Intergovernmental bargaining in a two-tier three-party parliamentary system*

Maria E. Gallego¹ and David Scoones²

January 6, 2004

Abstract:

Policies in sub-national jurisdictions are the result of bargaining between government formateurs in three-party two-tier parliamentary system. A sub-national election determines the composition of the legislature. The chosen sub-national formateur bargains with its national counterpart over an intergovernmental policy. The agreement is taken to both legislatures for ratification. In equilibrium, policy depends on the identity and majority status of both formateurs, on their preferences and on the status quo policy. Through their choice of sub-national formateurs voters influence the intergovernmental policies. The degree of balancing depends on the chosen formateur and may be closer to the coalition partner’s ideal policy.

Keywords: strategic voting, legislative bargaining, intergovernmental bargaining, legislative ratification.

JEL Classification: D72, C72, P16

* Participants of the 2002 Canadian Public Economic Study Group meetings made valuable comments. Thanks are due to J. F. Wen for valuable comments. Financial support from the Society of Management Accountants of Ontario is gratefully acknowledged.

¹ Corresponding author. Department of Economics, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5, Voice: (519) 884-0710 ext. 2635; Fax: (519) 884-0201; mgallego@wlu.ca

² Department of Economics, University of Victoria, Victoria, BC, Canada V8W 2Y2, Voice: (250) 721-6198; Fax: (250) 721-6214; scoones@uvic.ca.
I. INTRODUCTION

In Canada the Federal and Provincial governments jointly determine many important policies (Simeon, 1972). Examples: education, health care, farm support, ... In some cases, policies are explicitly negotiated while in others the link is “strategic”, with policies chosen independently, but in reference to each other3.. If voters in all provinces were identical, and parties cared only about gaining office, this overlapping structure would play little role in determining voter behaviour. However, if parties care about policy per se or voters’ preferences differ across provinces, voters in a particular province might not expect the party elected at the federal level to represent their interest. Recognizing the interdependence of policy formation, rational voters should choose a provincial government that will negotiate the best possible policy, rather than vote for the provincial party closest to their own preferences. Such compensatory voting is known as “institutional balancing” has been well studied in two party systems with separately elected executive and legislative branches (Alesina and Rosenthal, 1995, 1996; Fiorina, 1996). In this paper we develop a model to explore the implications of institutional balancing in a federal system where voters, three parties and two levels of government are involved in the policy formation process.

The predictions of the model are consistent with the following facts of the Canadian political economy landscape. 1) Some Canadian voters have weak political allegiances 2) Federal governing parties lose votes in the subsequent provincial elections (Erikson and Filippov, 2001; Johnson, 1999). 3) Macro-politically, Canada often (albeit not always) exhibits divided government, with different parties governing at federal and provincial levels (see Table 3, Appendix B). 4) Voters occasional elect minority or coalition governments (see Table 1, Appendix B).

The model focuses on elections at the provincial level and takes as given the most recent results at the federal level and the existence of some “status quo” policy. The game has four stages

3 Sproule-Jones (1993) contends that the relationship between these two-levels of governments mimics cartel-like behavior.
with the following sequence of events. The provincial election determines the vote shares each party gets in the provincial legislature. Depending on those shares, at the second stage a provincial government formateur is chosen to negotiate with the federal government. In the third stage, the two levels of government engage in policy negotiations. These negotiations are modeled as an alternating offer game with risk breakdown (Binmore, Rubinstein and Wolinski, 1986). If no agreement is reached, the status quo prevails. If an agreement is reached, in the final stage, it is taken back to both legislatures for ratification. To be accepted, the agreement must be ratified by both legislatures; otherwise the status quo remains in place. Payoffs are realized, and the game ends.

The sequential Nash equilibrium of the game yields the following. 1) The equilibrium policy depends on the provincial election outcome, on majority or coalition status of the federal and provincial formateurs, on their policy preferences and on the location of the status quo policy. 2) Unless the policy preferences of either voters or parties are oddly distributed over the policy space, voters elect a different party than the one governing at the federal level. 3) Policy compromises may be reached in the provincial legislature when no party wins a provincial majority. 4) Additional compromises are negotiated when federal and provincial formateurs differ. 5) The range of policies that may be implemented depends on the location of the status quo. 6) There are many circumstances in which the status quo prevails, i.e., the status quo is difficult to change. 7) Strategic voting occurs, as certain voters would change their ballot if a different federal formateur were in power or if the location of the status quo changes.

Institutional balancing in two-tier governments theories are summarized in Section 2. Canadian institutional balancing is discussed Section 3. The model is developed in Section 4. The different components of the equilibrium are characterized in Section 5. Some extensions are

4 In Westminster parliamentary systems such as Canada, if the ruling party fails a vote of confidence in the legislature, the parliament dissolves and an election is called. Repeated elections are not modeled here, thus making votes of confidence irrelevant. The ratification vote is in a sense like a vote of confidence in this model as it makes the federal and provincial governing parties accountable to the legislatures. On votes of confidence see for example Diermeier and Feddersen (1998).
considered in Section 6. Final comments occupy Section 7.

2. INSTITUTIONAL BALANCING THEORIES IN TWO TIER SYSTEMS

Institutional balancing can only happen when two or more levels of government interact in the policy formation process and when these governments have different policy preferences. These preferences differ only if parties care about policy outcomes as well as forming government per se (Alesina and Rosenthal, 1995). In this paper, intergovernmental negotiations take place between parties representing their corresponding legislatures, and so we begin with a brief review of the literature on bicameral government.

