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Abstract. We propose a new bootstrap for inference for impulse responses
in structural vector autoregressive models identified with an external proxy
variable. Simulations show that the new bootstrap provides confidence inter-
vals for impulse responses which often have more precise coverage than and
similar length as the competing moving-block bootstrap intervals. An em-
pirical example shows how the new bootstrap can be applied in the context
of identifying monetary policy shocks.

Key Words: Bootstrap inference, structural vector autoregression, impulse
responses, instrumental variable

JEL classification: C32

1The authors thank Carsten Jentsch for helpful comments on an earlier version of the
paper.

1



1 Introduction

In structural vector autoregressive (VAR) analysis one strand of the liter-
ature uses external instruments, also called proxies, to identify shocks of
interest (e.g., Stock and Watson (2012), Mertens and Ravn (2013), Piffer
and Podstawski (2018), Kilian and Lütkepohl (2017, Chapter 15)). The re-
lated models and methods are often abbreviated as proxy VARs. In this
context, frequentist inference for impulse responses is typically based on
bootstrap methods. In some of the literature, wild bootstraps (WB) are
used (e.g., Mertens and Ravn (2013), Gertler and Karadi (2015), Carriero,
Mumtaz, Theodoridis and Theophilopoulou (2015)). However, based on work
by Brüggemann, Jentsch and Trenkler (2016), Jentsch and Lunsford (2019)
show that wild bootstrap methods are not asymptotically valid in this context
and they propose a moving-block bootstrap (MBB) which provides asymp-
totically correct confidence intervals for impulse responses under very gen-
eral conditions. It can cope, for example, with conditional heteroskedastic
(ARCH) VAR errors which is an advantage in many applied studies where
financial data are of interest. On the other hand, Lütkepohl and Schlaak
(2019) demonstrate by simulations that the MBB can result in confidence
intervals with low coverage rates in small samples.

In this study, we propose an alternative bootstrap method for proxy VARs
which is based on resampling not only the VAR residuals but also the residu-
als of a model for the proxy and is therefore signified as RBB (residual-based
bootstrap). We show by simulation that it leads to quite precise confidence
intervals for impulse responses in small samples which makes it attractive
for macroeconomic analysis where often smaller samples with less than 200
observations are available only. In contrast to the MBB, it cannot cope with
ARCH features in the data and it is based on a specific assumption on the
generation mechanism of the proxy variable. Its advantage is, however, that
it yields more precise inference in small samples.

The remainder of the paper is structured as follows. The proxy VAR
model is presented in the next section. Estimation of proxy VAR models is
considered in Section 3. The alternative bootstrap methods considered in this
study are presented in Section 4 and a small sample Monte Carlo comparison
of the bootstraps is discussed in Section 5. An illustrative example is given
in Section 6 and conclusions are provided in Section 7.
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2 The Proxy VAR Model

A K-dimensional reduced-form VAR process,

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut, (2.1)

is considered. Here ν is a (K × 1) constant term and the Ai, i = 1, . . . , p,
are (K × K) slope coefficient matrices. The reduced-form error, ut, is a
zero mean white noise process with covariance matrix Σu, i.e., ut ∼ (0,Σu).
The vector of structural errors, wt = (w1t, . . . , wKt)

′, is such that ut = Bwt,
where B is the nonsinguar (K × K) matrix of impact effects of the shocks
on the observed variables yt. Thus, wt ∼ (0,Σw = B−1ΣuB

−1′), where Σw is
a diagonal matrix.

If the first column, say b, of B is known, the structural impulse responses
of the first shock, θi = (θ11,i, . . . , θK1,i)

′, can be computed as

θi = (θ11,i, . . . , θK1,i)
′ = Φib, i = 1, . . . , H,

where the (K ×K) matrices Φi =
∑i

j=1 Φi−jAj can be obtained recursively
from the VAR slope coefficients using Φ0 = IK (e.g., Lütkepohl (2005, Chap-
ter 2)). In the following, the (K × (H + 1)) matrix of impulse responses,

Θ(H) = [θ0,θ1, . . . ,θH ] = [b,Φ1b, . . . ,ΦHb], (2.2)

is of interest. It is assumed that the first shock increases the first variable by
one unit on impact. In other words, the first component of b = θ0 is assumed
to be 1.

