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Abstract

Our market experiment investigates the extent to which traders learn

from the price, differentiating between situations where orders are sub-

mitted before versus after the price has realized. Whenmarket participants

have to submit their bids conditional on the price, they show a bias by re-

acting only to their private information and not to the hypothetical value of

the price. In a sequential trading mechanism, where the price is known at

the bid submission, bids react to price to an extent that is roughly consistent

with the benchmark theory.
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1 Introduction

Market prices reflect much information about an asset's fundamental value. The

extent towhich traders are able to utilize this information is difficult tomeasure as

one often lacks control of the traders' restrictions, beliefs and preferences. One

possibility to detect an incomplete degree of price inference is to modify the in-

formational environment in a way that is irrelevant for rational traders. If trading

reacts to a framing variation that is uninformative under rational expectations,

the latter assumption is questionable. An important dimension of variability be-

tween different markets lies in the conditionality of price. In simultaneous mar-

kets, the trading price is unknown to the traders at the timewhen theymake their

decisions--examples are financial markets with supply/demand function regimes,

or simultaneous auctions. Traders should certainly learn from the price, i.e. their

bids should optimally condition on it. But the price information is hypothetical

and traders may find it hard to make the correct inference in hypothetical condi-

tions. A host of evidence on Winner's Curse is consistent with this conjecture, as

is the psychological evidence on accessibility (Kahneman, 2003) and contingent

thinking (Evans, 2007).1 In contrast, sequential markets--e.g. many quote-based

markets and sequential auctions--have the traders know the price at which they

can complete their trades. Here, it may still be nontrivial to learn from the price

but the existing evidence renders it plausible that the price is more accessible in

a sequential trading mechanism than in a simultaneous one.

Our experiment focuses on markets with diverse information about a risky

common-value asset. To trade optimally, an investor considers two pieces of in-

formation: her private signal and the information conveyed by the asset price.

The latter is informative because it is influenced by the trading activity of another

market participant who has additional information about the asset value. To ma-

nipulate the accessibility of the price information, we perform the experiment in

simultaneous versus sequential versions. We implement the simultaneous trad-

ing game in two different treatments: first as a limit order market (treatment

LO), where participants receive a private signal and state their maximum will-

ingness to pay. If the price lies above the limit, the trader buys one unit of the

asset, otherwise she sells one unit. (In each treatment, we restrict the trades

to a single unit of supply or demand per trader.) At the time they make their

decisions, participants in treatment LO do not know the price but would opti-

mally take into account that each possible market price reveals some information

about the asset's value. Optimal learning from the price therefore softens the de-

mand's downward reaction to a higher price, relative to the case that the price is

1Experiments analyzing the Winner's Curse include, for example, Bazerman and Samuelson

(1983); Kagel and Levin (1986); Kagel, Levin, Battalio, and Meyer (1989). For a thorough review

on the Winner's Curse literature see Kagel and Levin (2009).
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uninformative. The same is true in the game's second simultaneous variant, the

price-list treatment (treatment PL): participants receive a list of possible prices

and state to each price whether they would buy or sell. Here, too, the informa-

tion included in the price would reduce a rational trader's demand elasticity, but

traders may fail to appreciate this because the price is hypothetical. In contrast,

in the sequential market (treatment S), the price is knownwhen the traders make

their decisions to buy or sell. Conditional thinking is not necessary here, and we

conjecture that this enables a more efficient use of the information contained in

the price. Despite the difference in informational conditions, treatments S and

PL are economically equivalent in that the traders can make their bids contingent

on the price: they have isomorphic strategy sets and isomorphic mappings from

strategies to payoffs.2 Section 2 presents the experimental design and Section 3

discusses behavioral hypotheses in detail.

The data analysis of Section 4 shows that the participants' ability to infer infor-

mation from the price varies substantially between simultaneous versus sequen-

tial market settings. In simultaneous settings, participants act as if they use their

private information only. Price seems to matter only in its direct influence on the

utility from trade as is indicated by a comparison between the groups of traders

who have uninformative versus informative prices. The analysis also shows that

the participants heavily rely on their own signals and even over-weight their sig-

nals' importance relative to the theoretical benchmark of risk-neutral Bayesian

traders; equivalently, they underweight the prior distribution of asset values. In

contrast, in the sequential treatment S, in which transaction prices are known

beforehand, asset demand is affected by the information contained in the price.

Estimating the strength of taking the information into account (Section 4.3) shows

that in the sequential treatment S both pieces of information receive about the

same decision weight.

Altogether, the experiment thereby provides evidence of an interaction be-

tween market microstructure and the efficiency of information usage. Expressed

in the language introduced by Eyster and Rabin (2005), we find that the degree

of `cursedness of beliefs' is higher when the information contained in the price is

less accessible: when a given price is not yet realized, traders behave as if they

ignore the connection between other traders' information and the price. Aggre-

gate demand therefore decreases too fastwith the price. Across the repetitions of

the games we also observe a differential tendency to learn between the different

treatments. Learning appears only in the sequential treatment and the difference

in trading activity between simultaneous and sequential treatments therefore in-

2Treatment LO differs from them by imposing that the buy/sell decisions are monotonic in

price. Therefore, the only `clean' sequential/simultaneous variation is that between treatment

S and treatment PL. Treatment LO is, however, important for the comparison with the case of

uninformed prices, as we will discuss in Section 2.
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creases over time.

