
Discussion  
Papers

Have the Effects of Shocks to Oil 
Price Expectations Changed?
Evidence from Heteroskedastic Proxy Vector
Autoregressions

Martin Bruns and Helmut Lütkepohl

2036

Deutsches Institut für Wirtschaftsforschung  2023



Opinions expressed in this paper are those of the author(s) and do not necessarily reflect views of the institute. 

IMPRESSUM 

DIW Berlin, 2023

DIW Berlin 
German Institute for Economic Research 
Mohrenstr. 58 
10117 Berlin 

Tel. +49 (30) 897 89-0 
Fax +49 (30) 897 89-200 
https://www.diw.de 

ISSN electronic edition 1619-4535 

Papers can be downloaded free of charge from the DIW Berlin website: 
https://www.diw.de/discussionpapers 

Discussion Papers of DIW Berlin are indexed in RePEc and SSRN: 
https://ideas.repec.org/s/diw/diwwpp.html 
https://www.ssrn.com/link/DIW-Berlin-German-Inst-Econ-Res.html 

http://www.diw.de/
http://www.diw.de/discussionpapers
http://www.ssrn.com/link/DIW-Berlin-German-Inst-Econ-Res.html


Have the Effects of Shocks to Oil Price

Expectations Changed?

Evidence from Heteroskedastic Proxy Vector
Autoregressions

Martin Bruns
University of East Anglia, School of Economics,

Norwich Research Park, NR4 7TJ, Norwich, United Kingdom
email: martin.j.bruns@gmail.com

Helmut Lütkepohl
DIW Berlin and Freie Universität Berlin, Mohrenstr. 58, 10117 Berlin,

Germany
email: hluetkepohl@diw.de

This version: April 21, 20231

Abstract. Studies of the crude oil market based on structural vector autore-
gressive (VAR) models typically assume a time-invariant model and transmis-
sion of shocks or they consider a time-varying model and shock transmission.
We assume a heteroskedastic reduced-form VAR model with time-invariant
slope coefficients and test for time-varying impulse responses in a model for
the global crude oil market that includes key macroeconomic variables. We
find evidence for changes in the transmission of shocks to oil price expecta-
tions during the last decades which can be attributed to heteroskedasticity.
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1 Introduction

In this study we explore the impact of shocks to oil price expectations on
key macroeconomic variables. We assume that the data are generated by a
time-invariant reduced-form vector autoregressive (VAR) process with het-
eroskedastic residuals. This heteroskedasticity may lead to changes in both
the structural shock variances and the transmission of these structural shocks
to the underlying economy. In other words, despite the time-invariance of the
reduced-form VAR process, the transmission of structural shocks can change
due to the heteroskedasticity.

Previous studies of the global oil market present mixed evidence on the
stability of the transmission of oil market shocks. For example, Kilian (2009),
Kilian and Murphy (2014), Lütkepohl and Netšunajev (2014), Baumeister
and Hamilton (2019), and Känzig (2021) consider time-invariant impulse re-
sponses for periods starting in the 1970s and ending in the new millennium.
In contrast, Baumeister and Peersman (2013), Blanchard and Gali (2007),
Blanchard and Riggi (2013) use models that allow for time-varying param-
eters and find evidence of changes in the transmission of oil market shocks
in their sample periods starting in the 1960s or 1970s and ending in the new
millennium. These studies allow for time-varying shock transmission due to
time-varying VAR slope coefficients. In contrast to these studies, we assume
that the VAR slope coefficients are time-invariant and investigate whether
volatility changes may have driven time-variation in the transmission of oil
market shocks.

We follow the recent literature that uses event studies to identify the
causal effects of revisions to oil price expectations on the macroeconomy.
Känzig (2021) has proposed a proxy based on oil supply surprises measured
by changes in oil price futures around OPEC announcements, and Degasperi
(2021) has shown how this surprise series can be used to identify shocks to
both oil supply and oil demand expectations. We use these shocks, consider
a sample period from 1984 to 2019, and assume that the data are generated
by a time-invariant VAR process with heteroskedastic residuals. It is inves-
tigated whether the changes in the residual volatility induce a time-varying
transmission of the structural shocks. Specifically, we consider the case of oil
price expectation shocks proposed by Känzig (2021) and Degasperi (2021).
We explore the issue of a time-invariant transmission of these shocks using
statistical tests as proposed by Lütkepohl and Schlaak (2022) and Bruns and
Lütkepohl (2022b). The tests explore the time-invariance of the impact ef-
fects of the shocks and find evidence for time-varying impulse responses at
the time of the 1990/91 gulf war.