If b, Σu and the reduced-form errors are given, the first structural shock
can be obtained as

w1t = b′Σ−1u ut/b
′Σ−1u b (2.3)

(see Stock and Watson (2018, Footnote 6, p. 933)).
Suppose there is an instrumental variable zt satisfying

E(w1tzt) = c 6= 0 (relevance), (2.4)

E(wktzt) = 0, k = 2, . . . , K, (exogeneity). (2.5)

These conditions imply that

E(ztut) = BE(ztwt) = cb.

In other words, the proxy zt identifies a multiple of b.
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In line with some of the proxy VAR literature, the proxy zt is assumed
to be generated as

zt = Dt(φw1t + ηt), (2.6)

where Dt is a random 0-1 variable which determines the number of nonzero
values of the proxy. It is assumed to have a Bernoulli distribution, B(d),
with parameter d, 0 < d ≤ 1, and captures the fact that many proxies are
measured only at certain announcement days or when special events occur
(see, e.g., Jentsch and Lunsford (2019)). It is assumed to be stochastically
independent of w1t and the error term ηt which is thought of as represent-
ing measurement error. This error term is assumed to have mean zero and
variance σ2

η, i.e., ηt ∼ (0, σ2
η), and it is distributed independently of w1t.

The parameter φ, the error ηt and the distribution of the Bernoulli random
variable Dt (i.e., the parameter d) determine the strength of the correlation
between zt and w1t and, hence, the strength of the proxy as an instrument.

The variance of zt is Var(zt) = d(φ2Var(w1t) + σ2
η) for 0 < d ≤ 1. More-

over, the covariance between w1t and zt is

E(w1tzt) = E(w1tDt(φw1t + ηt)) = φdVar(w1t)

so that the correlation between w1t and zt is

Corr(w1t, zt) = φ
√
d
√

Var(w1t)
/√

φ2Var(w1t) + σ2
η .

Thus, the correlation between the proxy and the first shock declines with
declining d and increasing σ2

η.

3 Estimation

Suppose an effective sample y1, . . . , yT of size T is available for the model
variables, plus all required presample values, y−p+1, . . . , y0. Moreover, a cor-
responding sample z1, . . . , zT is available for the proxy.

Then the VAR(p) is estimated by bias-adjusted least squares (LS) giving
estimates ν̂, Â1, . . . , Âp, residuals û1, . . . , ûT and an error covariance matrix
estimator

Σ̂u =
1

T

T∑
t=1

ûtû
′
t

based on mean-adjusted residuals. Kilian (1998) shows that employing bias-
adjusted LS estimators improves inference for impulse responses. Therefore
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we use the bias-adjustment based on Pope (1990), as proposed by Kilian
(1998), throughout the paper.

The first column b of B is estimated using the proxy zt,

b̂ =
T∑
t=1

ûtzt

/
T∑
t=1

û1tzt, (3.1)

where ût are the residuals corresponding to bias-adjusted LS estimation. The
impulse response matrix Θ(H) is estimated as

Θ̂(H) = [b̂, Φ̂1b̂, . . . , Φ̂H b̂],

where

Φ̂i =
i∑

j=1

Φ̂i−jÂj, i = 1, . . . , H.

Moreover, the first shock is estimated as

ŵ1t = b̂′Σ̂−1u ût/b̂
′Σ̂−1u b̂, t = 1, . . . , T, (3.2)

and φ is estimated by LS from

zt = µ+ φŵ1t + ηt

for all t ∈ TD, where TD = {t|Dt = 1}. The estimate of φ is denoted by φ̂
and the residuals are η̂t for t ∈ TD and η̂t = 0 for t /∈ TD.

4 Bootstraps

As mentioned in the introduction, the WB and the MBB are the bootstrap
methods most frequently used in the proxy VAR literature for frequentist
inference for impulse responses. The WB generates asymptotically invalid
confidence intervals while the MBB yields confidence intervals with the cor-
rect coverage level asymptotically under quite general conditions (Jentsch
and Lunsford (2019)). It may be imprecise in small samples, however,
and therefore we propose the RBB which turns out to have better prop-
erties in small samples. The three bootstrap versions differ in the way they
generate bootstrap samples of yt and zt. Based on N bootstrap samples
y
(n)
−p+1, . . . , y

(n)
0 , y

(n)
1 , . . . , y

(n)
T and z

(n)
1 . . . , z

(n)
T , n = 1, . . . , N , they all use the

following steps to determine bootstrap impulse responses and confidence in-
tervals:
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1. A VAR(p) model is fitted to the sample by LS and bias-adjusted, giving
bootstrap estimates Â(n),

Φ̂
(n)
i =

i∑
j=1

Φ̂
(n)
i−jÂ

(n)
j , i = 1, . . . , H, with Φ̂

(n)
0 = IK ,

and residuals û
(n)
t .