The experimental literatures in economics and psychology provide several

sets of related evidence that inference is more complex in simultaneous formats

of interaction. Anticipating the informational content of each possible outcome

in a simultaneous trading setting involves a substantial amount of mental work.

Psychologists have confirmed quite generally that decision processes depend on

task complexity (Olshavsky, 1979). In more complex environments, participants

prefer approaches demanding less cognitive strain. They focus on one model,

one alternative or one relevant category (at a time) when reflecting about possi-

ble outcomes and their consequences (Evans, 2007;Murphy and Ross, 1994; Ross

andMurphy, 1996). They also process salient and concrete informationmore eas-

ily than abstract information (see e.g. Odean (1998) and the literature discussed

there). One possibility to reduce the complexity of learning or updating tasks is

to proceed in a sequential mechanism, like in quote-driven markets.3 Our exper-

iment suggests a specific manifestation of this effect, namely that drawing the

attention to the realized price may enable the decision maker to interpret more

easily the information underlying the price. In the related bilateral bargaining

experiment by Carrillo and Palfrey (2011), buyers also trade more rationally in a

sequential trading mechanism than in a simultaneous one. They processed infor-

mation more easily and exhibited less non-Nash behavior when facing a take-it-

or-leave-it price instead of bidding in a double auction. Similarly, auction experi-

ments find that overbidding is substantially reduced in dynamic English auctions

compared to sealed-bid auctions (Levin et al., 1996). Other contributions suggest

that traders may systematically disregard relevant information that is conveyed

by future, not yet realized events: overbidding decreases substantially as soon

as finding the optimal solution does not necessitate updating on future events

(Charness and Levin, 2009; Koch and Penczynski, 2014).4 Another related study

is the voting experiment of Esponda and Vespa (2014) who find that when the

voting rules follow a simultaneous game that requires hypothetical thinking, the

majority of participants behave nonstrategically, whereas in the sequential design

they are able to extract the relevant information from others' actions and behave

strategically.

We complement the described evidence on contingent thinking in strategic sit-

uations (bilateral bargaining games, auctions and strategic voting games) by ad-

dressing a financial market setting where markets clear exogenously. Our sole

3Shafir and Tversky (1992) note that participants see their preferences more clearly if they

focus on one specific outcome. As they observe, "[t]he presence of uncertainty [...] makes it diffi-

cult to focus sharply on any single branch [of a decision tree]; broadening the focus of attention

results in a loss of acuity" (p.457).
4Charness and Levin (2009) analyze theWinner's Curse in a takeover game, whereas Koch and

Penczynski (2014) focus on common-value auctions.
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focus is on the information contained in the price, which the traders may or may

not use rationally. The simple structure of the traders' decision problems also

helps us to straightforwardly assess whether the typical trader makes too much

or too little inference from the price.

2 Experimental Design

Our basic framework is identical across treatments. The experiment simulates

a market with a single risky asset and money. A market consists of two agents,

agent 1 and agent 2. Both agents either buy or sell one unit of the risky asset.5 The

asset is worth θ = θ or θ = θ, each occurring with equal probability. The agents

cannot observe the fundamental value θ but they each receive an informative

private signal si ∈ [0, 1] about it. The true value θ determines which of two

triangular densities the signal is drawn from, such that in the low-value state,

participants receive low signals with a higher probability, and vice versa:

f(si|θ) =

2(1 − si) if θ = θ

2si if θ = θ
i ∈ {1, 2} (1)

Conditional on θ, the signals of the two agents are independent.

Each agent i faces a separate transaction price pi. The price p1 for agent 1

is uniformly distributed between p and p and is uninformative about the funda-

mental value θ. Agent 1 observes his private signal s1 and states his maximum

willingness to pay by placing a limit order b1. If p1 lies weakly below b1, he buys

one unit of the asset. If p1 strictly exceeds b1, he sells one unit. His demand is

summarized by the function X1:

X1 =

+1 if p1 ≤ b1

−1 if p1 > b1
where p1 ∼ U(p, p) and (θ, θ) ⊂ (p, p) (2)

The task of agent 2 varies across treatments. We start by describing the two

treatments whose comparison lies at the core of interest, the simultaneous treat-

ment PL and the sequential treatment S.

2.1 Treatment PL

Agent 2 faces a list of possible price values p2 lying between p and p. To each of

these possible prices she states a decision, buy or sell. The sole payoff-relevant

5Because of a possible reluctance to sell short, we avoided any notion of short sales in the

experimental instructions. Participants were told that they already possess a portfolio that needs

to be adjusted by selling or buying one unit of a specific asset.
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decision is the one relating to the actual price p2, which she does not know at the

time of submitting her decisions. She only knows that p2 is a weighted average of

investor 1's limit order b1 and a noise term ε:

p2 = γb1 + (1 − γ)ε (3)

Due to its dependence on b1, p2 is influenced by agent 1's private signal s1 and

is therefore informative about the asset's fundamental value. Hence, agent 2 can

condition each of her decisions on two different sources of information, s2 and

p2.

2.2 Treatment S

In treatment S, agent 2 observes themarket price as specified in (3) beforemaking

her decision. The game proceeds sequentially, with agent 1 first choosing his limit

order b1 based on his private signal. As in the other treatments, his order b1 partly

determines the market price p2 for agent 2. Agent 2 observes the realized price

p2 in addition to her private signal s2 before choosing between buying and selling

at this price. Agent 2 makes only one decision.