The model and methodology used in the present study are briefly laid
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out in the following section. The empirical analysis is presented in Section 3
and conclusions follow in Section 4. An Appendix collects further details on
the data and additional supporting results.

2 Model Setup and Methodology

We consider a K-dimensional heteroskedastic VAR model of order p,

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut,

where ut is a zero-mean white noise process with covariances

E(utu
′
t) = Σt = Σu(m) for t ∈ Tm, m = 1, . . . ,M. (1)

The M volatility regimes Tm = {Tm−1 + 1, . . . , Tm} (m = 1, . . . ,M) are as-
sumed to be associated with consecutive time periods, with volatility changes
occurring at time periods Tm, for m = 1, . . . ,M − 1, with T0 = 0 and TM is
the overall sample size, i.e., TM = T . This reduced-form model setup is also
used by Lütkepohl and Schlaak (2022).

The vector of structural shocks, wt = (w1t, . . . , wKt)
′, is related to the

reduced-form errors, ut, by a linear transformation. Formally, the structural
shocks in volatility regime Tm are obtained from the reduced-form errors, ut,
by a linear transformation, wt = B(m)−1ut, such that the components are
instantaneously uncorrelated with diagonal covariance matrix Σw(m). Thus,
we allow both the variances of the structural shocks, Σw(m), as well as the
transformation matrices, B(m), which represent the impact effects of the
structural shocks, to depend on the volatility regime m. If the impact effects
are time-invariant and do not change such that all variation in the residual
covariances Σu(m) is captured by changes in the Σw(m), then B(1) = · · · =
B(M). Clearly, the structural parameters B(m) and Σw(m) are not identified
without additional assumptions. In the empirical analysis we will identify the
structural parameters of interest by instruments or proxy variables.

Note that the VAR slope coefficients, A1, . . . , Ap, are assumed to be
time-invariant and so are the reduced-form impulse responses which can be
computed recursively from the slope coefficients using the recursions Φj =∑j

i=1 Φj−iAi for j = 1, 2, . . . , with Φ0 = IK and Ai = 0 for i > p. Hence,
time-varying structural impulse responses Θj(m) = ΦjB(m), j = 0, 1, . . . ,
can only be due to changes in the impact effects of the shocks because they
are functions of the impact effects of the shocks and the reduced-form impulse
responses.

In our empirical analysis we are primarily interested in an oil market
shock which we place first in the vector of structural shocks, wt, that is, w1t
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is the oil market shock. It is identified by a proxy, zt, which is correlated
with w1t and uncorrelated with all other shocks.

Given that interest focusses on w1t, we would like to test the impact effects
associated with the first shock. In other words, we are interested in testing for
time-varying elements in the first column, say b(m) = (b1(m), . . . , bK(m))′,
of the B(m) matrices. Lütkepohl and Schlaak (2022) normalize the impact
effect of the first shock on the first variable to be 1 in all volatility regimes
and consider the (K − 1)-dimensional vectors β(m) = (b2(m), . . . , bK(m))′.
For m, k ∈ {1, . . . ,M}, m 6= k, they propose a test of the pair of hypotheses

H0 : β(m) = β(k) versus H1 : β(m) 6= β(k) (2)

based on the asymptotic normal distribution of
√
T (β̂(m) − β(m)). Here

β̂(m) denotes a suitable estimator of β(m). The Wald statistic,

T
(
β̂(m)− β̂(k)

)′
Ω̂−1

(
β̂(m)− β̂(k)

)
, (3)

with Ω̂ being a suitable estimator of the covariance matrix of the asymptotic
distribution of

√
T (β̂(m)− β̂(k)), has an asymptotic χ2(K − 1)-distribution

under H0 and related t- or χ2-statistics for testing individual elements of
β(m) can be constructed analogously.

An extension of the test for the case of identifying more than one shock by
a set of proxies was proposed by Bruns and Lütkepohl (2022b). It does not
require identification of the individual shocks identified by the set of proxies
and will be used in the empirical analysis when more than one shock is of
interest.