As Tsebelis and Money (T&M, 1997) point out in their influential book, bicameral institutions were explicitly created with the purpose of introducing balancing into the policy formation process. For Buchanan and Tullock (1962) bicameralism prevents the “tyranny of the minority” in the sense that when policies have to be ratified by two legislative majorities, the representativeness of decision improves. Levmore (1992) and Riker (1992a, b) argue that the power of the agenda setter is greatly diminished in bicameral states, as a proposal acceptable to one chamber must survive the alternatives in the other. Riker shows that requiring concurrent bicameral majorities imposes more stringent conditions on policy making than those in a unicameral system. He shows the existence of a unique equilibrium in a one-dimensional policy space, but its absence in two or more dimensions. Consequently, Levmore and Riker conclude that multicameralism discourages decision making in multiple dimensions. Following their analysis, the current paper uses a unidimensional policy space.

The rules governing bicameral policy making are then relevant to the analysis. There are a variety of bicameral decision rules: the navette (or shuttle system), the conference committee, the

5 They argue that in unicameral majority systems, slightly more than one-quarter of the voters impose their policy preferences on the rest of the population, as half of the representatives in the legislature represent half of the voters in their constituencies.

6 In the navette system a policy goes back and forth between the two chambers until it is approved. Different modification rules limit the changes that each chamber can make.
join session, ultimate decision by one of the legislatures, and new elections. The Conference Committee proposes an agreement that needs to be ratified by the legislatures, usually under closed rule. In this paper, it is the formateurs, rather than a committee, who directly engage in policy negotiations.

One of the basic messages of Alesina and Rosenthal (1995, 1996) and Fiorina (1991, 1996) is that “divided governments” are more likely in systems with non-current elections as voters knowing the president’s party give control of the legislature to the other party. Policy outcomes are the result of the strategic actions of voters and of compromises between the presidency and the legislature. As the next section shows since early on Canadians have understood and used institutional balancing to their advantage.

3. INSTITUTIONAL BALANCING IN CANADA

The Canadian constitution places many policies under the responsibility of both federal and provincial governments (Bakvis, 1988; Brown, 1994; Pétry, 1995). This has been attributed to the fact that even though federal and provincial governments are relatively “autonomous”, they function within relatively “interdependent” frameworks (Simeon, 1972). The formal and informal channels along which political decisions are made suggest that Canada operates within an “executive federalism” where the two governing parties engage in consultation on policy issues (Simeon, 1972 and 1985; Smiley, 1970; Weaver, 1992). Policy outcomes are then modeled as the result of negotiations between the federal and provincial governing parties.

Moreover, Canadian parties are distinctly positioned on many policy issues. Parties have adopted different platforms (Irvine, 1986; Archer and Whitehorn, 1990); have advocated different policies (Simeon and Miller, 1980); and have activists that clearly defend different policies (Blake 1988; Archer and Whitehorn, 1990; Nadeau and Blais, 1990). Even though to survive parties have had to rebuild themselves on various occasions, they have done so by preserving the left-right

7 That is, dissolution when an impasse is reached. However, this possibility is ruled out in this paper.
continuum along which they have traditionally placed themselves (Campbell and Christian, 1996; Carty, et al., 2000). The periodic emergence of regional discontent has allowed new parties to surface at both the federal and provincial levels. Party’s policies preferences are then assumed to differ from one another and to be clearly defined along the left-right continuum.

Voters regularly elect different governing parties at the federal and provincial levels (see Table 3, Appendix B). As far back as 1867 Canada’s first prime minister, John A. Macdonald, said that “[p]arty politics tend to make the local governments a weapon against the central government...” (Johnston, 1980: 173). Underhill (1955, 1960) points out that while the Canadian Liberal party dominated federal politics for all but fifteen years between 1896 and 1957, voters gave provincial legislatures to non-liberal parties. In addition, Canada’s Westminster model of single-member districts elected by plurality rule rewards only the party that captures the most votes regardless of whether the electorate gave them a majority (Johnson, 1980; Weaver, 1992). Thus making large parties seem larger and small parties smaller than their vote share would demonstrate. Provincial voters then feel under-represented at the federal level and respond by electing a party different than the one governing at the federal level.

Moreover, between 1949 and 1997 the federal ruling parties consistently lost votes in provincial elections (Erikson and Filippov, 2001). This has been partially attributed to the fact that although federal and provincial electorates do not always consist of the same persons, party allegiance seems to change during relatively short periods of time (Archer, 1987; Blake, 1982; Campbell and Christian, 1996; Carty et al., 2000; Clarke and Kornberg, 1993; Johnson, 1980; and LeDuc, et al. 1984; Uslaner, 1990). Voters are assumed to care only about policy outcomes.

However, when thinking about policy making in Canada, it is necessary to take into account that three (more recently as many as five) parties have been elected to federal and provincial legislatures (see Table 3, Appendix B). Carty et al., 2000 argue that this is a reflection of the fact that

8 Under a closed rule, no legislative amendments to the proposal are allowed.
some regional parties have gained national although not widespread recognition. Even though voters generally elect majority governments at both levels, they have on occasion elected minority governments. In minority governments, a party is chosen to form the government. The formateur is sometimes the party obtaining the largest number of votes, at other times the formateur is one of the other parties. Formateurs in minority governments sometime govern—usually for very short periods of time—without a coalition partner (see Table 1, Appendix B).

4. THE MODEL

Two levels of governments represented by a (F)ederal and a (P)rovincial legislature coexisting within a representative province must negotiate a policy agreement that they take to the legislatures for ratification. We model this situation as a multistage game. The set of players consists of the (L)eft, (C)enter, and (R)ight parties acting in each legislature, and a large number of heterogeneous voters. With non-concurrent elections, and federal elections being outside the control of voters in a given province, the identity of the federal formateur and its majority or coalition status are taken as given at the start of the game. We also assume there is a “status quo” policy S in place at the beginning of the game. The focus is on the provincial election, on policy negotiations and on the ratification votes that follow. Thus all references to elections are implicitly at the provincial level. The game is then a slice of an infinitely repeated game.

