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Abstract

In January 2009 Germany introduced incentive regulation for the electricity
distribution sector based on results obtained from econometric and nonparamet-
ric benchmarking analysis. One main problem for the regulator in assigning the
relative efficiency scores are unobserved firm-specific factors such as network and
technological differences. Comparing the efficiency of different firms usually as-
sumes that they operate under the same production technology, thus unobserved
factors might be inappropriately understood as inefficiency. To avoid this type of
misspecification in regulatory practice estimation is carried out in two stages: in
a first stage observations are classified into two categories according to the size of
the network operators. Then separate analyses are conducted for each sub-group.
This paper shows how to disentangle the heterogeneity from inefficiency in one
step, using a latent class model for stochastic frontiers. As the classification is
not based on a priori sample separation criteria it delivers more robust, statisti-
cal significant and testable results. Against this backround we analyze the level
of technical efficiency of a sample of 200 regional and local German electricity
distribution companies for a balanced panel data set (2001-2005). Testing the
hypothesis if larger distributors operate under a different technology than smaller
ones we assess if a single step latent class model provides new insights to the use
of benchmarking approaches within the incentive regulation schemes.

Keywords: stochastic frontiers, latent class model, electricity distribution, in-
centive regulation

JEL classification: C24, C81, D24, L94
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1 Introduction

Electricity distribution and transmission are traditional network industries and are

therefore characterized by the typical properties of natural monopolies. In contrast

to the generating and supply segments in the electricity market where competition

has been introduced, the distribution sector is highly regulated. The last decades of

utility regulation were characterized by traditional cost of service regulation schemes by

which companies recovered their costs with a risk-free fixed rate of return (Farsi et al.,

2007; Joskow, 2006). Hence, distribution companies had little or even no incentive for

cost minimization. Therefore, incentive regulation schemes have become increasingly

important in Europe with the goals of reducing costs and increasing efficiency. Across

European countries price or revenue cap regulation is extensively used in electricity

distribution. Within this framework price/revenue caps are set based on the formula

RPI − X (see Beesley and Littlechild, 1989). The maximum rate of price increase

equals the inflation rate of the retail price index (RPI) less the expected efficiency

savings (X). Thus, regulated distribution companies have incentives to increase their

profits by improving their productivity at a higher rate than the assigned X-factor

(Farsi et al., 2007). In 2009 Germany has begun to implement the framework in the

electricity and natural gas distribution sector.

The determination of the X-factors for setting price/revenue caps is usually based

on empirical results obtained from benchmarking analysis. The efficiency performance

of the companies is therefore evaluated against a reference, best practice, performance.

This framework is favored by European regulators concerned about the robustness and

reliability of the empirical outcome of individual efficiency estimation.1 The develop-

ment and advancement of benchmarking models for a consistent practical application

has therefore been an important research aspect in efficiency analysis. The empirical

literature (see Jamasb and Pollitt, 2001; Farsi et al., 2007) can be divided into two

major groupings: nonparametric and parametric methods. While the nonparametric

methods construct the reference technology, the efficiency frontier, by means of lin-

ear programming methods, parametric approaches assume a functional form for the

underlying production process.2

Empirical evidence shows that the individual efficiency estimates are sensitive to the

adopted benchmarking models and approaches (Farsi and Filippini, 2004). Thus, the

choice of the empirical approach has a strong impact on the price/revenue cap setting

1Shuttleworth (2005) gives a critical summary of the implementation of benchmarking analysis in
price cap regulation.

2Our empirical analysis is solely based on the parametric approach as it is able to better account
for unobserved heterogeneity within the panel data framework.
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(and therefore the economic and financial conditions of the companies). Further, im-

plementation is always affected by the challenge of data availability. Some firm-specific

factors are either unobservable, too complex to be accounted for appropriately, or no

data is available for the empirical analysis. However, these unobserved characteristics

between firms may have an important impact on the underlying production process

and therefore the reference or efficiency frontier.3

In the traditional framework it is assumed that firms operate under the same pro-

duction technology. Therefore these unobserved factors might be inappropriately un-

derstood as inefficiency. To avoid these types of misspecification estimation is often

carried out in two stages in regulatory practice. First, defining different categories

based on a priori sampling criteria and then separate analyses for each sub-group. In

Germany, under the assumption that the size of the network operators implies different

technological and network characteristics, observations are classified ex-ante into two

categories: The German Incentive Regulation (ARegV (§24)) determines for the Ger-

man electricity distributors that network operators with fewer than 30.000 customers

connected directly or indirectly to their distribution system can choose to take part in

a simplified procedure. Thus, an ex-ante sampling splitting between large and small

distributors is present in the German regulation. This shows the implicit assumption

that omitted unobserved technological differences between larger and smaller operators

might be present and if not taken into account, inappropriately labeled as inefficiency.4

Following Orea and Kumbhakar (2004) and Greene (2005b) we suggest to use a

single-stage approach to account for heterogeneity within the stochastic frontier analy-

sis. The single-stage approach is based on a latent class framework for stochastic

frontiers which has not been implemeted so far for performance measurement of the

German electricity distribution sector. Here, in contrast to traditional models, different

technologies and efficiency frontiers for different classes or groups of firms can be iden-

tified without the need for a priori sampling separation information (Greene, 2005a).