3 Empirical Analysis

Given the importance of oil for industrialized economies, the oil price is an
important macroeconomic variable. Kilian and Murphy (2014) and Känzig
(2021) argue that oil prices are forward looking and, hence, driven by ex-
pectations. We consider a model proposed by Känzig (2021) and also used
by Degasperi (2021). It contains the oil market variables from an oil market
model proposed by Kilian and Murphy (2014) as well as world industrial pro-
duction (IP), U.S. IP and a U.S. consumer price index as additional macroe-
conomic variables. In the following we present the reduced-form model setup
first and discuss the proxies used for structural estimation. Then we test for
time-varying shock transmission and consider impulse responses.

3



3.1 Empirical Model Setup

Känzig (2021) and Degasperi (2021) consider a six-dimensional baseline VAR(12)
model with a constant term for the real price of oil (rpt), world oil production
(prodt), world oil inventories (invt), world industrial production (ipWorld

t ),
U.S. industrial production (ipUS

t ), and the U.S. consumer price index (cpiUS
t )

such that

yt = (rpt, prodt, invt, ip
World
t , ipUS

t , cpiUS
t )′.

The oil market variables (rpt, prodt, invt) are standard variables in VAR
models for the global crude oil market as proposed by Kilian and Murphy
(2014) (see also Zhou (2020)). All variables are in logs. Känzig uses monthly
data from January 1974 to December 2017. We follow Degasperi (2021) and
use a sample period 1984M1-2019M12, i.e., we start the sample at the be-
ginning of the Great Moderation period (see, e.g., Stock and Watson (2003))
and terminate the sample at the start of the Covid-19 pandemic. Some other
authors have presented evidence that the impact of oil market shocks on
U.S. macroeconomic variables has changed around the middle of the 1980s
(see, e.g., Blanchard and Gali (2007), Blanchard and Riggi (2013)) which
supports our decision to start the sample in 1984. Our gross sample size is
432. It includes 12 presample values for estimating the VAR(12) model such
that our T = 420. Following Kilian and Murphy (2014), we include sea-
sonal dummy variables in the model to account for seasonal variation in oil
inventories. In addition, we employ a time dummy variable for 1985M12 to
account for the sharp decline in real oil prices that foreshadows the collapse
of OPEC in 1986, which might otherwise distort our test results. Precise
variable specifications and data sources can be found in Appendix A.2. Note
that we are using updated data also for the period overlapping with Känzig’s
sample period.

For our sample period, 1984M1-2019M12, volatility changes in the data
are in fact quite likely and have been discussed previously. For example,
Lütkepohl and Netšunajev (2014) find that some of the special events in the
oil market discussed by Barsky and Kilian (2004) resulted in high volatility
episodes notably at the time of the 1990/91 gulf war. Thus, it makes sense
to allow for heteroskedasticity in our VAR model.

To determine more precise time periods of potential volatility changes,
we have first of all plotted the residuals of the reduced-form VAR(12) model
in Figure 1. The plots display obvious volatility changes in at least some of
them during the sample period. In particular, there are volatility changes
around the time of the gulf war of 1990/91 in the rpt, prodt, and invt residuals
which are quite plausible, given that the war had a major impact on the oil
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market (see Barsky and Kilian (2004)).
To assign volatility change points to specific sample periods we have used

a statistical procedure for evaluating potential volatility changes linked to
the Gaussian likelihood based criterion function

M∑
m=1

(Tm − Tm−1)−1 log det Σ̂m, (4)

where Σ̂m = (Tm − Tm−1)
−1∑Tm

t=Tm−1+1 ûtû
′
t, m = 1, . . . ,M , are computed

from ordinary least squares (OLS) residuals ût. We have allowed for up to
M = 3 volatility regimes (two change points). The objective function (4) is
minimized sequentially to search for the volatility change points Tm. First the
function is minimized for T1, assuming M = 2. The resulting change point
is 1990M9. Then M = 3 is assumed and T1 = 1990M9 is fixed while T2 runs
over the other sample points. Thereby we obtain an additional potential
change point T2 = 2005M4. These potential volatility change points are
plausible given discussions in the previous literature.2

We have used an LM test for heteroskedasticity as described in Lütkepohl
(2005, pp. 600-601) to investigate whether the residual covariances in all
three potential volatility regimes are in fact distinct. The tests yield very
small p-values below 0.1% and thereby support the notion of different vari-
ances in the three volatility regimes (see Table A.2 in Appendix A.3).