Policy outcomes, denoted θ, are one-dimensional and, without further loss of generality, are taken to be elements of the interval $[0,1]$. There is a large but finite number of voters, distinguished by their ideal policies, distributed on the policy space according to $\Gamma(\theta)$. Preferences are assumed to be strictly concave over policy outcomes, $\theta \in [0,1]$. For a given policy θ that is implemented, player i with a most preferred policy is $\hat{\theta}_i$ receives a payoff of $u(\theta, \hat{\theta}_i)$. To simplify notation, $u(\theta, \hat{\theta}_i)$ may

9 The Bloc Quebecois and the Alliance-Reform parties are the latest political manifestations of regionalism.

10 Assuming that a status quo policy exists is perhaps not as restrictive as it appears, since in many cases “no policy” is quite naturally located on [0,1]. For example, no sales tax is a tax rate of zero.
be written $u_i(\theta)$.

Provincial parties are assumed to be identical to their federal counterparts and no distinction is made between the party and its appointed negotiator.11 Like voters, the three parties are characterized by ideal policies, $\hat{\theta}_j$ for $j \in \{L, C, R\}$. Parties differ in their ideal policies, with L’s to the left of C’s to the left of R’s, $0 \leq \hat{\theta}_L \leq \hat{\theta}_C \leq \hat{\theta}_R \leq 1$. We extend this ordering to all policies by assuming that the following single crossing condition holds:

\begin{align*}
\text{if } & \hat{\theta}_k \geq \hat{\theta}_j \text{ and } u_j(\theta^j) \geq u_j(\theta^0), \text{ then } u_k(\theta^j) \geq u_k(\theta^0) \text{ for all } \theta^1 \geq \theta^0 \geq \hat{\theta}_k \quad \text{(SC)} \\
\text{if } & \hat{\theta}_k \geq \hat{\theta}_j \text{ and } u_k(\theta^j) \geq u_k(\theta^0), \text{ then } u_j(\theta^j) \geq u_j(\theta^0) \text{ for all } \theta^1 \leq \theta^0 \leq \hat{\theta}_j
\end{align*}

For example, by SC party R is as willing as either other party to agree to any rightward shift in policy.

There are four stages to the game. First, given S and knowing the identity and degree of legislative control of the Federal government, citizens simultaneously vote to elect a provincial government. The three parties’ vote shares determine, at the second stage, the selection of a provincial formateur. In the third stage, the federal and provincial formateurs engage in intergovernmental negotiations. If the negotiations are delayed, they may break down, in which case the status quo remains in force. If instead an agreement is reached, in the fourth stage of the game it is taken back to the legislatures for ratification. To be accepted, the agreement must be ratified by both legislatures; otherwise the status quo prevails. The final outcome is denoted θ^*. On the basis of this policy, payoffs are realized and the game ends.

11 Not unreasonable as strong party discipline is exercised in most parliamentary democracies (Laver and Shepsle, 1996). The case were federal and provincial parties differ is considered at later date.
Each of these stages involves a distinct subgame. These are described in more detail next. The equilibrium of the whole game is constructed in the Section 5. The equilibrium depends crucially on the preset variables $F \in \{L,C,R\}$ and S, and in particular where the latter lies in the policy space. The various configurations generate a large number of combinations, many of which are qualitatively similar. In particular, the symmetry of the problem implies that one half the cases are simply “reflections” of the other half. To remove these reflections we assume that $S \in [0, \hat{C}]$.

(i) \textit{The Provincial Election}

Before the election, parties simultaneously choose their platforms. Since the final policy is the outcome of negotiations and ratification, to forecast the outcome of a party's election voters need to know more than the party’s “ideal policy”. Instead, voters need to know how a party will behave in post election policy negotiations, and this requires voters to know the party's preferences over all outcomes. We assume that parties do not value election per se, as they do in the classic model of Downs (1957), but rather seek election to influence policy. This lessens the pressure for platforms to converge at the median voter's preferences, but does not remove it altogether. Parties would like to commit to enacting a more politically acceptable policy, which despite differing from their most preferred, is nevertheless superior to the expected outcome should a competing party form government. However, the assumption that the game ends with no future elections means that a party promising to enact something other than its most preferred policy cannot be punished for reneging once elected. Note that when the provincial formateur has a legislative majority it has the ability to ratify any policy it agrees on with the federal formateur and punishment is irrelevant. When no party wins a provincial majority, the formateur needs the support of another party to get ratify the policy in the legislature. It is assumed that legislative policies become law and cannot be changed.\footnote{If the formateur is able to ignore legislative decisions, the legislature is irrelevant, so why bother modeling the legislature at all. In developed countries, governments are accountable to their legislatures as shown by the}
information) it implies that the only credible platforms are the party’s true preferences. Let \(u = (u_L, u_C, u_R) \) denote the list of preferences/platforms.

After observing platforms, each citizen simultaneously votes for a single party. This determines vote shares \(V^j \in [0, 1], j \in \{L, C, R\} \), where \(\sum V^j = 1 \). Let \(\mathbf{V} = (V^L, V^C, V^R) \) represent the vector of voting shares. Under proportional representation, these shares represent the weight each party receives in the legislature.