This is motivated by the fact that a priori selection might be arbitrary, lacks statistical

foundation and is therefore not testable. We apply the latent class model for stochas-

tic frontiers using a multi-input multi-output parametric input distance function for a

balanced panel data set (2001-2005) for 200 regional and local German distributors.

We first assess if our model confirms that large distributors operate under a different

technology than the smaller network operators. This implies that unoserved factors

3Alternative econometric approaches have been proposed in the literature to improve benchmark-
ing methodology. These new strategies are mainly based on panel data when companies have been
observed over time, attempting to isolate the unobserved firm-specific factors that are not under
managerial control from real inefficiencies, see Farsi et al. (2006).

4Other general empirical studies apply the two-stage approaches to decrease the probability of
misspeification, see e.g. Grifell and Lovell (1997) for efficiency measurement of banks.
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are present and have to be taken into account within the nationwide benchmarking.

Secondly, we analyze the level of technical efficiency of our sample of network opera-

tors. We derive that a single step latent class model is able to provide new insights

to the future use of benchmarking approaches within the incentive regulation schemes

and could serve as additional control instrument for the regulator.

The paper is structured as follows: Section 2 presents the econometric specification

and Section 3 the data. Section 4 summarizes the main empirical results of the distance

functions estimation under different econometric assumption. Section 5 concludes.

2 Model specification

2.1 Distance function approach

Within a technical production setting, the majority of applied parametric efficiency

analyses uses the production function to describe the underlying technology of differ-

ent firms. Single output Cobb-Douglas or translog functional forms are most widely

assumed but become critical, when firms produce more than one output (Coelli, 2000).

Applied work has managed the issue by either aggregating the different outputs into a

single index, or capturing multi-output production via estimating a multi-output cost

frontier function.5

Another approach to model multi-output production is the concept of parametric

distance functions (Coelli, 2000). This approach has been proposed by Shephard (1970)

who derives a distance function representation of a multi-output technology as a primal

alternative that requires no aggregation, price and cost information and behavioral

assumption; see Coelli (2000) for a detailed description on the econometric estimation

of the distance function representation.6 We apply a parametric frontier input distance

function to model the customers’ supply and the physical amount of electricity delivered

to final customers. The input distance function is defined on the input set as

di(x, y) = max{ρ : (x/ρ) ε L(y)} (1)

and considers how much the input vector x may be proportionally contracted by the

scalar distance ρ with the output vector held fixed (Coelli, 2000).7 di(x, y) will assume

5Farsi et al. (2006) and Filippini and Wild (2001) analyze the Swiss electricity distribution sector;
Burns and Weyman-Jones (1996) consider England and Wales, and Filippini et al. (2004) look at
Slovenian distribution companies based on cost frontier functions.

6For a discussion on advantages and disadvantages of the use of distance functions see Coelli (2000),
and Coelli and Perelman (2000).

7It is assumed that the technology satisfies the standard axioms: di(x, y) is non-decreasing, pos-
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a value greater than or equal to one if the input vector x is an element of the feasible

input set L(y). In addition, di(x, y) = 1 if it is located on the inner boundary of the

input set.8

The translog functional form is widely used for the distance function approxima-

tion in empirical application due to its flexibility for econometric estimation. However,

we employ the stricter Cobb Douglas functional form excluding the squared and cross

terms of the exogenous regressors. A constant elasticity of substitution and constant

scale properties are therefore assumed because we want to capture the parameter het-

erogeneity to define different technologies. The econometric models for SFA including

parameter heterogeneity are already characterized by a sophisticated stochastic com-

ponent. Moreover, parameter heterogeneity concerning the squared and cross terms of

the regressors does not have a real economic interpretation. For the case of M outputs

and K inputs the Cobb Douglas input distance function is specified for the i-th firm

as

ln di = α0 +
M∑

m=1

γm ln ym +
K∑

k=1

βk ln xk. (2)

To obtain the frontier surface (the transformation function) one would set di = 1, so

the left side equals zero (Coelli and Perelman, 2000). The restriction for homogeneity

of degree +1 in inputs is
K∑

k=1

βk = 1. (3)

A convenient approach of imposing homogeneity constraints follows Coelli and Perel-

man (2000) considering that homogeneity implies that for any w > 0

di(wx, y) = wdi(x, y). (4)

Therefore, one of the inputs may be arbitrarily chosen, such as the K-th input and set

w = 1/xK . This yields

di(x/xK , y) = di(x, y)/xK (5)

itively linearly homogeneous and concave in x and increasing in y (Coelli, 2000; Färe and Primont,
1995).