2. Then bootstrap estimates

b̂(n) =
T∑
t=1

û
(n)
t z

(n)
t

/
T∑
t=1

û
(n)
1t z

(n)
t .

of the structural parameters are determined.

3. Finally bootstrap estimates of the impulse responses of interest are
computed as

Θ̂(H)(n) = [b̂(n), Φ̂
(n)
1 b̂(n), . . . , Φ̂

(n)
H b̂(n)]

and stored.

The N bootstrap estimates Θ̂(H)(1), . . . , Θ̂(H)(N) are used to construct
pointwise confidence intervals based on the relevant quantiles of the bootstrap
distributions. Alternatively, percentile-t or Hall intervals could be used (see
Kilian and Lütkepohl (2017, Section 12.2)). However, the intervals based
on quantiles are quite common in practice and the relative performance of
the alternative bootstrap versions is not expected to depend on the type of
interval used.

The samples are generated by one of the three alternative bootstrap meth-
ods, WB, MBB and RBB, as follows:

WB: For t = 1, . . . , T , independent standard normal variates ψt, ψt ∼
N (0, 1), are drawn and bootstrap residuals and proxy variables are
generated as(

uWB
t

zWB
t

)
= ψt

(
ût
zt

)
.

The uWB
t are de-meaned and multiplied by

√
T/(T −Kp− 1), as in

Davidson and MacKinnon (2004, p. 597), and they are used to generate
yWB
t = ν̂ + Â1y

WB
t−1 + · · · + Âpy

WB
t−p + uWB

t , t = 1, . . . , T , starting from
yWB
−p+1, . . . , y

WB
0 , which are obtained as a random draw of p consecutive

values from the original sample.
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MBB: A block length ` < T has to be chosen for the MBB. The blocks of
length ` of the estimated residuals and proxies are arranged in the form
of the matrix

(
û1
z1

) (
û2
z2

)
. . .

(
û`
z`

)
(
û2
z2

) (
û3
z3

)
. . .

(
û1+`
z1+`

)
...

...
...(

ûT−`+1

zT−`+1

) (
ûT−`+2

zT−`+2

)
. . .

(
ûT
zT

)


.

The bootstrap residuals and proxy are recentered columnwise by con-
structing

ũj`+i = ûj`+i −
1

T − `+ 1

T−∑̀
r=0

ûi+r

and

z̃j`+i = zj`+i −
1

T − `+ 1

T−∑̀
r=0

zi+r

for i = 1, 2, . . . , ` and j = 0, 1, . . . , s − 1. Then s = [T/`] of the
recentered rows of the matrix are drawn with replacement, where [·]
denotes the smallest number greater than or equal to the argument
such that `s ≥ T . These randomly drawn blocks are joined end-to-end
and the first T bootstrap residuals and proxies are retained,(

uMBB
t

zMBB
t

)
, t = 1, . . . , T.

Finally, the uMBB
t are de-meaned, multiplied by

√
T/(T −Kp− 1),

and used to generate yMBB
t = ν̂ + Â1y

MBB
t−1 + · · · + Âpy

MBB
t−p + uMBB

t ,
t = 1, . . . , T , starting from yMBB

−p+1 , . . . , y
MBB
0 , which are obtained as a

random draw of p consecutive values from the original sample.

RBB: Samples uRBBt

ηRBBt

wRBB1t

 , t = 1, . . . , T, are drawn from

 û1
η̂1
ŵ11

 , . . . ,

 ûT
η̂T
ŵ1T

 ,
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with replacement. Bootstrap samples yRBBt = ν̂ + Â1y
RBB
t−1 + · · · +

Âpy
RBB
t−p + uRBBt , t = 1, . . . , T , are generated, starting from yRBB−p+1, . . . ,

yRBB0 , which are obtained as a random draw of p consecutive values
from the original sample. Samples of the proxy are generated as

zRBBt = D̃t(φ̂w
RBB
1t + ηRBBt ),

where D̃t is a random 0-1 variable following a Bernoulli distribution,
B(d̂), with d̂ being the share of non-zero observations in the original
sample.