3.2 The Proxies

We use the proxies for oil market shocks constructed by Känzig (2021) and
Degasperi (2021) from OPEC announcements about their production plans.
OPEC announcements are arguably a relevant indicator of future oil supply
as a substantial share of the world’s oil production has taken place within
OPEC during our sample period.

Känzig (2021) calls the identified shock an ‘oil supply news shock’. He as-
sumes that changes in oil futures on the day of the announcement are driven
exclusively by revisions in the expectations of market participants due to the
announcements, rather than other factors such as oil demand or geopolit-
ical shocks, given the tight window of one day around the announcement.
Thus, they can be assumed to be exogenous to the global economic outlook.

2We have also searched for a fourth volatility regime and found T3 = 2008M12. How-
ever, our tests for time-varying impact effects for the additional volatility regime did not
find significant changes in 2008M12. Therefore we focus the following analysis on up
to M = 3 volatility regimes only and use inference procedures that account for further
volatility changes within the volatility regimes considered.
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However, Degasperi (2021) argues that OPEC announcements may not only
reveal news on oil supply but may also be determined by demand conditions
in the oil market. Those arguments are also in line with earlier discussions
of oil supply and demand shocks by Kilian and Murphy (2014). Kilian and
Zhou (2023) suggest that the Känzig shocks are better viewed as shocks to
oil price expectations. In the following we will refer to the proxy proposed
by Känzig (2021) as the Känzig proxy and the related shock as the Känzig
shock to avoid confusion with other proxies and shocks.

As a consequence of his critique of Känzig’s oil supply news shock, De-
gasperi (2021) constructs a supply and a demand proxy by separating the
surprises in the Känzig proxy in oil supply and demand surprises. He does
so by classifying a surprise as a supply surprise if the day-on-day growth rate
of the S&P500 index declines and a surprise is a demand surprise if stock
returns go up. In the following we signify the two proxies obtained in this
way as Degasperi-supply and Degasperi-demand proxy (or shock), respec-
tively (see Appendix A.1 for details on the construction of all three proxies).
In the following we will assess the time-invariance of the responses to the
shocks identified by the Känzig and Degasperi proxies.

3.3 Testing for Time-Varying Shock Transmission

Before we apply the tests for time-varying impact effects in our framework
which assumes time-invariant VAR slope coefficients, it may be worth consid-
ering the suitability of the tests proposed by Lütkepohl and Schlaak (2022)
and Bruns and Lütkepohl (2022b). An obvious issue is whether our volatility
model in equation (1), which assumes abrupt changes in volatility at given
time points, is suitable. Looking at the residual series in Figure 1, the model
may indeed be too simple to capture all the dynamics in the second mo-
ments. The good news is, however, that the tests are to some extent robust
to misspecifying the volatility change points. Moreover, they are applicable
even if the volatility change happens gradually rather than abruptly. Also, if
some of the volatility regimes contain further heteroskedasticity this does not
invalidate the tests. Fortunately, Lütkepohl and Schlaak (2022) and Bruns
and Lütkepohl (2022b) have shown that the tests may well detect changes in
the impact effects of a shock even if such deviations from the model assump-
tions are present, as long as the volatility in the different regimes is clearly
distinct, although not perfectly well described by the stylised model. They
point out, however, that such deviations from the ideal conditions may lead
to reduced power of the tests.

Moreover, Lütkepohl and Schlaak (2022) and Bruns and Lütkepohl (2022b)
show that, even if the ideal model conditions hold, the power of the tests for
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time-varying impact effects depends on the strength of the proxy as an in-
strument for estimating the impact effects, the size of the model and the
length of the volatility regimes. A weaker proxy, a larger model and shorter
volatility regimes reduce the power of the tests. Clearly, our six-dimensional
VAR model of lag order 12 is rather large and some of the volatility regimes
are relatively short. Thus, we are working in a low-power environment, which
is worth keeping in mind when interpreting the test results.

We have also investigated the strength of the proxies for the different
volatility regimes by considering the usual F -statistics and heteroskedasticity-
robust F -statistics resulting from a regression of the OLS residuals of the real
price of oil on the proxy in the regimes of interest. It turns out that most
F -values are below 10 for the full sample and our subsample periods (see
Table A.3 in Appendix A.3). As the standard threshold for a strong proxy
used in the related literature is 10 (see Stock, Wright and Yogo (2002)), our
proxies are relatively weak which again undermines the power of the tests
for time-varying impact effects of the shock of interest. We also confirm De-
gasperi (2021)’s finding that the oil supply proxy is weak, while an F -test
value of more than 10 is found for the oil demand proxy over the whole sam-
ple. However, overall the F -tests in Table A.3 as well as the other features
of the model suggest that we are working in a low power environment.