8Applications of this concept to estimate parametric distance functions using econometric methods
can be found in Coelli and Perelman (2000) for railways, Färe et al. (1993) for electricity generation,
Saal et al. (2007) for water and sewerage industry, and Growitsch et al. (forthcoming) for European
electricity distribution.
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and the Cobb Douglas input distance function becomes

ln xK = α0 +
M∑

m=1

γm ln ym +
K∑

k=1

βk ln(
xk

xK

) − ln di (6)

by dividing equation (2) by an optional input and some rearranging; ln di is a non-

negative variable which can be associated with technical inefficiency ui. Given the

stochastic error vi this model can be formulated in the common SFA form with the

combined error term vi − ui (see Section 2.2). Technical efficiency is the ratio of ob-

served output to frontier output. A radial input-oriented measure of technical efficiency

is then obtained by

TE =
1

di

= exp(−ui). (7)

The distance function provides a promising new solution to the single output restriction

of the standard production functions. One concern in the econometric estimation is

potential regressor endogeneity which may introduce possible simultaneous equation

bias.9 Some authors have proposed instrumental variables estimation (see Atkinson

and Primont, 2002). However, Coelli (2000) found that under an assumption of cost

minimization behavior, distance functions do not face such bias and that OLS provides

consistent estimates of the parameters of an input distance function. A second issue

is that estimated input distance functions often fail to satisfy the concavity and quasi-

concavity properties implied by economic theory. This sometimes leads to surprising

conclusions regarding the effects of input and output changes on productivity growth

and relative efficiency levels. Therefore, the starting point before any interpretation of

inefficiencies is to check and to test for the properties.10

For the interpretation of the empirical estimates of a distance function it is impor-

tant to keep in mind the duality between the cost and the input distance functions

(Färe and Primont, 1995). For instance, the derivative of an input distance function

with respect to a particular input is equal to the cost share of that input. This implies

that the expected sign of the coefficients of the inputs should be positive. Moreover,

the elasticity of an input distance function with respect to any output is equal to

the negative value of the cost elasticity of that output. This implies that the sign of

the coefficients of the outputs should be negative. Given that all the variables are in

logarithmic form, these coefficients can be directly interpreted as elasticities.

9Ratios on inputs appear on the right side of the estimating equation which may involve simulta-
neous feedback problems because these input variables are assumed to be endogenous.

10Regularity conditions could also be imposed by estimating the model in a Bayesian framework
(O’Donnell and Coelli, 2005).
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2.2 Stochastic frontiers and latent classes

2.2.1 Panel data approaches for stochastic frontiers

SFA belongs to the parametric benchmarking methods. Contrary to the nonparamet-

ric approaches, a functional relationship for the underlying production technology is

assumed. Within the benchmarking process we compare some measure of actual per-

formance against a reference technology (the stochastic frontier). The distance to the

production frontier can be interpreted as a common measure of technical inefficiency.

In the SFA framework the error term is divided into two uncorrelated components:

a one-sided non-negative disturbance ui, half-normally distributed, representing the

inefficiency; and a symmetric disturbance vi, assumed to be normally distributed, and

capturing random noise in the sample (Greene, 2007). The most general cross-sectional

formulation is

yi = β′xi + vi − ui

ui ∼ N+[0, σ2
u]

vi ∼ N [0, σ2
v ] (8)

where xi represents the set of explanatory variables and yi the observed production of

a firm. This model can be estimated using the maximum likelihood approaches.

A number of different stochastic frontier models for panel data have been proposed.

The first models define the random or fixed effect as the inefficiency component mean-

ing that the models deduce the efficiency estimates from the individual firm-specific ef-

fects.11 These traditional models assume a common technology/frontier encompassing

every sample observation. This may be inappropriate in the sense that the estimated

technology is not likely to represent the “true” technology for all observations (Farsi

et al., 2006). Thus, the estimate of the underlying technology may be biased. In ad-

dition, as unobserved heterogeneity was not accounted for in the econometric models,

parameter estimates also may have been biased. Moreover, since all time-invariant

heterogeneity was covered by the inefficiency part, these models have a tendency to

underestimate firms’ performance (Farsi et al., 2007).

European regulators, implementing the efficiency estimates into regulatory practice,

are concerned about the robustness and the reliability of the empirical outcome of the

individual efficiency estimation. Robust and consistent specification and models are

indispensable for a trustable and effective regulation as the choice of the empirical

approach has a strong impact on the financial situation of the network operators. Thus

11See Pitt and Lee (1981) for the random effects SFA model and Schmidt and Sickles (1984) for the
fixed effects SFA model.
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over the last decades we observed a research necessity concerning mainly two aspects

for parametric stochastic efficiency analysis: first, how unobserved firm-specific factors

may influence the underlying production process, and second how to model different

technologies for different groups of firms.

With regard to the first aspect a wide range of newer models attempts to sepa-

rate unobserved heterogeneity from inefficiency. One can model heterogeneity in the

stochastic part, in the mean or the variance of the inefficiency distribution ui.
12 How-

ever, it became more important to model both heterogeneity in the stochastic part

and firm-specific heterogeneity in the production or cost function of the underlying

production process. Kumbhakar (1991) and Greene (2005b) have suggested extending

the original stochastic frontier model by adding an individual time-invariant random

or fixed effect.13 The basic underlying assumption is the existence of firm-specific and

time-invariant factors that cannot be captured by environmental variables due to the

variation of the latter over time and/or omitted variables. With the additional inclu-

sion of heterogeneity terms by means of the random firm-specific effect αi the model

is expected to provide a finer distinction between inefficiency and other unexplained

factors (Greene, 2005b).