We emphasize again that the WB does not result in asymptotically valid
confidence intervals but is presented here and included in the simulation
comparison in Section 5 because it has been used in the proxy VAR literature.
The WB and the MBB draw the proxies directly from observed values and,
hence, do not make assumptions on the exact DGP of zt. In contrast, the
RBB samples from the residuals of the assumed DGP for zt in (2.6) and
constructs new proxy values in each bootstrap replication. In addition, while
the WB design sets the share of non-zero observations of the bootstrap proxy
equal to the share in the original sample, this is not generally the case in
the MBB and the RBB design. Apart from that, all three bootstraps are
recursive-design residual based bootstraps for generating the yt samples.

In all three bootstrap algorithms, the initial values y
(n)
−p+1, . . . , y

(n)
0 are a

random draw of p consecutive values from the original yt sample. Alterna-
tively, the original initial values y−p+1, . . . , y0 could have been used as initial
values for each bootstrap sample. If the yt are mean-adjusted, one could even
simply use zero initial values if stationary models are under consideration.
For example, Jentsch and Lunsford (2019) used zero initial values, generate
more than T sample values and then drop some burn-in values.

For the MBB a decision on the block length ` is needed. To make the
asymptotic theory work, it has to be chosen such that `→∞ and `3/T → 0
as T →∞ (see Jentsch and Lunsford (2019)). The choice is less clear in small
samples. Choosing ` too small, the blocks may not capture the data features
well and may result in poor confidence intervals. On the other hand, choosing
` large undermines inference precision because there are too few blocks to
choose from. Note that the number of available blocks is T−`+1 and, hence,
depends on the block length. Jentsch and Lunsford (2019) mention a block
length of ` = 5.03T 1/4 as a rule of thumb and we use this rule of thumb in
our simulations in Section 5 and in the empirical example in Section 6.
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5 Small Sample Comparison of Bootstraps

In this section a small sample simulation comparison of the three bootstrap
methods is presented. The simulation design is considered first and then the
simulation results are discussed.

5.1 Monte Carlo Design

5.1.1 DGP 1

The first data generating process (DGP1) is similar to a DGP that has been
used frequently in related work on comparing inference methods for impulse
responses (e.g., Kilian (1998), Kilian and Kim (2011), Lütkepohl, Staszewska-
Bystrova and Winker (2015a, 2015b)). It is a two-dimensional VAR(1) of the
form:

yt =

[
a11 0
0.5 0.5

]
yt−1 + ut, (5.1)

where 0 < a11 < 1. The process is stable with more persistence for a11 closer
to one.

The structural errors, wt, are normally distributed with mean zero and
identity covariance matrix, wt ∼ N (0, I2), and ut = Bwt with

B =

[
2 0
1 3

]
,

such that b = (1, 1
2
)′. These ut errors are used to generate the yt as in

equation (5.1), starting from a standard normal y0, i.e., y0 ∼ N (0, I2). In
the simulations, we fit VAR models of order p = 1 and p = 12, without
constant term, to de-meaned data.

In line with the related literature (e.g., Jentsch and Lunsford (2019)), the
proxy zt is generated as in equation (2.6), i.e., zt = Dt(φw1t + ηt), where Dt,
φ and the error ηt determine the strength of the correlation between zt and
w1t and, hence, the strength of the proxy which is important for how well
the impact effects of the shock can be estimated and these estimates are of
central importance for estimating the impulse responses. The error term ηt
is generated independently of w1t as ηt ∼ N (0, σ2

η), with different values of
σ2
η. The random variable Dt has a Bernoulli distribution with parameter d,
B(d), which specifies the average proportion of nonzero zt variables. Dt is
stochastically independent of ηt and w1t. For d = 1, the proxy variable is
nonzero with probability one for all sample periods t = 1, . . . , T .
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Table 1: Design Parameters for DGP1

T p a11 B Σw d φ σ2
η Corr(w1t, zt) H

100
250
500

1
12

0.5
0.9
0.95

[
2 0
1 3

]
I2

1
0.4

1
0.2346

3

0.9
0.5

0.5692
0.3162

20

The parameter values used in our simulations are summarized in Table 1.
We use propagation horizons of H = 20 to capture not only the short-term
effects of a shock but also the longer-term effects which may still be a bit
away from zero for the more persistent processes. Sample sizes T = 100, 250
and 500 are considered. The number of replications for each Monte Carlo
design is R = 1000 and we use N = 2000 bootstrap repetitions within each
replication.