2.3 Treatment LO

Treatment LO also prescribes simultaneous actions, like treatment PL, but asks for

a limit order also by agent 2 and hence has the same action space for both agents.

They each receive a private signal and simultaneously submit their limit orders

before their relevant transaction price realizes. The only difference between both

agents remains in the price: while agent 1 encounters an uninformative price p1,

the price p2 is again given by (3), i.e. is informative about θ.

The following table summarizes the treatments' different information condi-

tions and action spaces.

Table 1: Treatment variations

Simultaneous Sequential

Limit Order (LO) Price List (PL) (S)

Transaction price known - - X

Action space of agent 2 limit order b2 {buy, sell} ∀ p2 {buy, sell}
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2.4 Payoffs

In each of the treatments, the experimenter takes the other side of the market,

which therefore always clears. In case of a buy, the profit Πi of agent i ∈ {1, 2}
is the difference between the fundamental value and the market price, and vice

versa if the asset is sold:

Πi = (θ − pi)Xi (4)

with Xi =

+1 if i buys

−1 else
(5)

Note that treatment LO cannot be directly compared with treatment S. By

placing a limit order, participants in treatment LO are constrained to monotonic

strategies: they buy at low prices and sell at higher prices. Participants of treat-

ment S, however, may sell at high prices, buy at medium-valued prices and sell

again when the price is too low. Decisions of treatment S are therefore best com-

pared with treatment PL that also allows for non-monotonic strategies. Notice

also that the strategy spaces are isomorphic between treatments PL and S, speci-

fying a buy/sell decision for each p2, and that the payoffs arising from each combi-

nation of strategies and signals are identical between treatments PL and S. Under

any rational response to a fixed belief about agent 1, the traders's decision should

lead to the same purchases and sales in these two treatments.

3 Predictions

We compare the participants' behavior to two theoretical predictions. The first

benchmark is the case where agent 2 has rational expectations and properly up-

dates on her complete information set. As a second benchmark, we focus on a

special form of bounded rationality, namely the case where agent 2 fully neglects

the price's informativeness. In both cases, we assume the agents to be risk neu-

tral.

3.1 Bayes (Nash) Best Response

Agent 1 has only his private signal s1 to condition his bid upon. His optimal limit

order b∗
1 maximizes the expected profit conditional on s1 and it is easy to show

(using the demand function (2)) that b∗
1 increases linearly in the signal:

b∗
1(s1) = arg max

b1
E[(θ − p1)X1|s1] (6)

= E[θ|s1] = θ + (θ − θ)s1 (7)
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Under rational expectations about agent 1's strategy, agent 2 maximizes her

expected payoff conditioning on both her private signal s2 and the informative

market price p2. Her maximization problem leads to the following fixed point

solution:

b∗
2(s2, p2) = arg max

b2
E[(θ − p2)X2|s2, p2] (8)

= E[θ|s2, p2 = b2] (9)

The optimal bidding behavior of agent 2 typically follows--for a wide range

of signals--a cutoff-strategy that switches from buying to selling as the price in-

creases.6 The cutoff b∗
2 corresponds to the market price that makes her indiffer-

ent between a buy and a sell, given both her private signal and the market price.

Agent 2's optimal strategy does not linearly increase in s2: since both signals s1
and s2 are drawn from the same conditional distribution, the correlation between

the market price p2 and the signal s1 causes agent 2 to react more aggressively

to her own signal. A low market price indicates that a low asset value is likely,

inducing agent 2 to sell at a lower price than agent 1 (holding their private signals

constant). Analogously, the expected value of the asset given both a high signal

and a high price exceeds the expectation conditional on only a high signal. The

theoretical Bayes Nash (BN) bid thus follows agent 1's own signal in an S-shaped

way. Agent 1 reacts strongly to his signal and therefore reacts to price changes

with a relatively low probability.

However, the theoretical BN best response is not the only relevant 'rational'

benchmark. In the experiment, participants in the role of agent 1 plausibly devi-

ate from their theoretical best response b∗
1 and participants in group 2 would op-

timally adjust to the actual behavior of group 1. We therefore also consider the

empirical best response (EBR) to the participants acting as agents 1. The compu-

tation of the empirical best response is similar to the fixed point computation of

the theoretical BN best response, with the only difference being that it is based

on the observed bidding behavior of agent 1, and computed via a numerical ap-

proximation to the fixed point.

Both benchmarks BN and EBR are depicted in Figure 1, for the parameters of

the actual experiment that are reported in Section 4.

3.2 Best Response to Naive Beliefs

In contrast to optimal behavior, an agent 2 with naive expectations does not infer

any information from the price. She fails to account for the connection between

6For a set of relatively uninformative signals around 0.5, the expected fundamental value co-

varies tightly with the price, such that multiple fixed points may exist and the best response may

not be a monotonic strategy.