With regard to the second aspect other formulations of the stochastic frontier model

were proposed in the literature that allow not only the constant but the entire function

to vary more generally across firms: the random parameter as well as latent class models

for stochastic frontiers.14 Instead of the continuous parameter variation, the latent class

formulation can be interpreted as an approximation where the parameter variation is

treated as generated by a discrete distribution (Greene, 2007). With these newer

models unobserved differences in technologies may be accounted for which previously

were inappropriately labeled as inefficiency. The unobserved firm-specific heterogeneity

could therefore be applied to marginal products and costs represented by the coefficients

of the production cost or distance function.

2.2.2 Latent class specification

The latent class framework for SFA accounts for specific technological characteristics

of the observations in the sample; firms are classified into a set of different technologies

and efficiency distributions. However the specific classification is à priori unknown

12The literature proposed to define a function of the mean or variance of observed variables (Battese
and Coelli, 1995).

13These models are called “true” models because they include two stochastic terms for unobserved
heterogeneity (one for the time-variant factors and one for the firm-specific constant characteristics
(Farsi et al., 2006)).

14For applications of the random coefficient model for SFA see Tsionas (2002), Huang (2003).
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(Greene, 2007; Orea and Kumbhakar, 2004), unlike the two-step approach that classi-

fies the sample observations à priori into categories using exogenous sample separation

information (Orea and Kumbhakar, 2004). In this model all parameters vary by class

standing for the different technologies of the different classes. Others have modeled

technology heterogeneity within SFA via the latent class formulation (Orea and Kumb-

hakar, 2004; Greene, 2005b; Caudill, 2003; Corral and Alvarez, 2008).15 Figure 1 shows

a sample of firms operating under different technologies (Technology A and Technology

B). Assuming in this framework a common technology, and therefore frontier, for the

companies would result in biased estimates of the distance function and efficiency. The

Figure 1: Graphical interpretation of latent classes

latent class model, in general, is a stochastic frontier model of the following form

ln(yit|j) = f(xit, βj) + vit|j − uit|j (9)

where j indicates the class or regime and J the total number of classes or regimes. Class

membership is unknown. One assumes that there is a latent sorting of the observations

in the data resulting in J classes (Greene, 2007). For one specific observation from class

j the model is characterized by the conditional density g(.) determined by the class

specific parameter vector βj.

g(yit|xit, classj) = f(βj, yit, xit) (10)

15Orea and Kumbhakar (2004) extend the latent class model derived by Greene (2002) to the Battese
and Coelli (1992, 1995) specification. Greene (2002) models the inefficiency term with a free variation
over time; in the Orea and Kumbhakar (2004) specification, the inefficiency term varies systematically
over time in a deterministic fashion (Greene, 2007).
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The contribution of the company i to the conditional likelihood (conditional on class

j) is

P (i|j) =
T∏

t=1

P (i, t|j) (11)

The unconditional likelihood for individual i is an average over the J classes. It can

be shown that the likelihood function can be expressed by (see Greene, 2005)

logLF =
N∑

i=1

log(
∑

Pij

T∏
t=1

LFijt) (12)

The class probabilities can be parameterized by a multinomial logit model:

Pij =
exp(δ′

jqi)∑J
j=1 exp(δ′

jqi)
(13)

where qi is a vector of firm-specific but time-invariant variables. These variables, called

separating or switching variables, are included to identify any regularity in classifying

the sample by means of the estimated coefficients of latent class probability functions

δ̂j (Greene, 2007). A positive sign of the coefficient suggests that the larger the variable

the higher the probability that a firm belongs to this class. Similarly, the significantly

negative value of a coefficient indicates that the probability of membership in this class

decreases when the variable increases.

Under the maintained assumptions, maximum likelihood techniques will give as-

ymptotically efficient estimates of all parameters. Greene (2002) points out that the

technology as well as the probability to belong to a certain class are estimated simulta-

neously. All observations in the sample are used to estimate the underlying technology

for each class. This can be viewed in opposition to the standard two-step approaches,

where observations that are allocated to a specific class equal one, and zero for the

others, are therefore excluded to estimate other class frontiers (Orea and Kumbhakar,

2004). The estimated parameters can be used to compute the conditional posterior

class probabilities. In addition, Greene (2007) suggests that the class probabilities

apply unchanged to all years of the observation period.

In standard SFA, the individual efficiency is estimated to the common frontier,

since all firms are assumed to operate under the same technology. The latent class

specification estimates as many frontiers as the number of classes (see Figure 1 with two

different classes). There is no unique technology against which inefficiency is computed.

There are different methods to measure the efficiency level of an individual firm (see

Orea and Kumbhakar, 2004, for a summary): first, the highest posterior probability for
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class membership can be taken, and firms’ inefficiency is computed using the frontier

assigned for that class as its reference technology (most likely frontier is used); second,

technologies from every class are taken into account, weighted with the respective

probabilities.16

An ongoing discussion in the literature concerns the determination of the number

of classes (Greene, 2007). For estimation we assume that the number of classes is

known, but as Greene (2007) has shown, there is no reason to expect this. Using the

likelihood ratio test from a J class model to a J − 1 class model would lead to an

ambiguous number of degrees of freedom. When we test up from J − 1 to a J class

model and the correct model has J classes, the J − 1 class model is inconsistent. The

empirical solution in the literature is to apply information criteria such as the Akaike

Information criteria (Greene, 2007). Our empirical model defines two latent classes

(see Section 4.1).