Our criteria for evaluating the bootstrap methods are the coverage preci-
sion and the widths of the confidence intervals obtained from the bootstraps.
These criteria capture main features of interest in related empirical studies
and they have also been used in related small sample comparisons of boot-
strap inference (e.g., Kilian and Kim (2011), Lütkepohl and Schlaak (2019)).

5.1.2 DGP 2

Our second DGP (DGP2) mimics a VAR model from a study of Gertler and
Karadi (2015). It is based on parameters estimated from their dataset. One
of the models used by Gertler and Karadi is a four-dimensional US monthly
model. We use their data from 1990M1 to 2016M6 and fit a VAR(1) model
with constant term to the data. Using bias-adjusted estimates, the reduced-
form parameters of DGP2 are ν = 0,

A1 =


0.97 0.00 0.00 −0.13
0.01 1.00 0.00 −0.09
−0.03 0.00 1.00 −0.53

0.02 0.00 0.00 0.91

 and Σu =


0.04 0.00 0.01 −0.01
0.00 0.11 0.03 0.00
0.01 0.03 0.37 −0.01
−0.01 0.00 −0.01 0.07

 .
The maximum eigenvalue of A1 has modulus 0.9997. Thus, DGP2 is stable
but very persistent. These parameters are used to generate the yt based on
ut ∼ N (0,Σu) and starting from y0 = 0, the unconditional mean of the yt.

We also use a proxy with similar properties as the proxy for monetary
policy shocks constructed by Gertler and Karadi (2015). More precisely,
we estimate the b vector of impact effects of the first shock, giving a vector
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b = (1,−0.14, 0.70, 0.24)′, and estimate the parameters φ and σ2
η of the model

(2.6) as described in Section 3 from the Gertler/Karadi data with nonzero zt
values and the first shock obtained from equation (2.3). This yields values
φ = 0.1019 and σ2

η = 0.0020 that are used for generating zt as in equation
(2.6) with Dt having a B(0.82) distribution. The parameter, d = 0.82, of the
Bernoulli distribution is chosen because the Gertler-Karadi proxy has nonzero
values for 82% of the sample periods. The implied correlation between proxy
and shock is 0.36 and, hence, it is rather low.

Note that the generation mechanism for DGP2 differs from that of DGP1,
where the structural shocks are generated directly and the reduced-form data
as well as the proxy are computed from the generated structural shocks and
the generated ηt series. In contrast, we generate the reduced-form errors for
DGP2, construct the first structural shock from the structural parameters b
and the error covariance matrix Σu as in equation (3.2) and then generate zt
as in equation (2.6) with an additionally generated ηt ∼ N (0, σ2

η).
The rational behind using this DGP2 is that we will also use the Gertler/-

Karadi data for an illustrative example in Section 6 and, hence, the simula-
tion results for DGP2 may be indicative of what to expect in the example.
Moreover, it is, of course, of interest to see whether the results for our small
bivariate process underlying DGP1 carry over to a higher-dimensional DGP.

For DGP2, we fit VAR models of orders p = 1 and p = 12, including a
constant term, to samples of size T = 200 and 500. The smallest sample
size considered is a bit larger than for DGP1 to account for the larger model
dimension. It is not far from the sample size used in the example in Section
6. The number of bootstrap replications is again N = 2000 and the number
of Monte Carlo repetitions is R = 1000, as for DGP1.

5.2 Small Sample Results

5.2.1 Results for DGP1

Some main findings from simulating DGP1 are presented in Figures 1 and 2.
Specifically, in Figure 1 the implications of changing the VAR order p, the
persistence of the VAR process (a11) and the strength of the proxy reflected in
the Bernoulli parameter d on the coverage and average length of the bootstrap
confidence intervals can be seen for relatively short samples of size T = 100.
In Figure 2, the impact of increasing the sample size is presented.