(ii) Selection of the Provincial Formateur

Once election results are known, the provincial legislature chooses a formateur to enter negotiations with the federal government. When party \(j \) wins a simple majority in the legislature, \(V^j \geq 1/2 \), it becomes the formateur. When no party wins a simple majority, a formateur is randomly chosen according to vote shares.\(^{13}\) An alternative assumption is that the formateur is chosen to be the party with the largest vote share, whether or not that share constitutes a majority. This adds an additional strategic element to voters’ decision problems beyond that introduced by intergovernmental bargaining. In particular, a voter’s perception of how likely a party is to garner the most votes would affect their choice of whom to support, as they attempt to coordinate their votes. With random selection, an individual’s vote increases the likelihood of any party forming government by an equal amount, so this coordination effect is absent. There is no obvious reason why the coordination effect would eliminate the strategic voting induced by bargaining. Rather than complicate the model and divert attention from the core point we are making, we make the simpler assumption of random selection.

(iii) Intergovernmental Negotiations

Once the provincial formateur has been determined, the game moves to the intergovernmental non-confidence votes that bring down governments and lead to early elections (not modeled here).

\(^{13}\) In Canada generally the party with the largest number of votes becomes the formateur, but there have been occasions in which the second and third largest parties in the legislatures form a coalition government, with the largest of two becoming the formateur (see Ontario in 1985 in Table 1, Appendix B). Diermeier and Merlo
bargaining stage, where a policy agreement \(a^{FP} \) is selected to take to the legislatures for ratification. Intergovernmental negotiations are modeled as a bargaining game of alternating offers with a risk of breakdown. This seems quite natural. Negotiations may breakdown when, for example, one of the formateurs randomly carries out the threat to walk away from the negotiating table as happened at the Meech Lake Accord in 1987 or the Charlottetown Accord Referendum in 1992.

The structure of the intergovernmental bargaining game of alternating offers is as follows. Formateurs take actions over a possibly infinite number of rounds. At each round one formateur proposes a policy agreement, \(a^{FP} \), that the other either accepts or rejects. If the offer is accepted, intergovernmental negotiations end, the game moves on to the policy ratification stage. If the offer is rejected, then with probability \(q \) negotiations breakdown, the status quo prevails and the game moves on to the ratification stage (where no further actions are required). If negotiations do not breakdown, in the next round the roles are switched: the formateur who rejected the offer makes a proposal, which, if accepted, is taken for ratification. If it is rejected there is again a \(q \) chance of breakdown, and then roles reverse once again. Previously rejected offers do not constrain the formateurs in subsequent rounds. Intergovernmental negotiations continue on in this fashion, until either an agreement is reached or negotiations break down.

After an agreement is reached, it taken to the legislatures for a simultaneous ratification vote. The ratification protocol specifies if the agreement passes the ratification vote in both legislatures, it is implemented. If at least one legislature vetoes it, the status quo policy prevails. When no party has a majority in the legislature, an agreement is ratified if it has the support of at least two parties in the legislature. Otherwise, the agreement is vetoed and the status quo prevails.

5. EQUILIBRIUM

A subgame perfect equilibrium of the entire game is found by solving backward through the stages of the game.

(1999) find evidence that in other parliamentary democracies formateurs are randomly chosen.
5.1 The Ratification Equilibrium

When the ratification stage is reached, the parties know the status quo, the election outcome, the identity and majority or coalition status of each formateur, and the intergovernmental policy agreement. Ratification requires a vote by each party in each legislature. If the intergovernmental agreement fails ratification the status quo remains in place. With identical parties and identical legislative bargaining games at both levels of government, the characterization of the ratification strategies and equilibrium behavior can be done for a representative legislature $h = F, P$.

Given policy preferences, u, a ratification strategy for party j is a pair of voting strategies $\gamma^j = (\nu^j_F, \nu^j_P)$. A voting strategy in legislature h is a map $\nu^h : [0,1] \times [0,1] \rightarrow \{0,1\}$ that transforms the status quo and the intergovernmental agreement into a decision to ratify ($\nu^h(a^{FP}, S) = 1$) or veto ($\nu^h(a^{FP}, S) = 0$) the intergovernmental agreement a^{FP} in legislature h, conditional on S. A rational party chooses its ratification strategy by comparing the payoffs from ratifying and from vetoing the intergovernmental policy agreement, i.e.,

$$u_j(a^{FP}, \gamma_{-j,F}, \gamma_{-j,P}) \text{ and } u_j(S, \gamma_{-j,F}, \gamma_{-j,P}) \text{ for } j \in L, C, R$$

where γ_{-jk} denotes the strategies used by all parties except j in legislature $h \in \{F,P\}$. Notice that j votes in legislature k taking as given the ratification strategies of the other parties in both legislatures and of its own party in the other legislature.

Given S and a^{FP}, a ratification equilibrium is a triple of mutual best-response legislative voting strategies $(\gamma^L_*, \gamma^C_*, \gamma^R_*)$ such that γ^k_* is weakly undominated for all $j \in \{L,C,R\}$. Let $\gamma^*(a^{FP}, S)$ denote the ratification equilibrium and let $\theta^*(a^{FP}, S \mid u)$ be the equilibrium policy outcome of the legislative ratification game in legislature h. $\theta^*(a^{FP}, S \mid u)$ maps the distribution of votes in legislature h, the status quo S, and the intergovernmental agreement a^{FP} into the binary set of outcomes $\{S, a^{FP}\}$. To take affect, an intergovernmental policy agreement must be ratified by both legislatures
\[\theta^* = a^{FP} \text{ if and only if } \theta_h^* = a^{FP} \text{ for } h = F, P. \]

In principle, we must construct a pair of simultaneous ratification equilibria, one for each legislature. However, with only two choices, no party can gain by strategically voting for different policies at the federal and provincial levels,\(^{15}\) so we need only consider a representative legislature. Below we refer to each party’s strategies as if there were only one ratification vote.