For testing for time-varying impact effects, we consider the proxies one-
by-one as well as the two Degasperi proxies jointly. The reason for considering
a joint test of the impact effects of the two Degasperi proxies is that it is not
clear whether the two proxies actually identify the shocks separately. Note
that the movement in the stock index may be driven by demand and supply
effects jointly and an increasing or declining stock index may just reflect
which of these effects is dominant but still may incorporate both effects.
Test results for M = 2 and M = 3 volatility regimes based on individual
proxies are presented in Table 1 and results obtained by considering the two
Degasperi proxies jointly are given in Table 2.

Results for Känzig’s Shock

Looking first at the p-values of the joint tests of the null hypothesis in expres-
sion (2) based on the test statistic (3) in Table 1, the tests find evidence for
a change in the impact effects of a Känzig shock in September 1990 but no
evidence for a change in April 2005. Given the low-power features discussed
earlier, we interpret p-values below 10% as indication of evidence againt H0.
If only one volatility change is assumed in 1990M9, the joint test has a p-value
of 6.6%. If two volatility changes are assumed, the joint test does not detect
changes in the impact effects of the Känzig shocks, which is likely the result
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of the low power environment. Therefore, for further analyzing time-varying
impulse responses, we focus on M = 2 volatility regimes with a change point
in 1990M9. Looking now more closely at the impact effects on the individual
variables in the subperiods associated with M = 2, the p-value of 0.054 in
Table 1 is evidence that in particular the response of world oil inventories
has changed during the sample period. This result is supported for the case
of M = 3 volatility change points with a p-value of 0.083 when testing the
impact effect of oil inventories in the first against the second regime.

Results for Degasperi’s Shocks

We first consider the two Degasperi shocks together and test all their impact
effects jointly using the identification-robust test proposed by Bruns and
Lütkepohl (2022b). The advantage of the test is that it does not require
separately identifying the two shocks related to the two proxies. The p-values
are presented in Table 2 and offer clear evidence in favor of time-varying
impact effects of the shocks. For two volatility regimes, a p-value of 0.005 is
obtained. Moreover, for M = 3 volatility regimes a test of H0 : β(1) = β(3)
results in a p-value of 0.061 and, hence, rejects at a 10% level. Thus, there is
clear evidence in favor of a change during our sample. As there is no evidence
for a change during the last two volatility regimes from 1990M10-2019M12,
the tests overall support a change in 1990M9.

Of course, the joint test of all impact effects of both shocks jointly does
not allow us to assess which ones of the impact effects are time-varying. To
further investigate that issue, we consider the two shocks individually. The
corresponding results are presented in Table 1. Interestingly, none of the
p-values related to tests for the Degasperi-supply shock is smaller than 10%
such that the tests do not support time-varying impact effects of the supply
shock. Thus, the evidence for time-varying impact effects found with the
joint test is likely to be due only to varying impact effects of the Degasperi-
demand shocks. Indeed the evidence for a change in its impact effects in
1990M9 is quite clear in Table 1. For M = 2 volatility regimes the test
rejects at a 10% level and for M = 3 the null hypothesis H0 : β(1) = β(3) is
even rejected with a p-value of 1.1%. Considering the p-values of the tests for
the individual variables, there is some evidence for a change in the response
of prodt, invt, and cpiUS

t in 1990M9.
Overall our tests support time-varying impact effects of oil market shocks

during our sample period. It is interesting, however, that no evidence is found
for changes in the transmission of the Degasperi-supply shock. Of course, the
fact that changes in the transmission have occurred does not necessarily mean
that such changes are substantial. To investigate that issue in more detail,
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we consider the impulse responses in the following.