A main observation from Figure 1 is that, for some designs and propa-
gation horizons, there are clear differences in the coverage of the confidence
intervals of the three bootstrap variants. The RBB yields overall the cover-
age results closest to the desired 90% while the MBB tends to yield coverage
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rates a bit smaller and, in particular for short propagation horizons, the WB
yields intervals with partly substantially larger coverage rates. These differ-
ences in coverage rates, in some cases, translate into shorter intervals for the
MBB and longer intervals for WB in comparison to the RBB. Interestingly,
the average lengths of the intervals of all three bootstrap methods are often
very similar despite substantial differences in coverage. For example, the
RBB intervals for short propagation horizons are in most cases very similar
to the MBB intervals although the latter have a coverage which is below the
RBB coverage and it is also lower than the nominal 90%. Thus, Figure 1
clearly shows that the RBB tends to be more precise in terms of coverage and
often it does so without sacrificing much interval length. Thus, under these
two criteria it is preferable to the MBB and the WB. The latter bootstrap is
often conservative and also yields larger confidence intervals than the other
two bootstrap methods.

There are also some more specific results related to the VAR order and
the proxy strength that can be seen in Figure 1.

• The VAR order p has an important impact on both the coverage and
average lengths of the confidence intervals. In particular, considering
the order p = 12 of a short-memory process with a11 = 0.5 results in
substantial over-coverage, especially for longer propagation horizons,
for all three bootstrap variants. The interval lengths tend to increase for
all propagation horizons and substantially so for the longer propagation
horizons for all three bootstraps if the VAR order increases from p = 1
to p = 12 (compare the second and fourth columns of Figure 1).

• Comparing panels (c) and (e) as well as (d) and (f) in Figure 1, it is
apparent that the proxy strength does not have much of an effect on
the coverage but partly leads to larger intervals (see in particular the
average lengths of θ21 intervals for short horizons). In panels (e) and
(f) in Figure 1, the proxy has a lower correlation with the structural
shock of interest due to the reduced number of event dates, d, for which
the proxy is constructed. A similar result is obtained, however, if d = 1
is maintained but the correlation between proxy and shock is reduced
due to a larger variance σ2

η of the error term in equation (2.6), as can
be seen in Figure A.1 in the Appendix.

• The impact of higher persistence (a larger a11 parameter) of the process
can be seen by comparing panels (a) and (c) as well as (b) and (d) in
Figure 1. Generally the coverage is reduced and the intervals become
larger, especially for longer propagation horizons, if a11 increases from
0.5 to 0.95. The reduction in coverage is most severe for the MBB, while

12



the RBB continues to have acceptable coverage for persistent processes.
In Figure A.2 of the Appendix, additional results for a11 = 0.9 are
presented and it can be seen that the results for a11 = 0.9 are similar
to those of a11 = 0.95.

In Figure 2, the impact of the sample size on the confidence intervals is
exhibited for the case of a persistent process with a11 = 0.95 and a relatively
strong proxy with correlation 0.9 with the shock and d = 1. As we saw in
Figure 1 already, in this situation the MBB has a coverage clearly smaller
than the nominal 90% for p = 1 and all three bootstrap methods tend to yield
under-coverage for T = 100. In Figure 2 it can be seen that the coverage
clearly improves for T = 250 already and the coverage deficiencies largely
disappear for T = 500. Also, the interval lengths for all three methods
become very similar and are reduced for larger sample sizes, as one would
expect. Only the WB intervals for some short propagation horizons remain
wider and less precise for larger samples. This result may be a reflection of
the asymptotic inadmissibility of the WB.

5.2.2 Results for DGP2

Coverage and average interval lengths for DGP2 are depicted in Figure 3 for
sample size T = 200 and in Figure 4 for T = 500. Even for the smaller sample
size T = 200, all coverage rates of the nominal 90% confidence intervals of
WB and RBB are between 80% and 100%, except for the long-run response
of the third variable. In other words, the two bootstrap methods yield rather
precise confidence intervals for three out of four variables across our Monte
Carlo designs. Given the asymptotic inadmissibility of the WB, this result
may, of course, not be generalizable to other simulation designs.