3 Data

Two sets of variables are required to estimate the latent class model. First, the vari-

ables in the production frontier model have to be defined including appropriate inputs

and outputs for the process of electricity distribution. Second, the variables in the

class probabilities have to be chosen to determine if observable information helps to

classify the companies into different classes with different underlying technologies. The

variables to describe the underlying production process are defined in the same man-

ner for the different groups of companies. In the empirical benchmarking literature, a

variety of specifications is used depending on what is being investigated. The choice

of variables for input and output to describe the underlying production process and

technology must account for the international experience with electricity distribution

benchmarking (Cullmann and Hirschhausen, 2008a,b). Further, it is constraint by data

availability. In this respect, Germany has to be ranked among the least developed for

data collection. We therefore depend upon a limited data set of physical and technical

data. We must define a simple production process describing the basic input trans-

formation of the German companies. As a result we limit ourselves to the estimation

of technical inefficiency which does not require any data on costs or prices; however

as shown in Section 2, conclusions regarding cost efficiency can be drawn due to the

distance function specification.

16This is the strategy suggested by Greene (2002) to find firm-specific estimates of the parameters
of the stochastic frontier model. The magnitude of the difference depends on the relative importance
of the posterior probability of the most likely cost frontier; the higher the posterior probability, the
smaller the differences.
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The sample includes 200 companies and covers a five-year observation period from

2001 to 2005. We estimate a base model using the traditional input variables (labor

and grid size) and the outputs are units sold and the number of customers:

* Labor input (xL) is estimated by the number of workers. We are aware of the

criticism of this choice of variable due to the potentially distorting effect of out-

sourcing: a utility can improve its efficiency simply by switching from in-house

production to outsourcing. Some of the utilities have their own generating plants

and we only dispose of employment data covering all workers in the electricity

utility. To get an approximation of workers employed in electricity distribution,

we subtract one employee for each 20 GWh electricity produced (following Auer,

2002).

* Capital input (xNL) is approximated by the length of the existing electricity ca-

bles and lines. We differentiate between voltage levels (high, medium and low

voltage) by introducing a cost factor for each type of line following standard prac-

tice used by the German network association (VDN): factor 5 for high voltage,

1.6 for medium voltage, and 1 for low voltage cables.

* Delivery (yD) is defined as the annual amount of electricity sold to all final cus-

tomers (household, industrial and others) in MWh.

* Customers (yC) is defined as the sum of industrial, households and other cus-

tomers.

* Year dummies (d1 − d4) 2001 to 2004.

We also include variables as determinants of the latent class probabilities in order

to analyze whether they deliver useful information in classifying the sample:

* Delivery to other distribution companies (dummy)

* Electricity generating activities (dummy)

* Operating high voltage cables (dummy)

* Operating high voltage aerial lines (dummy)

* Annual investment in 1000 Euro

* Annual revenue out of domestic sales in 1000 Euro

* Delivery to households/total delivery in MWh

13



* Investment per km network in 1000 Euro/km

* Revenue per unit delivery in 1000 Euro/MWh

* Share of cables in total network in km

* Losses in MWh

* Density of inhabitants per km operation area.

For the q variables we use firm average values over the five-year observation period.

To summarize, we designed a model to describe the production process, including two

input variables, two output variables and year dummies to capture the time dimension.

We define labor (xL) as the numeraire input. By dividing the remaining input over

the labor input and rearranging we define the following Cobb-Douglas input frontier

distance function (see Section 2)

− ln xit,L = α0 + αNW ln(
xit,NW

xit,L

) + γC ln(yit,C) + γD ln(yit,D)

+ d1 + d2 + d3 + d4 − ln dit (14)

with

ln dit = εit = vit − uit (15)

4 Empirical results

4.1 Estimation results for latent classes

To test the hypothesis if larger and smaller network operators in Germany operate un-

der different technologoes we estimate a latent class model with two different classes to

model parameter heterogeneity. Within this framework we allow firms to have different

underlying production technologies, caused by unobserved technological network differ-

ences or variations in the customer structure. Estimating a latent class model requires

the a priori determination of the number of classes (see Section 2.2). Following Orea

and Kumbhakar (2004) and Greene (2007) we applied the Akaike information criteria

which favors the definition of two classes in contrast to one single class. The empirical

results with more than two classes (up to four) did not converge to a meaningful solu-

tion within the maximum likelihood estimation, therfore we stayed in the framwork of

two different classes. This is in our view appropriate to test our hypotheses of different

technologies for small and large distributors.
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Table 1 shows the regression results of the distance function estimation for the

two differnt classes. All variables are median-corrected to avoid outliers in the sample

having a large impact on the estimation outcome. The estimated coefficients of the

first-order terms have the expected signs and are statistically significant (see Section

2.1). Thus the estimated distance function appears to reasonably fit the observed data.