8



agent 1's signal s1 and his action b1, instead she conditions her choice on her

private signal s2 only. Thus, the maximization problem with naive beliefs is anal-

ogous to that of agent 1 and leads to the same optimal bidding:

bN
2 = arg max

b2
E[(θ − p2)X2|s2] (10)

= E[θ|s2] = θ + (θ − θ)s2 (11)

The naive strategy is depicted as the straight line in Figure 1. Its underly-

ing naive belief can be viewed as stemming from level-k reasoning or from fully

cursed beliefs (Eyster and Rabin, 2005). In the level-k framework (for a formula-

tion with private information, see e.g. Crawford and Iriberri (2007)) level-0 play-

ers are naturally defined as bidders who ignore their incentives and randomize

bids between θ and θ. If so, an agent 2 with naive beliefs would be equivalent to

a level-1 agent who assumes playing against a level-0 opponent. In the current

setting, this also coincides with a `fully cursed' strategy (Eyster and Rabin, 2005):

fully cursed agents believe that other agents play a constant average strategy re-

gardless their information.7

The cursed equilibrium model allows for intermediary levels of cursedness:

subjects may not fully, but only partially ignore the information revealed by other

agents' actions. Our analysis of Subsection 4.3 is analogous to this in that it allows

for milder versions of information neglect.

3.3 Hypotheses

As outlined in the Introduction, we conjecture that the updating on additional

market information is more difficult in the simultaneous than in the sequential

treatment. Using the benchmarks from the previous subsection, we translate

this into a behavioral hypothesis:

Hypothesis 1 Naive bidding is more prevalent in treatment PL than in treatment

S.

In our secondhypothesis, we compare the two simultaneous treatments. Given

that both the naive best response and the empirical best response are mono-

tonic, we expect most subjects to follow a monotonic strategy. Modifying the

action space from a continuous strategy to a discrete (and therefore possibly non-

monotonic) order schedule should not significantly affect the results.

7More precisely, assume that agent 2 disregards the possibility that agent 1 bids a dominated

value, i.e. she believes that he never bids outside of [θ, θ], and otherwise her belief is fully cursed:
she believes that agent 1 bids according to (7) such that themixture of bids corresponds to bidding

the prior expectation b̄1 =
∫

b∗(s1)f(s1) ds1 = E[θ].
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Figure 1: Naive, Bayes Nash and empirical best responses.

Hypothesis 2 On average, bidding behavior is identical between treatments PL

and LO.

The final hypothesis considers the possibility that all participants acting as

agent 2 have naive beliefs. In this case, we would not observe any systematic

difference between agent 2's bids and those of agent 1 who observes private in-

formation only. We can therefore use the bidding behavior of agent 1 as an empir-

ical benchmark for naive agents 2. For this comparison, we restrict to treatment

LO, where both agents have identical action sets.

Hypothesis 3 In treatment LO, bids of participants acting as agent 2 do not sig-

nificantly differ from bids of participants acting as agent 1.

4 Experimental Procedures and Results

4.1 Procedures

The computerized experiment is conducted at Technical University Berlin, using

the software z-Tree (Fischbacher, 2007). A total of 186 students are recruited

with the laboratory's ORSEE database (Greiner, 2004). 62 participants are in each

of the treatments PL, S and LO, each with three sessions of 20 or 22 partici-

pants. Within each session, the participants are divided into two equally sized

groups, the pools of agents 1 and agents 2. Participants remain in the same group

throughout the session and repeat the game for 20 periods. At the beginning of
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each period, participants of group 1 and 2 are uniform-randomly matched into

pairs and the game commences with Nature's draw of θ, followed by the remain-

der of each game as described in Section 2. At the end of each period, participants

learn the value θ, their own transaction price (if not already known) and their own
profit. Upon conclusion of the 20 periods, a uniform randomdraw determines for

every participant one of the 20 periods to be paid out for real.

For a complete understanding of the experiment, participants read the instruc-

tions for both groups before learning which group they are assigned to. The in-

structions include a computer-based simulation of the signal structure as well as

an understanding test.8

The games' parameters have the following values in the experiment, where

units of experimental currency are converted to money by a factor of EUR 0.07

per unit:9

θ = 40 θ = 220
p = 30 p = 280
γ = 0.7

Each session lasted approximately 90 minutes and students earned on aver-

age 25.56 Euros. Total earnings consist of a show-up fee of 5 Euros, an endow-

ment of EUR 17.00 and profits from the randomly drawn period (which could be

negative but cannot deplete the entire endowment).

4.2 Descriptive Statistics

4.2.1 Behavior of Agent 1: Mild Over-Reaction to Signal

Figure 2 shows the limit orders of participants acting as agent 1, with their cor-

responding private signal on the horizontal axis. The figure also includes the the-

oretical prediction (thick black line) and the results of quartile regressions. The

figure shows that the median bids increase slightly but significantly faster in the

signal than is predicted by the benchmark theory: agent 1 bids, on average, more

aggressively than predicted. For our analysis, this implies that the empirical best

response (EBR) of agent 2 differs from the theoretical Bayes Nash best response

of agent 2: EBR is closer to the naive prediction. This leaves somewhat less room

for identifying a deviation of agent 2 in the direction of naive bids. But as the next

subsections show, such identification is still possible.

8Instructions can be provided upon request.
9The range for the limit order and the price [30; 280] is chosen asymmetrically around 40 and

220 in order to make the strategy of always choosing the mean 130 (= 1
2 · (40+220)) less salient.
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Figure 2: Quantile regression of bids in group 1.