For any \(S \), let \(\Phi_j(S) = \{ \theta \mid u_j(\theta) \geq S \} \) define the set of policies party \(j \) prefers to \(S \). Since \(u_j \) is concave, these upper contour sets of \(S \) are convex. Given the single crossing property (SC), the bounds of these sets can be ordered. Denote the upper and lower bounds as \(\bar{\theta}_j \) and \(\underline{\theta}_j \). By the SC condition it must be that \(\underline{\theta}_L \leq \underline{\theta}_C \leq \underline{\theta}_R \) and \(\bar{\theta}_L \leq \bar{\theta}_C \leq \bar{\theta}_R \). Furthermore for all \(j \), if \(S \leq \hat{\theta}_j \) then \(\underline{\theta}_j = S \), and if \(\hat{\theta}_j \leq S \) then \(\bar{\theta}_j = S \).

Proposition 1 characterizes the equilibrium ratification function \(\theta_h^*(a^{FP}, S \mid u) \).

Proposition 1: Given \(S \in [0, \hat{\theta}_C] \) and the intergovernmental policy agreement, \(a^{FP} \), the equilibrium ratification function in legislature \(h \), \(\theta_h^*(a^{FP}, S \mid u) \) is as follows:

(i) If party \(j \) holds a majority in legislature \(h \), then

\[\theta_h^* = a^{FP} \text{ if and only if } a^{FP} \in \Phi_j \]

(ii) If no party holds a majority in legislature \(h \), then

\[\theta_h^* = a^{FP} \text{ if and only if } a^{FP} \in \Phi_C \]

Proof: (i) when a party holds a majority, it will only support a policy at least as good as \(S \). (ii) When no party holds a majority, the only possible coalitions involve \(C \). That is, (from condition SC) \(L \) and \(R \) can never form a coalition to ratify a policy that \(C \) would not also prefer to \(S \), and those outside

\(^{14}\) That is \(\theta^* = a^{FP} \) if \(\theta^* = a^{FP} \) for \(h = F, P \) and \(\theta^* = S \) otherwise.

\(^{15}\) To see this observe that, given the vote of the other parties, the only case in which \(j \)’s vote matters is if \(j \) is ratification pivotal, that is, if \(j \)’s vote determines whether \(a^{FP} \) passes the ratification vote in at least one legislature. Suppose that \(a^{FP} \) passes the vote in one legislature, and that \(j \) is pivotal in the other. When the agreement \(a^{FP} \) gives \(j \) a higher payoff than the status quo, \(j \)’s best response is to vote for \(a^{FP} \) in the legislature in which its vote is pivotal. But then voting for \(a^{FP} \) at the other legislature does not change the ratification outcome since \(j \) was not pivotal in that legislature. Casting identical votes in both legislatures does not change the outcome of the ratification vote so that \(j \) votes in identical manner in both legislatures. When \(j \) is pivotal and \(j \) gets the same payoff from both policies, a tie-breaking rule has to be specified, and we assume that \(j \) votes in favor of the party controlling the legislature.
\(\Phi_c \) are all strictly worse for C (by definition) and for either L or R than is some element of \(\Phi_c \). Formally, \(\Phi_j / \Phi_c \cap \Phi_k = \emptyset \), \(j, k = L, R, j \neq k \). Thus C is the coalition partner preferred by both L and R, and any viable coalition must ratify an element of \(\Phi_c \).

At the intergovernmental negotiation stage, the bargainers recognize that their agreement will only become policy if it is ratified by both legislatures and know the composition of the legislatures. Thus they will only agree to a policy that will fail ratification if they prefer the status quo. With this in mind, we now characterize the equilibrium of the intergovernmental bargaining game.

5.2 The Intergovernmental Bargaining Equilibrium

For some combinations of parties the intergovernmental negotiations are not bargaining problems at all. When the same party holds power in both tiers of government, there is no disagreement on the best policy. Even when opposing parties control the legislatures, the status quo may be Pareto Efficient. The following two lemmas address these “non-bargaining” situations. Lemma 1 describes the outcome of negotiations when the same party is formateur in both the Federal and Provincial legislatures.

Lemma 1: Given \(S \in [0, \hat{\theta}_c] \) and the rationally anticipated ratification function, if the same party \(j \) forms government in both legislatures then

(i) if \(j \) holds a majority in each legislature, then \(a^{FP} = \hat{\theta}_j \).

(ii) if \(j \) must form a coalition in either house to ratify, then

\[
a^{FP} = \begin{cases}
\max(\hat{\theta}_L, S) & \text{if } j = L \\
\hat{\theta}_C & \text{if } j = C \\
\min(\hat{\theta}_C, \hat{\theta}_R) & \text{if } j = R
\end{cases}
\]

Proof: The intergovernmental negotiators agree on their most preferred policy. If they form a majority in each house, they are able to ratify this policy (Proposition 1(i)); if they instead form a coalition (in either or both houses), then they must choose their most preferred policy subject to \(a^{FP} \in \Phi_c \) (Proposition 1(ii)). When \(S \leq \hat{\theta}_L, \hat{\theta}_L \in \Phi_c \), so if L is formateur (in both houses), it can
have its most preferred policy ratified; however, if \(S \geq \hat{\theta}_L \), then \(\Phi^*_L \cap \Phi^*_C = S \), so no policy L prefers to S can be ratified. When C is formateur, it can always attract the support of R for \(\hat{\theta}_C \), since \(S \leq \hat{\theta}_C \) implies \(\hat{\theta}_C \in \Phi^*_R \). Finally, R always wants to change the status quo, but when R’s most preferred policy is too extreme for C, R must moderate its demand to satisfy C, and choose a policy within C upper contour set for outcome S.

Lemma 2 describes the outcome of negotiations when the status quo itself is Pareto efficient.

Lemma 2: Given \(S \in [0, \hat{\theta}_C] \) and the rationally anticipated ratification function, if \(S \geq \hat{\theta}_L \) and party L is one of the formateurs, then \(a^{FP} = S \).