3.4 Impulse Responses

To assess the implications of our test results for the impulse responses more
generally, we have computed the responses to the Känzig and Degasperi
shocks and depict them separately for the period before and after 1990M9
in Figure 2. The confidence intervals in the figures are generated by a
moving block bootstrap (MBB) to allow for the possibility that there are
further changes in volatility before and after the gulf war. It was shown
by Brüggemann, Jentsch and Trenkler (2016) and Jentsch and Lunsford
(2019) that the MBB is asymptotically valid even in (conditionally) het-
eroskedastic structural VAR models. However, in small samples, the MBB
tends to produce wide confidence intervals and may not be very reliable (see
Brüggemann et al. (2016), Lütkepohl and Schlaak (2019), and Bruns and
Lütkepohl (2022a)).3 Unfortunately, the first volatility regime from 1984M1-
1990M9 is rather short so that the confidence intervals may not be very
reliable.

The confidence intervals for the impulse responses for the pre- and post-
1990M9 subperiods in Figure 2 in many cases overlap substantially implying
that the changes in the transmission process between the two subperiods may
not be dramatic. However, there are some more substantial changes in the
responses of the variables to the different shocks which are worth noting.

In line with the test results, the Känzig shocks, depicted in the left column
of Figure 2, lead to larger inventories in the post-1990M9 period. There
is also some indication that the U.S. variables ipUS

t and cpiUS
t react more

strongly to the shock post-1990M9. The responses to the Degasperi-supply
shock depicted in the middle column of Figure 2 are quite different. Only
for oil production the impulse responses do not overlap on impact. This
result is not surprising given that the tests for the Degasperi-supply shock
produce relatively large p-values and bearing in mind that this test has low
power given the weakness of the proxy. It is obvious that the confidence
intervals for the very short first volatility regime (1984M1-1990M9) are rather
wide. Overall there is some evidence of time-varying impulse responses of
the Degasperi-supply shock for our sample period. In particular, we confirm
Degasperi (2021)’s finding of a decline in world and U.S. industrial production
in response to an oil supply shock only for the period before 1990M9.

3Unlike other proxy VAR studies, we use Hall intervals instead of the usual percentile
intervals because the former have a build-in bias correction, see Kilian and Lütkepohl
(2017, Chapter 12).
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Finally, the impulse responses of the Degasperi-demand shock in the right
column of Figure 2 have non-overlapping confidence intervals for the pre-
and post-1990M9 periods for prodt, ip

World
t , ipUS

t , and cpiUS
t . For cpiUS

t , but
to a lesser degree also for prodt, that is well in line with our test results.
Especially the responses of prodt to supply and demand shocks indicates
that major changes must have occurred in the way oil producers respond
to oil production in other areas of the world. Perhaps the shale oil boom
in the U.S. in the post-1990M9 period has contributed to that change in
the oil market. Interestingly, a negative Degasperi-demand shock seems to
lead to a more severe reduction in U.S. IP in the more recent post-1990M9
period than a Degasperi-supply shock. Both the Degasperi-supply shock and
the Degasperi-demand shock lead to an increase in U.S. prices, confirming
Degasperi (2021)’s conclusion that these types of shocks present challenges
to monetary authorities.

Overall our results present substantial evidence that, even if we assume
that the VAR slope coefficients are time-invariant across our sample period,
there has been a change in the transmission of oil market shocks during our
sample period due to the change in the volatility of the shocks. Thus, it may
be worth taking that possibility into account in future studies of the global
crude oil market and its impact on the U.S. and the world economy.

4 Conclusions

We have pointed out that, in heteroskedastic structural VAR models, changes
in the transmission of the structural shocks can occur even if the reduced-
form VAR slope coefficients are time-invariant. Using this insight we have
investigated the transmission of oil market shocks that affect oil price expec-
tations based on monthly data for the period 1984M1-2019M12. Our model
includes six variables. Three of them are related to the global market for
crude oil (the real price of oil, world oil production, world oil inventories)
and three are key macro economic variables (world industrial production,
U.S. industrial production, U.S. consumer prices). We consider three oil
market shocks constructed from proxies that were proposed in the related
literature. One of the shocks is constructed to capture news on oil supply,
another one is capturing demand news, and a third one potentially reflects
both types of components. All three shocks affect oil price expectations. Al-
though we assume time-invariant slope coefficients of the VAR model for our
sample period, there is substantial evidence for a change in the transmission
of all three oil market shocks. In particular, our evidence suggests that the
responses of oil production, oil inventories, IP, and U.S. consumer prices are
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different before and after the 1990/91 gulf war. The specific change in the
responses of the variables depends on the shock considered.