4.2.2 Behavior of Agent 2: Differences between Treatments PL and S.

This subsection examines descriptive statistics regarding Hypothesis 1. The hy-

pothesis implies a tendency of low prices to induce more sell decisions in treat-

ment S than treatment PL, and of high prices to inducemore buys. Altogether, the

hypothesis predicts a more linear relationship between signals and reservation

prices in treatment PL than in treatment S. For data summaries that are relevant

for Hypotheses 2 and 3, we refer to the following subsections.

Figures 3 and 4 depict transaction prices and signals in treatments PL and

S, respectively. For each price-signal observation, a black marker indicates a buy,

whereas a white marker indicates a sell. In treatment PL, acquisitions and sales

separate clearly between the upper-left and lower-right portions of the figure.

In contrast, the data from treatment S show a more blended set of decisions.

As predicted by Hypothesis 1, treatment S induces more buys at high prices and

more sales at low prices. The separation between black versus white markers is

more blurred but appears to be steeper, as predicted by Hypothesis 1. At least on

average, participants account more for the realized price in treatment S.

We now quantify the effect and also `zoom in' on interesting cases: we con-

sider whether information contained in the price is especially important in sit-

uations where the participants' own signal is relatively uninformative. In these

cases, Hypothesis 1 should be especially relevant. Table 2 reports the shares of

12
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Figure 4: Sells vs. buys in treatment S.

13



buys and sells for all observations, and separately for observations where the sig-

nal lies in [0.4, 0.6].10 To account for the symmetry of buys and sells, the table

separates the data according to whether the price lies below (left panel) or above

(right panel) its theoretical expectation of 137.5.11

Table 2: Share of buys at high and low pricesa

p2 ≤ 137.5 p2 > 137.5

All signals [0.4 - 0.6] All signals [0.4 - 0.6]

Treatment S .4477 .5072 .6341 .6102
(.038) (.063) (.038) (.076)

Treatment PL .5029 .6957 .35 .0847
(.031) (.069) (.029) (.038)

Difference −.0552 −.1885∗ .2841∗∗∗ .5255∗∗∗

Note:∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01. Participant-clustered standard errors in parentheses.

a
Shares of buys are computed with respect to the market price of treatment S: the share in

treatment PL represents the participants' hypothetical choices that would come about if the

set ofmarket prices of treatment S (rounded to the nearest ten)were also realized in treatment

PL. See table A3 and A4 in appendix A for a comparison with actual treatment prices.

As the table shows, observing a low price induces participants to sell only

mildly more in treatment S than in treatment PL (55% versus 50%, see the first

column). The treatment effect is much stronger, however, when prices are high:

participants of treatment S show a much stronger tendency to buy if p2 > 137.5.
The choice ratios even reverse between the treatments: 0.37/0.63 in treatment

S versus 0.65/0.35 in treatment PL. As expected, the difference between both

treatments increases when narrowing the focus to relatively uninformative sig-

nals between 0.4 and 0.6. In these cases, participants buy at high prices with far

higher frequency in treatment S than in treatment PL, 0.61 compared to 0.08.12
Table 3 narrows the focus to cases where the price contains information that

goes against the agent's signal. In these cases, the treatment difference is also

highly significant. In treatment S, we observe a share of 0.29 buys, among all

decisions with a high price but with an own signal below 0.5. In treatment PL this

share is much lower, at a mere 0.03. Once again, this pattern of acting against

10Tables A3 and A4 in Appendix A contain a data split with a larger number of categories.
11E[p2] = 0.7E[b1] + 0.3E[ε] = 137.5 holds if agent 1 chooses his risk-neutral strategy b∗

1.
12Median earnings in treatment S are about 10 percent higher than in the simultaneous treat-

ments (see table A6 in the Appendix).
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Table 3: Acting against one's own signala

p2 ≤ 137.5 p2 > 137.5
s2 > .5 s2 ≤ .5

TMT S (Seq.) .8043 .2870

(.041) (.060)

TMT PL (Sim.) .9118 .0364

(.024) (.017)

Difference -.1075∗∗ .2506∗∗∗

Note: ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01. Participant-clustered standard errors in parentheses.

a
Share of buys is computed with respect to the market price of the treatment S (see note of

Table 2).

one's own signal suggests that participants learn from the price only in treatment

S. In the table's left column, we observe the analogous pattern for low prices

and high own signals: in treatment S there is a substantially larger proportion of

participants following the price (0.20 versus 0.09).

4.3 Testing Hypotheses

Hypothesis 1. To evaluate the degree of `cursedness', we focus on those areas of

Figures 3 and 4 where naive and optimal strategies make different predictions.

Within this area, we measure the proportion η of naive decisions:

η = bN

bN + bB

(12)

where bN and bB denote the number of orders consistent with naive and EBR

predictions, respectively.

Figures 5 and 6 show the relevant observations in treatment PL and treat-

ment S, respectively. For these observations, naive expectations induce buys for

signals below 0.5 and sells for signals above 0.5, while Bayesian expectations in-

duce opposite actions. The empiricalmeasures bN and bB correspond to the num-

ber of trianglemarkers and crossmarkers, respectively. Hypothesis 1 corresponds

to the prediction that the proportion of naive choices is larger in treatment PL

than in treatment S: ηP L > ηS .

