (5.14) 
R&D intensity -0.029 -(0.06) 0.663* (2.22) -0.199** -(3.08) 
Average firm size -0.023** -(4.47) -0.012** -(4.02) -0.216** -(3.11) 
New firm formation 2.610* (2.18) 3.928** (6.09) 0.149* (2.36) 
Herfindahl index 0.086** (2.54) 0.056** (2.84) 0.118* (2.02) 
Average sales growth -0.134 -(1.43) 0.106* (2.01) -0.003 -(0.05) 
Share of West German 
Firms 0.069* (2.10) 0.041* (2.20) 0.081 (1.55) 
Dummy for 
intermediate products -0.002 -(0.11) -0.007 -(0.89) -0.009 -(0.07) 
Dummy for producers 
of investment goods -0.001 -(0.05) 0.001 (0.12) -0.101 -(0.73) 
Dummy for producers 
of non-durable 
consumer goods 0.037* (2.48) 0.021** (2.64) 0.347** (2.69) 
R-squared (adj.) 0.601 0.801 0.492 
Error degrees of 
freedom 228 192 228 
Root mean squared 
error 0.05 0.025 50.9 
Number of 
observations 241 205 241 
† t-values in parentheses. *: statistically significant at the 5 percent level. **: statistically significant at the 1 percent 

level. For all reported regressions, specification tests according to White (1980, p. 822) do not reject the null 
hypothesis that the errors are homoscedastic and independent of the regressors. These test results are available from 
the authors upon request.  

 

industries – e.g. chemicals [NACE 24], office machinery and computers 

[NACE 30] or radio, television and communication equipment [NACE 32] – 

are not among the most efficient industries. However, the relationship between 

R&D and efficiency is strongly negative for the 95 percent output level, i.e. for 

the least efficient firms in the industries. This confirms the findings of Albach 

(1980) and Caves & Barton (1990). As already mentioned, this result could be 

explained by the conjecture that a considerable part of the innovations 

generated in an industry have no effect on this industry’s performance because 

they are mainly applied in other industries. Another explanation could be that 

the efficiency enhancing effect of R&D expenditure occurs with a considerable 
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Table 10:  Estimations on the determinants of differences in technical efficiency at the 95 
percent output level across industries† 

 OLS RLS Rank 
  Estimate t-value Estimate t-value Estimate t-value 
Intercept 0.430** (11.38) 0.579** (22.99) -49.0 -(0.98) 
Vertical specialization 0.030** (11.97) 0.019** (10.65) 0.380** (6.20) 
Capital intensity 1.255** (6.87) 0.650** (5.53) 0.119 (1.87) 
Human Capital 
Intensity 0.251** (4.48) 0.284** (8.09) 0.289** (4.16) 
R&D intensity -1.783** -(4.08) -2.068** -(7.77) -0.259** -(3.94) 
Average firm size -0.008 -(1.67) -0.019** -(6.42) -0.097 -(1.38) 
New firm formation 0.057 (0.06) -0.983 -(1.67) 0.118 (1.82) 
Herfindahl index 0.151** (5.19) 0.099** (5.51) 0.202** (3.38) 
Average sales growth 0.089 (1.09) 0.168** (3.44) 0.126* (2.30) 
Share of West German 
Firms 0.046 (1.60) 0.006 (0.33) -0.029 -(0.54) 
Dummy for 
intermediate products -0.009 -(0.73) -0.014 -(1.87) 0.146 (1.13) 
Dummy for producers 
of investment goods -0.002 -(0.15) -0.018* -(2.26) -0.040 -(0.28) 
Dummy for producers 
of non-durable 
consumer goods 0.023 (1.77) 0.013 (1.71) 0.450** (3.42) 
R-squared (adj.) 0.617 0.695 0.471 
Error degrees of 
freedom 228 193 228 
Root mean squared 
error 0.043 0.023 52.041 
Number of 
observations 241 206 241 
† t-values in parentheses. *: statistically significant at the 5 percent level. **: statistically significant at the 1 percent 

level. For all reported regressions, specification tests according to White (1980, p. 822) do not reject the null 
hypothesis that the errors are homoscedastic and independent of the regressors. These test results are available from 
the authors upon request.  