The prior class probabilities show a quite equal latent sorting of the observations into

both classes with a slightly higher amount of companies belonging to the first class:

57% in Class 1 and 43% in Class 2. The characteristics of both classes are shown in

Table 2.

We start by characterizing both classes and calculate summary statistics of impor-

tant physical and technical data of the companies differentiated between the two classes

(see Table 2). We can derive one clear trend: Class 1 incorporates larger distribution

companies with a higher number of employees, higher amount of delivery sold, more

final customers and a larger network; Class 2 seems to include the smaller German

distributors. With regard to the number of final customers we note that the separa-

tion reflects approximately the classification in the ordinance with 30.000 customers

connected (AregV §24). This separation already gives a first insight that the size of

the network operators matters in identifying the technology.

Next, we want to determine whether the production structures of both classes

(larger firms vs. smaller) differ and may be characterized by parameter heterogeneity.

Table 1 shows that the year dummies in both classes are insignificant which suggests

no important technology shifts within the observation period. In both classes the

input and output coefficients have the expected signs and are all significant. The

coefficients of first-order output variables represent the cost elasticities with respect

to the corresponding outputs. The coefficients of first-order input variables show the

cost shares of the respective inputs. However, we note that the coefficients differ

significantly for the two classes: Class 1 is characterized by higher capital intensity

with a coefficient of 0.81 vs. Class 2 of 0.759. Larger firms operating larger networks

and in particular more cost intentsive high voltage networks (up to 110 kV) and are

therefore characterized by a more capital intensive distribution.17

For an input distance function representation the elasticity of scale (RTS) is mea-

sured by the negative of the inverse of the sum of the output elasticities (Färe and

Primont, 1995). As the output weights do not sum to unity this can be interpreted

as reflecting the effect of non-constant returns to scale (Saal et al., 2007). The sum

of the coefficients of the two output variables varies (1.033 for Class 1 and 0.51 for

17The homogeneity of degree one assumption involves that the input coefficients sum up to one.
Thus we obtain a labor share of 0.19 and 0.24 respectively. The electricity distribution sector is
obviously characterized by a high capital cost share.
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Class 2). This result suggests the presence of important increasing returns to scale for

Class 2 while Class 1, the larger companies, operates closely under constant returns

to scale. We notice that the output elasticities with respect to customers differ sig-

nificantly between the two classes (-0.458 in Class 1 vs. -0.132 in Class 2) indicating

that connecting customers is more cost intesive for Class 1. This can be explained by

the fact that larger network operators have a higher share of industrial customers for

which connection to the network is more costly than for household customers.

Clearly, the empirical evidence shows that the two groups operate under different

technologies. The latent class specification leads to different technological produc-

tion frontiers as references for the different companies. Estimating a common frontier

without modeling the parameter heterogeneity would produce biased estimates and

therefore inconsistent individual efficiency measures. The hypothesis that larger and

smaller network operators are characterized by different technologies can be confirmed.

The latent class model is able to estimate the technologies and the class probabilities

simultaneously. In contrast to the two-stage approach, all observations of the sam-

ple are used to determine the underlying technologies for each class. This overcomes

the implicit restriction of the two-stage approach which precludes using observations

that were allocated to one subgroup to determine the efficiency frontiers of the other

groups (Orea and Kumbhakar, 2004). Thus it represents a promising alternative to the

two-step procedure.

4.2 Classification of the sample

Table 1 also shows the estimated coefficients of latent class probability functions δ̂

together with their respective p-value. Thus, the class probabilities are not fixed but

dependent on time-invariant observable characteristics of the German distribution com-

panies. Including these variables reveals whether they deliver useful information in

classifying the sample, more precisely if they provide information on the probability of

a distribution company belonging to a certain class.

The empirical results suggest that the supply to other electricity distribution compa-

nies, the generation activity, the operation of high voltage cables, the percentage share

of household customers in the total sum and the location in East or West Germany

do not have significant impacts on the probability of belonging to a certain class. The

p-value of these estimated coefficients is lower than the critical value of 0.05. However,

we note that the remaining observable characteristics have an impact on classifying

the sample into larger vs. smaller operators. The density has a positive impact on the

probability belonging to Class 1. In other words, Class 1 consists of larger companies

operating in more densely settled urban areas. Average losses of electricity (a type
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Variables Coefficient Standard error t-stat p-value

Model parameters for latent class 1

Constant 0.331 0.038 8.683 0.000
Lnx1 network 0.831 0.015 54.360 0.000
Lny1 delivery -0.575 0.027 -21.434 0.000
Lny2 customers -0.458 0.029 -15.899 0.000
Year-Dummy 2001 0.010 0.031 0.323 0.747
Year-Dummy 2002 -0.012 0.031 -0.393 0.695
Year-Dummy 2003 -0.017 0.031 -0.559 0.576
Year-Dummy 2004 -0.009 0.030 -0.285 0.776
Sigma 0.307 0.022 13.946 0.000
Lambda 1.473 0.331 4.448 0.000