Our findings suggest that it may be worth allowing for the possibility of
time-varying shock transmission in studying the impact of the oil market on
the macroeconomy if the model residuals are heteroskedastic instead of sim-
ply assuming time-invariance and using heteroskedasticity-robust inference.
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Table 1: Tests for Time-Varying Impact Effects (p-values)

Känzig proxy

M = 2 volatility regimes

T1 H0 joint prodt invt ipWorld
t ipUS

t cpiUS
t

1990M9 β(1) = β(2) 0.066 0.661 0.054 0.295 0.538 0.223

M = 3 volatility regimes

T1 T2 H0 joint prodt invt ipWorld
t ipUS

t cpiUS
t

1990M9 2005M4 β(1) = β(2) 0.632 0.909 0.083 0.651 0.836 0.775
β(1) = β(3) 0.150 0.468 0.176 0.290 0.535 0.121
β(2) = β(3) 0.805 0.635 0.794 0.499 0.617 0.176

Degasperi-supply proxy

M = 2 volatility regimes

T1 H0 joint prodt invt ipWorld
t ipUS

t cpiUS
t

1990M9 β(1) = β(2) 0.527 0.193 0.705 0.140 0.740 0.253

M = 3 volatility regimes

T1 T2 H0 joint prodt invt ipWorld
t ipUS

t cpiUS
t

1990M9 2005M4 β(1) = β(2) 0.372 0.196 0.740 0.150 0.740 0.149
β(1) = β(3) 0.963 0.652 0.730 0.431 0.860 0.985
β(2) = β(3) 0.992 0.849 0.844 0.857 0.957 0.667

Degasperi-demand proxy

M = 2 volatility regimes

T1 H0 joint prodt invt ipWorld
t ipUS

t cpiUS
t

1990M9 β(1) = β(2) 0.082 0.103 0.065 0.903 0.262 0.064

M = 3 volatility regimes

T1 T2 H0 joint prodt invt ipWorld
t ipUS

t cpiUS
t

1990M9 2005M4 β(1) = β(2) 0.521 0.705 0.301 0.591 0.525 0.704
β(1) = β(3) 0.011 0.021 0.090 0.479 0.333 0.041
β(2) = β(3) 0.871 0.683 0.623 0.409 0.950 0.243
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Table 2: Joint Tests for Time-Varying Impact Effects (p-values) of Degasperi
Shocks

M = 2 volatility regimes

T1 H0 joint

1990M9 B1:2(1) = B1:2(2) 0.005

M = 3 volatility regimes

T1 T2 H0 joint

1990M9 2005M4 B1:2(1) = B1:2(2) 0.931
B1:2(1) = B1:2(3) 0.061
B1:2(2) = B1:2(3) 0.996

Note: p-values based on the identification-robust test of Bruns and Lütkepohl
(2022b) for time-varying impact effects of both shocks jointly. B1:2(m) signi-
fies the elements of the impact effects matrix considered in volatility regime
m.
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Figure 1: OLS residuals of reduced-form VAR(12) model. The red line marks
September 1990.
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Figure 2: Responses to Känzig’s shock (left column), Degasperi-supply shock
(middle column) and Degasperi-demand shock (right column) with pointwise
68% confidence bands. Blue areas indicate confidence intervals for the pe-
riod from 1984M1-1990M9 and red areas represent confidence intervals for
the period from 1990M10-2019M12 (Hall intervals based on MBB with 5000
bootstrap replications).
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A Appendix

A.1 Construction of Oil Price Expectation Proxies

Känzig (2021) constructs his proxy in the following steps: First, he collects
changes, on the day of OPEC announcements, in oil price futures of maturi-
ties between 1 and 12 months. Second, he takes the first principal component
of these changes. Third, he aggregates the series to a monthly frequency by
summing up the changes within the same month and by setting the proxy
to 0 for months without an announcement. We use the proxy provided on
Känzig’s website at a monthly frequency.

To replicate Degasperi (2021)’s proxy construction, we proceed in the
following steps: First, we download Känzig (2021)’s composite oil surprise
series at OPEC meeting frequency from his website. Second, we construct a
series of day-on-day S&P500 returns at OECD meeting frequency (based on
the S&P500 composite price index; S&PCOMP provided via Datastream).
Third, we match these two series. Following Degasperi (2021), when the
stock market is closed on a day of an OPEC meeting, we employ the growth
rate of the day when the stock market reopens. Fourth, we construct an
oil supply surprise series as oil surprises on days when oil surprises and the
S&P500 return have the same sign and an oil demand surprise series as oil
surprises on days when the two have opposite signs. Lastly, we construct the
Degasperi oil supply and the Degasperi oil demand proxy by summing up
these two series separately to a monthly frequency, setting months without
a surprise to zero.