 

time lag. The negative sign of the coefficient would also be consistent with the 

assumption that the least efficient firms make relatively high R&D 

expenditures in order to compensate for their inefficiency. 

The impact of industry concentration as measured by the Herfindahl index 

on technical efficiency is negative for the most efficient firms at output level 5 

percent, but positive for output levels 50 percent and 95 percent. The highest 

level of significance is found for the 95 percent output level. These findings 

suggest that for the most efficient firms, high market concentration leads to a 

relatively low level of average technical efficiency because competitive 

pressure for these firms in concentrated markets is low. However, at the lower 
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part of the efficiency distribution curve, competitive pressure and thus 

efficiency in concentrated markets seems to be quite intense. The results with 

regards to another source of competitive pressure, the occurrence of new firm 

entry into the industry, are completely in line with our expectations. A high 

level of new firm formation leads to a high level of average efficiency, 

particularly among the relatively efficient firms at output level 5 percent and 50 

percent. This suggests a stimulating role of market contestability and 

competition on technical efficiency. No statistically significant effect could be 

found for the import share of an industry. Therefore, this variable has not been 

included in the final version of the empirical models that are presented here. 

Table 11: Summary of findings† 

 Technical efficiency at different output levels
Independent variables 5 % 50 % 95 % 

Tangible and intangible capital    
Physical capital intensity + + + 
Human Capital Intensity + + + 
R&D intensity n.s. (+ / –) – 
Market structure and 
competition 

   

New firm formation rate + + n.s. 
Herfindahl index – + + 
Import share n.s. n.s. n.s. 
Production technology    
Average firm size – – (–) 
Vertical specialization + + + 
Industry characteristics    
Average of firms’ sales growth (–) + + 
Share of West German firms n.s. + n.s. 
Entrepreneurial regime n.s. n.s. n.s. 
Dummy for intermediate 
products 

 
n.s. 

 
n.s. 

 
(–) 

Dummy for producers of 
investment goods 

 
(–) 

 
n.s. 

 
(–) 

Dummy for producers of non-
durable consumer goods 

 
n.s. 

 
+ 

 
(+) 

 

† Signs of coefficient if statistically significant. Without parentheses: sign statistically 
significant at the 5 percent level in at least two models; in parentheses: variable was 
statistically significant at the 5 percent level in only one of the models reported; n.s.: variable 
was not statistically significant at the 5 percent level in any of the models reported. 

 

One of the strongest impacts on average technical efficiency is exerted by 

the degree of vertical specialization and labor division in an industry. Thus, as 

has been shown in other studies (Görzig & Stephan, 2002), a high degree of 
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vertical disintegration leads to a high level of technical efficiency. It is quite 

remarkable that the effect of an industry’s average firm size on technical 

efficiency is significantly negative, particularly at the upper (5 percent output 

level) and middle part (50 percent output level) of the efficiency distribution 

curve. The negative relationship indicates that larger firms tend to suffer from 

higher levels of technical inefficiency than smaller firms. This finding could be 

explained by higher complexity in larger firms that makes identification of 

inefficiency more difficult than in small firms. Another explanation is based on 

a ‘survivor bias’ in the data: larger firms are better able to survive high levels 

of technical inefficiency than small firms which may be more likely forced to 

exit if they are inefficient. In this case, however, we would expect a relatively 

pronounced negative relationship between average size and efficiency even for 

the low efficient firms, i.e. at the 95 percent level. 

High average sales growth rate in an industry is conducive for attaining a 

high average efficiency level at the 50 percent and 95 percent output level, i.e. 

for the average and low efficient firms. It is somewhat surprising that industries 

with a larger share of West German firms are not generally more efficient, but 

only at output level 50 percent. Our estimates suggest that industries producing 

durable consumer goods are more efficient than those producing non-durable 

goods. Industries for intermediate goods and for investment goods tend to 

attain a relatively low level of technical efficiency. No significant effect could 

be found for the technological regime of an industry. This variable has, 

therefore, been omitted in the final version of the model due to close 

correlation with average firm size. 