Proof: If S is right of L’s most preferred policy, it will never agree to any policy in \(\Phi^*_C \cup \Phi^*_R \) except S. (Recall that \(S \leq \hat{\theta}_C \leq \hat{\theta}_R \) implies that \(\hat{\theta}_C = \hat{\theta}_R = S \)). So there is no surplus to be bargained over in the intergovernmental negotiations. “Negotiations” either resolve on S or breakdown, leaving S in place.

The remaining configurations result in true bargaining problems, in the sense of Nash (1950). There exist outcomes preferred by both formateurs to S and disagreement over which of these policies is best. We model these negotiations as a bargaining game of alternating offers with a risk of breakdown. When any offer is refused there is an exogenous probability q that negotiations break down, leaving the status quo policy S in place.

The bargaining game of alternating offers with risk of breakdown is closely related to Rubinstein’s (1982) strategic bargaining model. Binmore, Rubinstein, and Wolinsky (1986) (henceforth BRW) demonstrate the direct correspondence between the limit of the subgame perfect equilibrium of the bargaining model when the time between periods and the risk of breakdown becomes small, and the Nash (1950) Bargaining Solution.\(^{16}\) In this translation, the status quo—the

\(^{16}\) An informal demonstration of this relationship is contained in Appendix 1. BWR also examine the
outcome if negotiations either continue indefinitely or break down—plays the role of the “threat point” in the Nash solution. We make use of BRW’s results and solve the bargaining game using the Nash Solution.17

The situation faced by the two formateurs is not completely standard, however, since here the negotiators are constrained by the ratification vote in both legislatures. So, rather than choosing an "outcome", the formateurs are choosing an argument to the function \(\theta^* (a^{FP}, S|u) \). Fortunately things are somewhat less complicated than they may at first appear. Since negotiators can always ensure that the status quo remains in place, bargaining will lead to some outcome in \(\Phi_F \cap \Phi_P \).

When the two formateurs \(F \neq P \) both hold majorities, ratification is guaranteed, and we are back to the standard model. But even when one or both formateurs does not hold a majority, if they can agree on a policy that is an improvement on \(S \) for both of them, them by definition is satisfies a majority in each house.18 Interestingly, the ratification stage only constrains the negotiators when they are not in a "true" bargaining game (i.e. in the circumstances of Lemma 1 (ii), where the constraint's effect is apparent).

Since we have assumed the parties are identical at the federal and provincial level and both parties have equal "bargaining power", the role of the federal and provincial formateurs are interchangeable. Suppose that \(j \) and \(k \), \(j \neq k \), are the two formateurs. Without loss of generality assume that \(\hat{\theta}_j < \hat{\theta}_k \). All of the bargaining problems (not covered by Lemmas 1 and 2) have the relationship between the Nash Bargaining Solution and the subgame perfect equilibrium in an alternating offer strategic bargaining model in which the parties are impatient. There, each party's discount rate enters as exponents, traditionally interpreted as “bargaining powers” in the generalized Nash Bargaining Solution, where the more patient player gains a larger share of the surplus. A fully dynamic extension to the present model, where each party faces a “future election”, would introduce time preferences into the intergovernmental bargain; presumably, the government with the closer election deadline would be more concerned to reach a deal, and thus would suffer the negative consequence of impatience reported by BWR.17 The required risk aversion follows directly from the concavity of the parties’ preferences over policy outcomes.

18 Notice that this relies on the parties having identical preferences at both levels of government. For the present issue, relaxing this assumption has the same effect as introducing more parties. In this case the ratification function may constrain the negotiators, since the fact that no single party has a majority does not
same structure: party j and k negotiate where

\[S \leq \hat{\theta}_j \leq \hat{\theta}_k \]

There are only three possible configurations: 1. j=L and k=C; 2. j=L and k=R; and 3. j=C and k=R.

The policies that make no formateur worse off than the status quo are in \(\Phi_j \cap \Phi_k \). The set of utilities over which the formateurs bargain are those associated with this set:

\[B_{FP}^{FP} = \{ u_F(\theta), u_p(\theta) \mid \theta \in \Phi_F \cap \Phi_p \} \]

Notice that \(\hat{\theta}_j \) and \(\hat{\theta}_k \) are in \(B_{FP}^{FP} \), and that for policies \(\theta \in [S, \hat{\theta}_j) \), the preferences of parties j and k are aligned: both prefer rightward policy changes. Thus, no acceptable policy is to the left of \(\hat{\theta}_j \). A similar argument shows that both parties will not agree to a policy right of \(\hat{\theta}_k \). Consequently the set of mutually acceptable intergovernmental policy agreements is the set between the ideal policies of the two formateurs. Nevertheless, including the "irrelevant alternatives" of the Pareto dominated set of agreements outside of \([\hat{\theta}_j, \hat{\theta}_k]\) does not affect the Nash Bargaining Solution\(^{19}\). The following is a graph of the set \(B_{FP}^{FP} \):

\[u_k(a_{FP}) \]
\[u_k(\hat{\theta}_k) \]
\[u_k(\hat{\theta}_k) \]
\[u_k(\hat{\theta}_j) \]

\[u_j(S) \]
\[u_j(\hat{\theta}_k) \]
\[u_j(\hat{\theta}_j) \]
\[u_j(a_{FP}) \]

imply that any coalition of two parties can does constitute a majority.

