Skip to content!

Search Publications

clear
0 filter(s) selected
close
Go to page
remove add
3 results, from 1
  • DIW Wochenbericht 13/14 / 2021

    Der gesellschaftliche Mehrwert verknüpfter Daten: Algorithmen als Entscheidungshilfen bei Antibiotikaverschreibungen

    Personendaten aus der Verwaltung (Administrativdaten) haben sich in den letzten Jahrzehnten als wichtige Basis zur Evaluierung von Politikmaßnahmen erwiesen. Durch maschinelles Lernen können basierend auf diesen Daten auch Vorhersagen getroffen werden, die zur Lösung gesellschaftlicher Problemstellungen beitragen. Hierzu gehören beispielsweise das Aufspüren von Steuerbetrug und eine bessere medizinische ...

    2021| Shan Huang, Michael Allan Ribers, Hannes Ullrich
  • Diskussionspapiere 1939 / 2021

    The Value of Data for Prediction Policy Problems: Evidence from Antibiotic Prescribing

    Large-scale data show promise to provide efficiency gains through individualized risk predictions in many business and policy settings. Yet, assessments of the degree of data-enabled efficiency improvements remain scarce. We quantify the value of the availability of a variety of data combinations for tackling the policy problem of curbing antibiotic resistance, where the reduction of inefficient antibiotic ...

    2021| Shan Huang, Michael Allan Ribers, Hannes Ullrich
  • Externe referierte Aufsätze

    Assessing the Value of Data for Prediction Policies: The Case of Antibiotic Prescribing

    We quantify the value of data for the prediction policy problem of reducing antibiotic prescribing to curb antibiotic resistance. Using varying combinations of administrative data, we evaluate machine learning predictions for diagnosing bacterial urinary tract infections and the outcomes of prescription rules based on these predictions. Simple patient demographics improve prediction quality substantially ...

    In: Economics Letters 213 (2022), 110360, 4 S. | Shan Huang, Michael Allan Ribers, Hannes Ullrich
3 results, from 1
keyboard_arrow_up