Table 4 shows that the simultaneous treatments LO and PL show equally high

proportions of naive decisions, at 0.42 of the relevant observations. In treatment

S, this share is substantially reduced to 0.16. The difference between the PL and

S treatments is significant (p < 0.001, Wald test).
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Figure 5: Sells and buys within the relevant area in treatment PL.
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Figure 6: Sells and buys within the relevant area in treatment S.
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In Appendix A, we also consider the evolution of decisions in the course of

the experiment. Although behavior is relatively stable over the 20 repetitions, we

observe that learning success is better in treatment S than in treatments PL and

LO. If anything, the trading decisions become less rational in the two simultaneous

treatments.

Table 4: Proportion of naive decisions

LO PL S

η .4224 .4231 .1553

(.0606) (.0691) (.0389)

N 116 104 103

Note: CRSE in parentheses.

Table 5: Share of buys for varying price/signal areas

Treatment p2 ≤ 137.5 p2 > 137.5

s2 ≤ 0.5 s2 > 0.5 s2 ≤ 0.5 s2 > 0.5
LO .2686 .9603 .0344 .5454

(.037) (.023) (.015) (.052)

PL .2112 .8705 .0384 .5609

(.040) (.030) (.018) (.051)

Difference .0574 .0898∗∗ -.004 -.0155

Note: ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.

Hypothesis 2. The hypothesis compares the simultaneous treatments LO and

PL. Their equal proportions of naive decisions (Table 4) already suggests that bid-

ding is very similar in the two treatments. A direct comparison between partici-

pants is, however, hampered by the fact that the strategy spaces differ between

the two treatments. For a primary comparison, we neglect the different strat-

egy spaces and compare the overall buy/sell frequencies. As a second step, we

examinewhether the two treatments induce differences inmonotonic strategies.

To compare the overall buy/sell frequencies behavior, we report in Table 5 the

shares of buys for four different areas of prices and signals. Shares of buys are

roughly the same in all areas, and the differences are insignificant in all but one

area: for low prices and high signals the amount of buys differs by 9 percentage
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Figure 7: Expected bids in treatments PL and LO.

points. However, this difference is not driven by non-monotonic strategies of par-

ticipants in treatment PL. In 89% of cases, participants in treatment PL exhibit a

unique switching point that separates their buys and sells. These strategies corre-

spond to monotonic cutoff strategies and we can directly compare themwith the

data from treatment LO.13 When confining the analysis to monotonic strategies,

a significant difference of 7 percentage points remains in the relevant price-signal

region. Yet, this difference is not reflected in the average bidding functions. Fig-

ure 7 shows the result of two 3rd-order polynomial regressions, one for each of

treatments PL and LO. The estimated bidding curves are very close, except for ex-

treme values of the signal, near 0 or 1. The differences are mainly driven by the

larger amount of dominated choices observed in treatment LO, where 20.5% of

all limit orders lie strictly below 40 or strictly above 220 (compared to 0.6% of the

monotonic strategies in treatment PL). The two bidding curves do not statistically

differ (see Table A1 in Appendix A for a more detailed comparison).

Hypothesis 3. Hypothesis 3 compares the limit orders of agent 1 and agent 2

in treatment LO, where the actions sets are identical between the two agents.

The two polynomial regressions reported in Figure 8 reveal that average bid

functions of both agents do not differ significantly. For details of the comparison,

13A furtherminor difference is that the inferred cutoff values in treatment PL lie on a grid, where

the limit orders in treatment LO were unrestricted within [p, p]. We interpolate the responses

from treatment PL: e.g. if a participant buys up to p2 = 70 and sells for p2 ≥ 80, we take 75 as

the cutoff.
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Figure 8: Bids in groups 1 and 2 in treatment LO.

see Table A2 in appendix A.

Summarizing the evidence on Hypotheses 2 and 3, we find that in the simul-

taneous treatments the participants acting in the role of agent 2 behave in a way

that cannot be distinguished from participants acting in the role of agent 1: de-

spite the fact that the price carries information about the fundamental value, they

behave as if they only take account of their private signals. The following subsec-

tion further examines this finding, by quantifying the reaction to each piece of

information via a random utility model.

4.4 Random Utility Model

We assume the participant-specific buying probability of agent 2 to follow a lo-

gistic distribution but allow for an over-weighted or under-weighted relevance of

the available pieces of information:

P (Xi = +1|ui, s2, p2) = eλ(Ê[θ|s2,p2]−p2+ui)

1 + eλ(Ê[θ|s2,p2]−p2+ui)
(13)

with

Ê[θ|s2, p2] = 40 + 180 · P̂ (θ = 220|s2, p2) (14)

P̂ (θ = 220|s2, p2) = [1 + LR(s2)−β · LR(p2)−α]−1 (15)
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The choice probability (13) depends on subjective expected payoff, which in

our case is the difference between a subjective belief Ê[θ|s2, p2] and the market

price p2. λ is the logistic precision parameter and ui is participant i's random util-

ity shifter, which we assume as i.i.d. normally distributed with mean 0 and vari-

anceσ2
u. To allow for irrationalweighting of information, P̂ (θ = 220|s2, p2) repre-

sents the subjective posterior probability of the event that θ = 220, given (s2, p2).
This posterior probability depends on the likelihood ratio of the signal, LR(s2) ≡
P (θ=220|s2)
P (θ=40|s2) , and on the likelihood ratio of the price LR(p2) ≡ P (θ=220|p2)

P (θ=40|p2) . β and

α are the potentially irrational weights that the participant assigns to the signal's

and the price's informational content, respectively. A participant with naive be-

liefs (a `fully cursed' participant) would correctly weight the signal, β = 1, but
would ignore the information in the price,α = 0. An intermediary level of cursed-

ness translates into α lying between zero and one. A rational trader, on the other

hand, would correctly weight the signal and the price, β = α = 1. The model

also allows for an over-weighting of the signal or the price, captured by the case

that either β or α are greater than one.