Model parameters for latent class 2

Constant 0.014 0.084 0.160 0.873
Lnx1 network 0.759 0.027 28.443 0.000
Lny1 delivery -0.606 0.020 -30.119 0.000
Lny2 customers -0.132 0.022 -6.072 0.000
Year-Dummy 2001 0.000 0.042 -0.009 0.993
Year-Dummy 2002 -0.037 0.042 -0.863 0.388
Year-Dummy 2003 -0.017 0.042 -0.414 0.679
Year-Dummy 2004 -0.006 0.042 -0.135 0.893
Sigma 0.321 0.040 8.072 0.000
Lambda 0.833 0.484 1.719 0.086

Estimated prior probabilities for class membership

Constant 0.980 0.656 1.493 0.136
Dummy generation -0.434 0.460 -0.944 0.345
Dummy EDC -0.186 0.440 -0.422 0.673
Dummy high voltage cable 2.331 1.346 1.732 0.083
Dummy high voltage lines -2.534 1.048 -2.417 0.016
Dummy West/East -0.958 0.549 -1.743 0.081
Average Investment -3.465 0.652 -5.315 0.000
Average Revenue 3.923 0.639 6.137 0.000
Ratio delivery household/total delivery 1.003 0.646 1.553 0.120
Investment per network 3.289 0.653 5.039 0.000
Revenue per delivery -4.221 0.007 -583.532 0.000
Cable per network -0.989 0.010 -99.792 0.000
Average losses -0.572 0.007 -85.981 0.000
Density 0.184 0.008 23.590 0.000

Prior class probabilities at data means for LCM variables

Class 1 0.571
Class 2 0.429

Stochastic frontier model variance parameters

Lambda Sigma Sigma(u) Sigma(v)
Class 1 1.473 0.307 0.254 0.172
Class 2 0.833 0.321 0.206 0.247

Table 1: Estimation results of Model 2 (latent class specification)
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Variable Mean Standard deviation Confidence Interval 95%

Number of employees
Class 1 126 14 97 154
Class 2 74 8 59 90

Delivery in MWh
Class 1 626977 85713 458760 795195
Class 2 312335 50479 213268 411402

Final customers
Class 1 54641 6243 42388 66893
Class 2 31751 3142 25584 37917

Weighted km of lines
Class 1 822 168 493 1151
Class 2 97 8 81 113

Weighted km of cables
Class 1 2188 408 1387 2990
Class 2 752 58 637 866

Weighted km of network
Class 1 3010 504 2022 3998
Class 2 848 61 729 968

Density
Class 1 3368 63 3244 3491
Class 2 3142 73 2999 3285

Unweighted km of lines
Class 1 486 89 312 659
Class 2 75 6 63 87

Unweighted km of cables
Class 1 1860 354 1166 2554
Class 2 618 45 530 705

Unweighted km of network
Class 1 2345 403 1553 3137
Class 2 693 46 603 783

Delivery inland in MWh
Class 1 622306 85534 454440 790171
Class 2 308665 49903 210728 406602

Delivery to industry in MWh
Class 1 198341 27888 143610 253073
Class 2 84766 13213 58836 110697

Delivery to households in MWh
Class 1 165312 20786 124518 206105
Class 2 72113 6595 59170 85055

Table 2: Sample statistics of the two latent classes
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of quality index) lowers the probability of being in Class 1, which indicates that the

larger companies are characterized by higher quality standards, i.e electricity losses.18

A higher average investment per network length increases the probability of being in

the class of larger distributors. Thus, we conclude that larger companies on average

invest more per km network.

Considering the average investment separately, without relating it to the network

length, we obtain a negative sign indicating that the probability of being in Class 1

decreases. This would appear to contradict the previous result. However, the relation

to the capital input defined in our analysis by the length of the network indicates more

reliable results than considering it separately. The same argument applies to revenue,

included first as a separate variable and then in relation to the units delivered. We

argue that the revenue per unit delivered shows a more reliable picture; here we obtain

a negative coefficient.19 This empirical result is unexpected as it suggests that higher

revenue per unit electricity delivered decreases the probability of being in Class 1.

Smaller distribution operators therefore are characterized by higher revenues per units.

However we can argue that small local distributors (Stadtwerke) might be characterized

by a higher cross-subsidization.20

The latent class estimation provides empirical evidence that on the one hand we

have to consider different technologies for different classes. We can also explain the

classification of companies by observable characteristics that provide more sophisticated

information about the groups. These are important for correctly estimating the true

technology frontier for efficiency analysis.

4.3 Efficiency analysis

The sample statistics for the estimated efficiencies for the whole sample and for each

estimated class are shown in Table 3. The values lie between 0 and 1, with no company

showing full efficiency. The values of the efficiency vary from 0.647 to 0.978. The values

of the mean technical efficiency indices are relatively high: 0.91. The high average effi-

ciency is conform with the mean efficiency calcualted by the German regulator for the

German network operators. We observe a difference of the performance levels in the

latent classes (0.90 vs. 0.92). In our sample it appears that the smaller distribution

18This may also be explained with the higher voltage levels that seem to prevail in Class 1: electricity
losses are inversely related to voltage levels.

19The correlation of the four variables is very low (0.161 for average investment and investment
per network; -0.277 for average revenue and revenue per unit delivered); therefore we can explain the
different coefficients. This also ensures that we do not have any muti-collinearity problems including
all variables as explanatory factors.