\(^{19}\) It is clear that these Pareto Dominated agreements will not maximize the Nash Product below.
Lemma 3. Given \(S \in [0, \hat{\theta}_C] \) and the rationally anticipated ratification function, if the Provincial and Federal formateurs represent different parties and the status quo is not Pareto Efficient, then the intergovernmental agreement is given by the Nash Bargaining Solution, and is characterized by the solution to
\[
\max_{u_f(\theta), u_p(\theta) \in \mathbb{R}} (u_f(\theta) - u_f(S))(u_p(\theta) - u_p(S))
\]

The unique solution to the intergovernmental negotiations is given by \((u_p(a^{FP}), u_p(a^{FP}))\).

Proof: This is an application of BRW Proposition 5. An informal demonstration is contained in Appendix 1.

A graph of the Nash Bargaining Solution follows:

![Graph of Nash Bargaining Solution](image)

Summarizing, Lemmas 1 - 3 demonstrate the following:

Proposition 2. Given party preferences, vote shares, and the status quo policy, intergovernmental negotiation leads to a unique policy agreement.

The following corollary states that policy agreements can be ranked.

Corollary: For a given federal formateur, the status quo, and anticipating the ratification vote the outcome intergovernmental negotiations associated with the three provincial formateurs can be ranked
\[
0 \leq \theta_L \leq a^{FL*} \leq a^{FC*} \leq a^{FR*} \leq \hat{\theta}_R \leq 1
\]
Proof: The following is a sketch of the proof. From the graph above and the SC property it is obvious that for a given federal formateur, a more right-wing provincial formateur will negotiate a more right-wing policy than a more left-leaning provincial formateur. The key to this proof is in understanding that when we fix the federal formateur, the set B^{FP} changes for each provincial formateur. Moreover, these sets do not overlap over the ideal policies of the federal and provincial formateurs involved. Recall that three possible configurations in the true bargaining situations are: 1. $j=L$ and $k=C$; 2. $j=L$ and $k=R$; and 3. $j=C$ and $k=R$. For configuration 1 and 2 the following graphs shows that the Pareto improving sets do not overlap. To see this examine the following graph.

![Graph showing the relationship between party preferences and policy agreements](image)

From the assumption on party’s preferences, it is clear that for party j, $u_j(\hat{\theta}_k) < u_j(\hat{\theta}_j)$ for the ideal policies of parties j and k. So that in particular as shown in the graph, $u_k(\hat{\theta}_C) < u_R(\hat{\theta}_R)$, this implies that the sets B^{LC} and B^{LR} do not intersect over the range of policies between the ideal policies of L and C.

20 Even if the ranking of policy agreements were not the same as the ranking of ideal points, the basic results of the model remain unchanged. Since voters are able to anticipate the outcomes, they rank parties on this basis, and pay no attention to the ideal points of the parties. Thus were it that, because its preferences are "softer", party R will negotiate to an agreement to the left that negotiated by C, voters would treat C as the party on the right, and the rest of the paper's results would follow.
In addition, the Nash Bargaining Product for \(j=L \) and \(k=C \) and for \(j=L \) and \(k=R \) we can see that since \(j \) is one of the formateurs is these configurations one of the components of the Nash Bargaining solution is fixed. Given the single crossing property, it is clear that over the range \([\hat{T}_L, \hat{T}_C] \) \(R \) gets lower payoff over this range than \(C \) does. The SC property guarantees that the equilibrium policy agreement under configuration \(j=L \) and \(k=C \) is an agreement closer to \(L \)’s ideal policy, and consequently, to the left of the policy agreement reach by configuration \(j=L \) and \(k=R \). A similar argument would hold if we compared configuration 1 with 3 or 2 with 3.

\[\square \]

5.3 Selection of the Provincial Formateur

The provincial formateur is selected according to vote shares. If a single party \(j \) receives a majority of votes \(V^j \geq 1/2 \) it forms government with probability one. Otherwise, the formateur is selected by randomly, where each party \(j \) forms government with probability \(V^j \). Thus, the probability that party \(j \) becomes provincial formateur is

\[
v^j = \begin{cases}
1 & \text{if } V^j \geq 1/2 \\
0 & \text{if } \max\{V^{-j}\} \geq 1/2 \\
V^j & \text{otherwise}
\end{cases}
\]

5.4 The Provincial Election21

Voters in the Provincial election know the preferences of each party, the identity and majority status of the Federal party, and the status quo. They recognize that the final policy outcome will depend on more than the ideal policy of the parties on the ballot, and they know the form of that dependence. That is, voters know \(\theta^*(a_{FP}, S) \), where \(a_{FP} \) is itself a function of both the outcome of the provincial election and the composition of the federal parliament. Voters of the same type are assumed to vote identically. Voters choose a mixed strategy \(\pi(\theta, S, a_{FP}, u) \) where \(\pi_j(\theta) \) is the probability that a voter with an ideal policy of \(\theta \) votes for party \(j \).

In light of the large number of voters, type \(\theta \) recognizes that, for some small \(\varepsilon > 0 \), the
probability of party j becoming formateur is \(v^j(\pi(\theta)) = \int \pi_j(\theta) d\Gamma + \varepsilon \pi_j(\theta) \). Voters of type i choose a mixed strategy to

\[
\max_{\theta \in \{L,C,R\}} E u(\theta) = \sum_{j \in \{L,C,R\}} v^j(\pi(\theta)) u_i(\theta^*)
\]

where \(\theta^* \) is the rationally anticipated policy outcome.

Notice that voters may be indifferent between two parties. For example in cases covered in Lemma 2, a voter who prefers the status quo to the ideal of party L will expect the same result from a victory by either R or C. In such cases we assume that voters vote for the party whose ideal point is closest to their own.

A voting equilibrium is a symmetric probabilistic voting strategy, \(\pi^* \) such that for all \(i \in [0,1] \) given \(S, F, \) the intergovernmental policy, the ratification policy, and the list of party’s preferences, \(u, \pi^*(S, F, u) \) is weakly undominated and maximizes \(i \)'s expected payoff.