Table 6: Results of MSL estimation

Treatment PL Treatment S

β 1.927 1.374

(0.96) (0.55)

α 0.441∗ 1.879∗∗

(0.43) (0.41)

λ 0.0391∗∗ 0.0393∗∗∗

(0.012) (0.011)

σu 0.011 0.048

N 620 620

Note: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗

p < 0.001. Std. Err. in parentheses. Hy-

pothesis testing for β and α refers to one-

sided tests of deviations from 1.

We estimate the model via Maximum Simulated Likelihood (MSL). To arrive

at LR(p2), we estimate the distributions P (p2|θ = 220) and P (p2|θ = 40) via
kernel density estimation and infer

P (θ=220|p2)
P (θ=40|p2) for each p2 in the data set.

The estimates are reported in Table 6 and confirm the findings of the pre-

vious subsections. In treatment PL, the estimated α-coefficient of 0.44 lies sig-
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nificantly below the optimal value 1, suggesting that participants in group 2 pay

too little attention to the price's informativeness. Instead, they over-weight their

private signals (β̂ = 1.93). In treatment S, the perceived levels of informative-

ness of signal relative to price are reversed: this treatment induces a significant

over-weighting of the price's likelihood ratio (α̂ = 1.87).14 The importance of the

private signal decreases from 1.93 to 1.37 between treatments PL and S. Both β
estimates do not significantly differ from 1.

5 Conclusion

How well traders are able to extract information in markets may depend on the

markets' designs over and above `rational' reasons. Although different but iso-

morphic trading mechanisms should entail the same outcomes, decisions may

vary. Our experiments provide an example where a specific subset of inferences

areweak: traders in simultaneousmarkets, where optimal trading requires Bayesian

updating on hypothetical outcomes, do not account for the price's informative-

ness. They therefore neglect information revealed by others' investments. How-

ever, when the reasoning is simplified to updating on a single realized event, such

`cursedness' is mitigated. Traders are thus more likely to detect covert informa-

tion while focusing on a single outcome. The degree of inference and conse-

quently the quality of informational efficiency interact with market design.

14This relates to Levin et al. (1996)'s finding that participants in the English auction put relatively

more weight on the latest drop-out prices compared to their own signal.
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A Appendix

A.1 Regression Results

Table A1: Pooled regression with group 2 of treatments LO and PL.

Coeff. SE

si −156.4∗∗ (53.75)

s2
i 846.3∗∗∗ (145.3)

s3
i −526.8∗∗∗ (98.76)

si · LO 17.45 (84.84)

s2
i · LO -26.75 (229.4)

s3
i · LO 25.13 (152.9)

LO -4.037 (5.493)

_cons 50.55∗∗∗ (3.569)

N 1169

σu 13.57

σε 32.22

ρ 0.151

Note: Robust standard errors statistics in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
The dummy variable LO takes the value 1 for treatment

LO. The Wald test of the joint hypothesis that LO and all

its interaction terms have zero coefficients results in a p-

value of 0.5087.
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Table A2: Pooled regression for treatment LO.

Coeff. SE

si -79.04 (52.19)

s2
i 688.1∗∗∗ (137.5)

s3
i −418.2∗∗∗ (92.20)

si ∗ A2 -59.91 (83.86)

s2
i ∗ A2 131.5 (224.5)

s3
i ∗ A2 -83.51 (148.7)

A2 5.275 (5.522)

_cons 41.22∗∗∗ (3.620)

N 1240

σu 13.48

σε 32.56

ρ 0.146

Note: Robust standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
A2 is a dummy variable for agent 2. The Wald

test of the joint hypothesis that A2 and all its in-

teraction terms have zero coefficients results in

a p-value of 0.8517.
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A.2 Descriptive Statistics

Table A3: Share of buys at low prices for varying signal intervals

Treatment All signals [0 - 0.2] [0.2 - 0.4] [0.4 - 0.6] [0.6 - 0.8] [0.8 - 1]

S (Seq.) .4477 .1613 .1549 .5072 .8 .8824

(.038) (.061) (.050) (.063) (.057) (.036)

PL (Sim.) .5029 .1196 .1571 .6957 .9492 .9

(.031) (.035) (.042) (.069) (.029) (.047)

PL (Sim.) .4716 .1042 .1528 .6087 .8676 .9362

(treatment prices) (.035) (.042) (.039) (.076) (.037) (.034)

Hypothetical difference -.0552 .0417 -.0022 -.1885∗ -.1492∗ -.0176

Actual difference -.0239 .0571 .0021 -.1015 -.0676 -.0538

Note: CRSE in parentheses. Share of buys is computedwith respect to themarket price of the sequential treatment,

unless treatment prices is denoted in parentheses. In the latter case, we use the transaction prices that occurred

in the specific treatment. The actual difference refers to the difference between the shares computed with actual

transaction prices, whereas hypothetical difference is obtainedwith prices of treatment S for both treatment shares.