20When we consider the average revenue separately it indicates that higher revenues are related to
larger operators.
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Class Number of observation Mean Std.dev Min Max

Latent class
model 1000 0.910 0.041 0.647 0.978

Latent class Class 1 535 0.9 0.002 0.647 0.978
model Class 2 465 0.921 0.001 0.791 0.967

Table 3: Descriptive statistics of efficiency estimates ordered by classes

Model 2 Statistically more
efficient class

Class 1 vs Class 2 can be
535 465 confirmed

observations observations 0.0001

Table 4: Kruskal-Wallis test

companies are operating under increasing returns to scale, but from a pure techni-

cal efficiency perspective show a higher performance compared to larger distributors.

This empirical evidence shows that accounting for the true frontier in each group is

important for the benchmarking process.21

The difference between the classes can be confirmed statistically by means of the

Kruskal-Wallis Test, testing the hypothesis that several samples are from the same

population. The results of the Kruskal-Wallis test are shown in Table 4. The p-value is

0.0001. These results indicate that we can reject the hypotheses of equal distribution.

This again leads us to conclude that when assuming different technologies by capturing

parameter heterogeneity in the econometric model we obtain more robust results for

the individual efficiency estimates. This is due to the fact that we can adapt better

the technology and therefore the production frontier to different classes of firms with

different characteristics.

21For comparison reasons we also estimated the true random effects model (see section 2.2). Within
this framework all companies are benchmarked against the same technology (apart from the tech-
nology neutral shift captured by the individual specific randomly distributed constant). For this
model specification we do not note any significant difference in the average efficiency in both classes.
From a descriptive perspective we observe that within the latent class model specification some of the
technological heterogeneity captured is labeled as inefficiency in the true random effects model. Ac-
counting for unobserved factors not only in the intercept (technological neutral shift) but in different
technologies and therefore frontiers produces other conclusions about firms’ performance.
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5 Conclusions

In this paper we analyzed the technical efficiency level for a sample of 200 German

electricity distribution companies subject to incentive regulation since January 2009.

The new regulatory instruments are based on benchmarking procedures to determine

the revenue caps of the individual companies. In the empirical application of bench-

marking, regulators and researchers are always faced with the problem of a high degree

of heterogeneity for environmental or network characteristics. Only some of this het-

erogeneity is observed and can therefore be accounted for in the econometric model.

Another part will be unobserved. These unobserved characteristics between firms, that

are not measured in the sample might influence the underlying production process.

Therefore, the problem becomes one of modeling unobserved heterogeneity.

Comparing the efficiency of different firms usually assumes that they operate un-

der the same production technology and therfore these unobserved factors might be

understood as inefficiency. To avoid such types of misspecifications we observe that in

regulatory practice estimation is often carried out in two stages. First, observations are

classified into several groups assuming a priori that they operate under different tech-

nologies. Then in a second step, separate analyses are conducted for each sub-group of

the sample. This paper shows how to disentangle the heterogeneity from inefficiency

in one step, using a latent class model for stochastic frontiers. Within this framework

the classification is not based on a priori sample separation criteria and therfore de-

livers more robust and statistical significant and testable results. In the latent class

model the unobserved firm-specific heterogeneity is accounted for by parameter het-

erogeneity, identifying different technologies for companies. We show that this model

will partially solve the unobserved heterogeneity problem in measuring the technical

efficiency. The empirical results suggest that our proposed model is able to account

for the fact that larger distributors operate under a different technology than smaller

companies and that different frontiers are necessary to obtain more robust and reliable

efficiency estimates. It represents a promising alternative to the traditional two step

procedures.

We find that the estimated Cobb-Douglas distance function is a reasonable fit to

the observed data and that the estimated input and output elasticities have the cor-

rect sign and magnitude for both classes. Determining the returns to scale we observe

that the latent class specification can differentiate between large and smaller distribu-

tion companies: in the latent class model the estimated coefficients indicate that the

larger distributors operate under constant returns to scale and the smaller firms under

increasing returns to scale.

In addition, we test the differences in inefficiency scores between the two classes
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via a Kruskal-Wallis test. The results underline the importance of modeling and esti-

mating two classes. The latent class model can be helpful in distinguishing unobserved

heterogeneity in technologies from inefficiency estimates. The results can be used as

an additional instrument to reduce the information asymmetry between the regulator

and regulated companies.
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- Center for Operations Research and Economics, Louvain-la-Neuve, Belgium.

Coelli, T. J. and Perelman, S. (2000). Technical efficiency of European railways: A

distance function approach. Applied Economics, 32(15):1967–76.

Corral, J. and Alvarez, A. (2008). Estimation of different technologies using a latent

class model. Working Paper, Universitiy of Oviedo, Economics Departement, Oviedo,

Spain.

Cullmann, A. and Hirschhausen, C. v. (2008a). Efficiency analysis of East European

electricity distribution in transition: legacy of the past? Journal of Productivity

Analysis, 29(2):155–167.

Cullmann, A. and Hirschhausen, C. v. (2008b). From transition to competition - dy-

namic efficiency analysis of Polish electricity distribution. Economics of Transition,

16(2):335–357.
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