Even the MBB has coverage rates above 80% for variables 1, 2 and 4
and propagation horizons up to 30 periods when T = 200. Thus, even the
MBB is relatively precise in terms of coverage for three out of four variables.
There are, however, differences in interval lengths among the three boot-
straps. Typically, the WB intervals are a bit longer than the MBB and RBB
intervals which are often close together on average. Overall the performance
of the WB is inferior to MBB and RBB. Thus, although there is often not
much to choose between MBB and RBB in terms of coverage and interval
length, it is remarkable that the RBB tends to have typically coverage rates
closer to 90% than the MBB. Thus, even for the higher-dimensional DGP2,
RBB performs well relative to its competitors, at least for three of the four
variables.

For the third variable, VAR order p = 1 and T = 200 all three bootstrap
methods yield coverage rates below 80% for a propagation horizon of 48
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periods. For T = 500 and p = 1, only MBB still has a coverage below 80%
for long horizons (see Figure 4). The coverage rates for long horizons are
actually a bit closer to 90% for p = 12, although one might expect lower
precision for the larger VAR order as the larger VAR order implies a model
with substantially more parameters. Even for p = 12, the RBB outperforms
the MBB in terms of coverage and is almost as good in terms of interval
length.

In summary, our simulations show that the WB is often conservative and
yields more than the nominal coverage. In turn, its confidence intervals are
often considerably larger than those of the MBB and RBB. Thus, the WB is
overall inferior to the MBB and the RBB. Between the latter two, the RBB
is preferable because it yields typically coverage rates closer to the nominal
rate than the MBB. Moreover, the RBB confidence intervals are often about
as long on average as those of the MBB. Hence, our simulations show that
the RBB has merit. In the next section, it will be applied to an illustrative
example model from the literature.

6 Empirical Example

We consider an example based on the study of Gertler and Karadi (2015)
mentioned earlier to illustrate the differences between the three bootstrap
methods. One of the models used by Gertler and Karadi is a four-dimensional
US monthly model for the variables (1) one-year government bond rate, (2)
log consumer price index (CPI), (3) log industrial production (IP) and (4)
excess bond premium. They employ the three months ahead federal funds
rate future surprises as the baseline proxy to identify a monetary policy
shock and they find their proxy to be a strong instrument. We re-estimate
their model, shortening the sample to include only periods for which all four
variables and the proxy are available. This leaves us with a sample running
from 1990M1 through 2016M6, i.e., the sample size is T = 270. The proxy
is available in d = 82% of these periods. Following their baseline model
specification we include a constant and 12 lags in the VAR.

Figure 5 shows the pointwise 90% confidence bands of the impulse re-
sponses to a monetary policy shock that increases the one-year-rate by 25
basis points on impact. Such a shock corresponds roughly to a one standard
deviation shock in Gertler and Karadi (2015). The point estimates of the
impulse responses are qualitatively in line with the findings by Gertler and
Karadi (2015).2 A monetary tightening induces declining point estimates of

2Differences compared to Gertler and Karadi (2015) are the result of a shorter sample
and differences in the bootstrap procedures.

14



the response of industrial production and consumer prices and an increase in
the excess bond premium by slightly more than 10 basis points on impact.
However, the bootstrap confidence intervals indicate that the responses of in-
dustrial production and the CPI may not be significant, although the choice
of the bootstrap procedure affects the widths of the confidence intervals, in
line with the simulation results reported in Section 4.

From Figure 5(a), it is apparent that the bands estimated via RBB and
MBB tend to be either very similar or the RBB intervals are slightly larger
than the MBB intervals. This outcome is consistent with the simulation
evidence, see for example Figure 3, panel (b). Recall, however, that the
shorter MBB intervals in the simulations come at the price of a lower coverage
rate which may be below the nominal 90% rate. Although the interpretation
of the impulse responses does not depend on the choice of bootstrap in this
case, it is, of course, desirable to employ the most reliable inference procedure.

Figure 5(b) compares the RBB intervals to the WB intervals and shows
that the intervals estimated via WB tend to be larger than the RBB intervals.
In line with our simulations, the RBB intervals are actually substantially
shorter in some cases (see, e.g., the IP impulse responses). For the excess
bond premium, the WB interval for the impact effect of the monetary policy
shock actually includes zero while this is not the case for the RBB interval.
Hence, based on the WB one may conclude that there is no significant impact
effect of the monetary policy shock and that conclusion may just be due to
an excessively large confidence interval.