8. Summary and Conclusions 

In this paper we have estimated technical efficiencies of firms as fixed effects. 

Our analysis is based on a unique and representative panel data set of about 

35,000 firms from the German Cost Structure census. The fixed effects 

approach has two major advantages over the stochastic frontier framework 

which has been applied in most of the previous studies. First, the fixed effects 

approach does not require that a firm’s technical efficiency and its factor inputs 
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are uncorrelated. For our sample we can show that a significant degree of 

correlation between these variables and technical efficiency estimates exists. 

Second, the fixed effects approach does not require the assumption that the 

distribution of technical efficiencies is negatively skewed. Indeed, we find 

pronounced positive skewness of the efficiency distribution within as well as 

across industries. The explanation for this finding is a truncation at the lower 

efficiency end. The least efficient firms are not able to earn their cost and, 

therefore, are forced to exit the market. 

Our empirical analyses have shown that there are considerable differences 

of average technical efficiency across industries. We identified a number of 

factors that are important for explaining these differences. The strongest effect 

was found for the degree of vertical specialization, i.e. a high degree of labor 

division between firms (outsourcing) results in relatively high levels of average 

efficiency. Furthermore, physical as well as human capital intensity has a 

positive impact on average technical efficiency. Surprisingly, high R&D 

expenditures are not conducive for the efficiency of an industry. In fact, we 

find a negative sign for the impact of R&D intensity on technical efficiency for 

the least efficient firms. This finding may be explained by a pronounced 

diffusion of innovations across industries or by a long time lag for R&D 

expenditure to become effective. One may also assume that the least efficient 

firms have higher R&D expenditures to compensate for their inefficiency. 

The positive effect that we find for the new firm formation rate indicates 

that competition and contestability are stimulating for technical efficiency. 

Average efficiency is higher in high-entry industries because survival of 

inefficient firms is threatened by intensive competition. This indicates that 

slack and sub-optimal use of factor inputs can only persist when competition is 

not very pronounced.  

Our analyses have so far been static as they regarded only the time-

invariant level of technical efficiency thereby neglecting its dynamic evolution 

and the consequences for competition and industry evolution. As soon as better 

data becomes available, i.e. longer series of firm-level data, future research 

should investigate these dynamics of technical efficiency. 
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Appendix 

Table A1: Definition of independent variables 

Variable Definition 

Capital intensity Mean of annual depreciations plus expenditures for rents and leases 
over sales at firm-level from 1992 to 2002. 

Human capital 
intensity 

Number of employees with a university degree divided by number of 
untrained employees in the industry. 

R&D intensity Mean of R&D over gross production in the 1999 to 2002 period in the 
industry. 

New firm formation 
rate 

Mean annual number of new firmsa per employeeb at the 4-digit 
industry level 1998-2001. 

Herfindahl index Mean of Herfindahl index over the 1992 to 2002 period 

Import share Ratio of importsc to domestic production, average of 1992 to 2002 
period. 

Average firm size Log of mean number of employees in respective industry from 1992 to 
2002. 

Vertical specialization Ratio of intermediate products to internal wage costs, average of 1992 
to 2002 period. 

Entrepreneurial 
character of industry 

Share of R&D expenditure on gross production in firms with less than 
50 employees over share of R&D expenditure in firms of all size 
categories. Mean value of the 1999-2002 period. 

Average sales growth Average of annual firms’ growth rate of sales in the industry, mean of 
period 1992-2002. 

Share of West German 
firms 

Proportion of firms with headquarter in West Germany. 