Table A4: Share of buys at high prices for varying signal intervals

Treatment All signals [0 - 0.2] [0.2 - 0.4] [0.4 - 0.6] [0.6 - 0.8] [0.8 - 1]

S (Seq.) .6341 .0333 .2391 .6102 .8919 .9104

(.038) (.032) (.069) (.076) (.037) (.049)

PL (Sim.) .35 0 .0213 .0847 .4933 .8088

(.029) (.) (.021) (.038) (.060) (.046)

PL (Sim.) .3582 0 .0222 .1186 .5455 .7324

(treatment prices) (.039) (.) (.021) (.048) (.075) (.064)

Hypothetical difference .2841∗∗∗ .0333 .2178∗∗ .5255∗∗∗ .3986∗∗∗ .1016

Actual difference .2759∗∗∗ .0333 .2169∗∗ .4916∗∗∗ .3464∗∗∗ .178∗

Note: CRSE in parentheses. Share of buys is computedwith respect to themarket price of the sequential treatment,

unless treatment prices is denoted in parentheses. In the latter case, we use the transaction prices that occurred

in the specific treatment. The actual difference refers to the difference between the shares computed with actual

transaction prices, whereas hypothetical difference is obtainedwith prices of treatment S for both treatment shares.
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Table A5: Acting against one's own signal (treatment

prices)a

p2 ≤ 137.5 p2 > 137.5
s2 > .5 s2 ≤ .5

TMT S (Seq.) .8043 .2870

(.041) (.060)

TMT PL (Sim.) .8705 .0392

(.030) (.019)

Difference -.0662 .2478∗∗∗

Note: ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01. CRSE in parentheses.

a
Share of buys is computed with respect to the transaction

prices in the relevant treatment.

Table A6: Profits of participants in group 2

TMT LO (Sim.) TMT PL (Sim.) TMT S (Seq.)

Mean 33.62 31.89 29.67

Median 34.85 35 39.65

Standard dev. 72.84 75.15 76.12

Note: The mean in treatment S is considerably lower than the median due

to some outliers: a steeper bidding curve in treatment S entails small proba-

bilities of severe losses.
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A.3 Individual Behavior

Similar to Carrillo and Palfrey (2011), we classify participants into different cate-

gories to ensure that the results are not mainly driven by few participants. We

define participants as Bayesian or naive if the number of decisions consistentwith

the one or the other prediction surpasses a specific threshold. For a participant to

be classified, the threshold criterion must apply to the number of decisions both

in- and outside the area where the two predictions differ (henceforth, the rele-

vant area). To thosewho are classified neither as Bayesian nor as naive belong, on

the one hand, those who do not clearly favor naive over Bayesian decisions and

vice versa, but also those whose decisions are often not consistent neither with

the best response nor with the naive model. For instance, participants who over-

weight the price's relatively to the signal's informativeness may sell at low prices

and high signals, although in that case both models predict a buy. We consider

three different thresholds: 65%, 75% and 80%.

Table A7: Classification of participants in group 2

Threshold LO (Sim.) PL (Sim.) S (Seq.)

65% naive 11 10 1

Bayesian 12 19 26

neither...nor... 8 2 4

75% naive 8 5 1

Bayesian 10 14 19

neither...nor... 13 12 11

80% naive 6 5 1

Bayesian 9 11 17

neither...nor... 16 15 13

N 31 31 31

All treatments display more Bayesian than naive participants, but the relative

majority of Bayesian participants increaseswhen comparing LOwith PL, andwhen

comparing PL with S (see Table A7). Thus, the higher share of Bayesian decisions

in treatment S is mirrored by an increased fraction of Bayesian subjects in this

treatment.
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A.4 Learning

To investigate whether participants learn over time, we divide the observations

into two time subsections: an early time interval for the rounds one to ten and a

late interval for later rounds.

Participants in the simultaneous treatments LO and PL do not show differ-

ences in behavior over time. However, participants of treatment S improve their

average bidding behavior towards the empirical best response in the last ten

rounds. This improvement is significant if we include all decisions in the analy-

sis. The corresponding Wald test rejects identical parameters in the 3rd-degree

polynomial random effects regression with a p-value of 0.0747. The correspond-
ing regression results are depicted in Figure 9. In this sense, the sequential variant

of the game enables the participants to learn about the other agents' private in-

formation. In the subset of price-signal realizations where naive and Bayesian

predictions differ, the proportion of naive decisions does not change significantly

over time in any of the individual treatments, as shown in Table A8. However, the

table shows that in the sequential treatment, participants decide more rationally

over time whereas they decide less rationally in the other two treatments. This

difference in differences is significant: bootstrapping a distribution under zero

difference in differences yields a p-value of 0.01 for the divergence of −20.22
percentage points between treatments PL and S. Analogously, the difference be-

tween treatments LO and S is significant with a bootstrap p-value of 0.06.

Table A8: Proportion of naive decisions

LO PL S

First 10 .3774 (.073) .3654 (.074) .2 (.071)

Last 10 .4603 (.074) .4808 (.087) .1132 (.046)

Difference -.0830 -.1154 .0868

N 116 104 103

Note: CRSE in parentheses.
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Figure 9: Polynomial regression for early and late rounds for the treatments LO,

PL and S, respectively.
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