Our construction of oil supply and oil demand proxies is based on the com-
posite oil surprise measure at OECD meeting frequency provided by Känzig
(2021) and differs from Degasperi (2021) in the following ways: First, De-
gasperi (2021) employs 6 more dates than Känzig (2021) since Känzig (2021)
takes only the last day of OPEC conferences, while Degasperi (2021) takes
also days that are not the last for which there is a press release available on the
OPEC website. Second, Degasperi (2021) does not include the series for the
12 month ahead contract when estimating the composite surprise series via
principal components. Känzig (2021) includes this series. Third, Degasperi
(2021)’s proxies start from 1984M1 because the prices for the 11 months
ahead future contracts are available only from that date. Känzig (2021)
replaces the missing prices with zeros in the estimation of the principal com-
ponents. Fourth, there are three announcements (29/09/1993, 24/11/1993,
and 28/09/2016) for which Känzig (2021) computes the surprise on the day
after the OPEC announcement (presumably because markets were closed by
the time the announcement was made), while Degasperi (2021) computes it
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on the same day.

A.2 Variable Definitions and Data Sources

Table A.1: Data Description, Sources, and Sample Periods

Variable Description Source Sample period Transformation

Instrument
Känzig proxy WTI crude oil futures composite measure span-

ning the first year of the term structure (settle-
ment price); see A.1 for details

Känzig’s
website

1984M1 - 2019M12 none

Degasperi-supply Degasperi oil supply series; see A.1 for details own calcu-
lations

1984M1 - 2019M12 none

Degasperi-demand Degasperi oil demand series; see A.1 for details own calcu-
lations

1984M1 - 2019M12 none

Baseline
rpt WTI spot crude oil price (WTISPLC) deflated

by seasonally adjusted U.S. CPI (CPIAUCSL)
FRED 1984M1 - 2019M12 100*log

prodt World oil production Datastream 1984M1 - 2019M12 100*log
invt OECD crude oil inventories, calculated based

on OECD petroleum stocks (EIA1976) and
U.S. crude oil and petroleum stocks (EIA1533,
EIA1541), as in Kilian and Murphy (2014)

Datastream/
own calcu-
lations

1984M1 - 2019M12 100*log

ipWorld
t Industrial production of OECD + 6 (Brazil,

China, India, Indonesia, Russia and South
Africa) from Baumesiter and Hamilton (2019)

Baumeister’s
website

1984M1 - 2019M12 100*log

ipUS
t U.S. industrial production index (INDPRO, sea-

sonally adjusted)
FRED 1984M1 - 2019M12 100*log

cpiUS
t U.S. CPI for all urban consumers: all items

(CPIAUCSL, seasonally adjusted)
FRED 1984M1 - 2019M12 100*log
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Figure A.1: Data series used in the VAR (top) and proxies (bottom). See
Section A.1 for details on the construction of the Degasperi-supply proxy
(blue), the Degasperi-demand proxy (red) and the Känzig proxy (blue and
red).

20



A.3 More Detailed Results

Table A.2: Tests for Heteroskedasticity for Reduced-Form VAR Model

Period 1 versus Period 2 Test statistic p-value
1984M1-1990M9 versus 1990M10-2019M12 179.46 0
1984M1-1990M9 versus 1990M10-2005M4 89.62 1.88E-10
1984M1-1990M9 versus post-2005M4 141.83 0

1990M10-2005M4 versus post-2005M4 56.80 3.84E-5

Note: The LM test for heteroskedasticity described in Lütkepohl (2005, pp.
600-601) was used to test whether the residual covariance in period 1 is
different from the residual covariance in period 2.

Table A.3: Tests for Strengths of Proxies

Degasperi- Degasperi-
Känzig proxy supply proxy demand proxy

Sample period F -test robust F -test F -test robust F -test F -test robust F -test

1984M1 - 2019M12 14.16 8.54 3.91 3.08 10.54 5.77
1984M1 - 1990M9 5.21 4.71 0.49 4.40 5.41 4.73
1990M10 - 2019M12 8.47 6.00 3.59 2.20 4.81 4.03
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