Producer type Intermediate products, investment good, durable consumer goods, non-
durable consumer goods. 
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Table A2: Descriptive Statistics 

 Mean Std Dev Median Minimum Maximum 
Vertical 
specialization 2.035 1.276 1.710 0.289 9.034 

Capital intensity 0.045 0.018 0.040 0.012 0.143 
Human Capital 
Intensity 0.079 0.068 0.054 0.003 0.477 

R&D intensity 0.007 0.009 0.003 0.000 0.049 
Average firm size 5.208 0.795 5.122 3.711 9.268 
New firm formation 0.002 0.003 0.001 0.000 0.022 
Herfindahl index 0.100 0.112 0.055 0.002 0.547 
Average sales growth 0.020 0.038 0.019 -0.095 0.150 
Share of West 
German Firms 86.73 10.54 89.47 33.33 100.00 

Dummy intermediate 
products 0.548 0.499 1.000 0.000 1.000 

Dummy investment 
goods 0.158 0.365 0.000 0.000 1.000 

Dummy non-durable 
consumer goods 0.232 0.423 0.000 0.000 1.000 



Table A3: Tolerance factors (Tol) and correlations between independent variables* 

 Tol 
TE output 

50 % 
Capital 

intensity 

Human 
Capital 

Intensity 
R&D 

intensity 

Vertical 
specializa-

tion 
Average 
firm size 

Herfindahl 
index 

New firm 
formation

Average 
sales 

growth 

Share of 
West 

German 
Firms 

Dummy 
interme-

diate 
products 

Dummy 
investment 

goods 

Dummy 
non-

durable 
consumer 

TE output 50 % — — 0.186** 0.048 -0.164* 0.595** -0.164* 0.222** 0.086 -0.101 -0.048 -0.040 -0.248** 0.327** 
Capital intensity 0.707 0.035 — 0.004 -0.157* -0.149 0.069 0.188** -0.055 0.048 -0.113 0.432** -0.255 -0.193** 
Human Capital 
Intensity 0.535 0.003 0.048 — 0.619** -0.082 0.366** 0.178** -0.159* 0.234** 0.086 -0.107 0.360 -0.139 

R&D intensity 0.496 -0.293** -0.108 0.569** — -0.154* 0.372 0.085 -0.101 0.306** 0.116 -0.086 0.352 -0.226** 
Vertical 
specialization 0.763 0.494** -0.213** -0.050 -0.113 — 0.046 0.167** -0.178** 0.023 -0.201** -0.029 -0.204 0.248** 

Average firm size 0.608 -0.156* 0.094 0.535** 0.457** 0.102 — 0.317** -0.438** 0.175* -0.115 0.023 0.157 -0.125 
Herfindahl index 0.732 0.261** 0.122 0.275** 0.071 0.312** 0.324** — -0.034 -0.048 -0.252** 0.166** -0.141 -0.048 
New firm 
formation 0.727 0.060 -0.200** -0.342** -0.244** -0.241** -0.587** -0.246** — -0.166* 0.104 -0.096 -0.093 0.114 

Average sales 
growth 0.821 -0.101 0.120 0.276** 0.324** 0.036 0.260** -0.094 -0.258** — 0.006 0.167** 0.087 -0.242** 

Share of West 
German Firms 0.868 -0.072 -0.087 0.018 0.037 -0.281** -0.170** -0.298** 0.086 0.025 — -0.046 0.088 -0.004 

Dummy interme-
diate products 0.201 -0.026 0.515** -0.002 -0.079 0.015 0.008 0.149* -0.196** 0.162* -0.012 — -0.476 -0.605** 

Dummy investment 
goods 0.306 -0.302** -0.307** 0.358** 0.359** -0.241** 0.173** -0.191** 0.003 0.097 0.049 -0.476** — -0.238** 

Dummy non-dura-
ble consumer goods 0.257 0.352** -0.223** -0.242** -0.271** 0.208** -0.119 0.000 0.138* -0.238** -0.020 -0.605** -0.238** — 
* Braivais-Pearson correlation coefficients above, Spearman correlation coefficients below the diagonal. *: statistically significant at the 5 percent level. **: statistically 
significant at the 1 percent level. 
Note: Tol is defined as (1-Rsquare) of a regression of the respective variable on the other independent variables.  