7 Conclusions

In proxy VAR models, an external proxy variable that is correlated with a
structural shock of interest and uncorrelated with all other shocks, is used
for inference for the impulse responses. In this study, we propose a new
bootstrap for such inference. So far frequentist inference in this context is
typically based on the WB or the MBB. The former is not valid asymptoti-
cally and often yields rather wide confidence intervals, whereas the latter has
poor coverage properties in small samples as they are often encountered in
macroeconomic studies. We propose an alternative bootstrap method which
assumes a specific model for the DGP of the proxy variable and samples from
the estimated reduced-form errors and the residuals of the proxy model to
generate bootstrap samples.

We show by simulation that our new RBB method works well in rel-
atively small samples. Specifically, it yields bootstrap confidence intervals
for impulse responses with more accurate coverage than and similar length
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for comparable coverage as the WB and the MBB. Thus, it has merit for
empirical studies for which only relatively small samples are available.

One advantage of the MBB is that it also works asymptotically for condi-
tionally heteroskedastic model errors while the RBB is not designed for such
data features. The price to pay for the additional generality of the MBB is
its reduced accuracy in small samples.
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(a) a11 = 0.5, p = 1, d = 1, corr = 0.9
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(b) a11 = 0.5, p = 12, d = 1, corr = 0.9

0 10 20

0.8

0.9

1

0 10 20
0

0.5

1

1.5

2

0 10 20

0.8

0.9

1

0 10 20
0

0.5

1

1.5

2

(c) a11 = 0.95, p = 1, d = 1, corr = 0.9
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(d) a11 = 0.95, p = 12, d = 1, corr = 0.9
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(e) a11 = 0.95, p = 1, d = 0.4, corr = 0.5692
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(f) a11 = 0.95, p = 12, d = 0.4, corr = 0.5692

Figure 1: Coverage and average lengths of alternative pointwise bootstrap
90% confidence intervals for T = 100.
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(e) T = 500, p = 1
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(f) T = 500, p = 12

Figure 2: Coverage and average lengths of alternative pointwise bootstrap
90% confidence intervals for d = 1, a11 = 0.95, corr = 0.9.
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(a) T = 200, p = 1
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(b) T = 200, p = 12

Figure 3: Coverage and average lengths of alternative pointwise bootstrap
90% confidence intervals for DGP2.



0 10 20 30 40
0.85

0.9

0.95

1

0 10 20 30 40
0

0.5

1

1.5

0 10 20 30 40
0.85

0.9

0.95

1

0 10 20 30 40
0

0.5

1

1.5

2

0 10 20 30 40

0.8

0.9

1

0 10 20 30 40
0

2

4

6

0 10 20 30 40
0.8

0.85

0.9

0.95

1

0 10 20 30 40
0

0.5

1

(a) T = 500, p = 1

0 10 20 30 40
0.85

0.9

0.95

1

0 10 20 30 40
0

0.5

1

1.5

0 10 20 30 40
0.85

0.9

0.95

1

0 10 20 30 40
0

0.5

1

1.5

2

0 10 20 30 40

0.8

0.9

1

0 10 20 30 40
0

2

4

6

0 10 20 30 40
0.8

0.85

0.9

0.95

1

0 10 20 30 40
0

0.5

1

(b) T = 500, p = 12

Figure 4: Coverage and average lengths of alternative pointwise bootstrap
90% confidence intervals for DGP2.
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Figure 5: Pointwise bootstrap 90% confidence intervals for the empirical
example.
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(a) T = 100, p = 1, corr = 0.9
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(b) T = 100, p = 12, corr = 0.9
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(c) T = 100, p = 1, corr = 0.5
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(d) T = 100, p = 12, corr = 0.5
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(e) T = 500, p = 1, corr = 0.5
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(f) T = 500, p = 12, corr = 0.5

Figure A.1: Coverage and average lengths of alternative pointwise bootstrap
90% confidence intervals for d = 1, a11 = 0.95.
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(a) a11 = 0.5, p = 1, d = 1, corr = 0.9
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(b) a11 = 0.5, p = 12, d = 1, corr = 0.9
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(c) a11 = 0.9, p = 1, d = 1, corr = 0.9
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(d) a11 = 0.9, p = 12, d = 1, corr = 0.9
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(e) a11 = 0.95, p = 1, d = 1, corr = 0.9
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(f) a11 = 0.95, p = 12, d = 1, corr = 0.9

Figure A.2: Coverage and average lengths of alternative pointwise bootstrap
90% confidence intervals for T = 100.
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