Proposition 3 If \(\pi^* \) is a voting equilibrium then, \(i \) votes with positive probability only for the party that offers the highest payoff.

Proof: This is the analogue of Lemma 4 in Austen-Smith (2000).

Proposition 3 follows from the fact that voters have a very small amount of "electoral power", so voting for a party other than the one whose control of the legislature will lead to the highest payoff can only reduce expected utility. Observe that this is not a dominant strategy equilibrium, since the anticipated behaviour of all voters affects the returns to voting for any given party. For example, it might be the case that a voter prefers party R to become formateur with a minority to party C gaining control, but prefers party C to party R with a majority. See example 2 in section 6 below.

Given the single crossing condition, the voting equilibrium can be characterized by the location of two "marginal" voters partitioning the set of ideal points between supporters of the three

\(^{21}\) The first part of this section closely follows the election model of Austen-Smith 2000
parties. The voting equilibrium can be easily understood if we examine the location of the two “marginal” voters.

For a given federal formateur, let \(A^* = \{a^{FL}, a^{FC}, a^{FR}\} \) be the set of equilibrium policy agreements derived from the intergovernmental bargaining game. To understand the voting equilibrium, several scenarios of the distribution of voters, \(\Gamma(\cdot) \), are considered. The analysis proceeds taking as given the federal formateur, the status quo, and rationally anticipating the set of potential intergovernmental policies that can be ratified and thus implemented.

Suppose \(\Gamma(\cdot) \) is such that more than half of voters prefer the ratified policy agreement implemented by \(j \) to the policies ratified by the other two parties. In this case by voting for the party giving them their highest payoff these voters give \(j \) the legislative majority it needs to implement the policy they most prefer. Let those voting sincerely for \(j \) be the \(j \)-voters.\(^{22}\) Any other voting strategy could increase the chances that another party becomes formateur, an undesirable outcome for \(j \)-voters. The best strategy for \(j \)-voters is to vote sincerely for the party delivering the policy closest to their ideal policy.

In this case how non-\(j \)-voters cast their ballot does not affect electoral outcomes. Consequently, we assume that they also vote sincerely for the party that would deliver the policy agreement closest to their ideal policy.\(^{23}\) Under this assumption, \(L \)'s vote share is determined by the identity of the voter who is indifferent between voting for \(L \) and voting for \(C \). Let the marginal \(LC \)-voter be identified by \(\tilde{\theta}^{LC} \). It is clear that since the set of legislatives policies, \(A^* \), depends on the identity of the federal formateur and the location of the status quo, the location of \(\tilde{\theta}^{LC} \) also

\(^{22}\) This does not necessarily mean that citizens are voting for the party whose ideal policy is closest to them. Voters care about policy outcomes and not the party’s ideal policies. On this point see examples in Section 6.

\(^{23}\) This is not an unreasonable assumption as in countries with either proportional representation or first-past-the-post electoral systems in which at least three parties compete in the election voters usually elect at least three parties to the legislatures. That is, parties known at having no chance to form the government still get enough votes to be represented in the legislature. This could be explained in a repeated election game in which the electorate changes from one period to the next; or in a model where elected representatives can channel other types of public services to their constituencies; or in a model where a party learns to govern by being in the legislature. All of which are not modeled here. It could also be due to the fact that each party has
depends on F and S. R’s vote share is then determined by voters to the right of $\tilde{\theta}^{LC}$.

\[V^L(A^* | F, S, u) = \Gamma(\tilde{\theta}^{LC}) \]

where $\Gamma(\tilde{\theta}^{LC})$ represents the cumulative distribution of voters to the left of $\tilde{\theta}^{LC}$. The voter indifferent between voting for C and voting for R, the marginal CR-voter located at $\tilde{\theta}^{CR}$ also depends on F and S. Voters to the left of $\tilde{\theta}^{CR}$ vote for R. Thus, R’s vote share

\[V^R(A^* | F, S, u) = \Gamma(\tilde{\theta}^{CR}) \]

C’s vote share is then the cumulative distribution of voters between the marginal LC- and marginal CR-voter, and is given by

\[V^C(A^* | F, S, u) = \Gamma(\tilde{\theta}^{CR}) - \Gamma(\tilde{\theta}^{LC}) \]

To summarize, when by voting sincerely voters give a majority to the party giving them their highest payoff, there is no better strategy for any voter. For if voter i voted for the party implementing a policy that gives i a lower than its highest payoff, i is increasing the probability of this party becoming formateur, an undesirable outcome for i.

The more difficult question is what happens when under sincere voting by all voters no party wins a majority. The legislative bargaining protocol states that the formateur is randomly chosen according to vote shares. Is there a strategy that would give some voters a better policy outcome than if they voted for the party giving them their highest payoff?

The simplest of all the non-majority cases is where when under sincere voting by all voters all parties get identical vote shares, i.e., $V^j = 1/3$ for all j, leading to a legislative tie. Would any voter benefit by changing its sincere voting strategy? If voter i votes for a party that implements a policy that gives i a lower payoff, i is increasing the chances that this party becomes the next formateur, an undesirable outcome for i. Thus, the best i can do is to vote sincerely.

Even in cases where under sincere voting by all voters, party j gets the lowest vote share, the

a “hard-core” of supporters such as those volunteering during the campaign.
j-voters would not want to switch their vote to the party giving them their second highest payoff as by doing so they would decrease the chances of their preferred party becoming formateur and increasing the chances of their second most preferred party becoming the next formateur, an undesirable outcome for these voters. Their best strategy is to vote for the party implementing the policy closest to their ideal policy. The non-j-voters would not want to switch their voting strategy either as by doing so they would be increasing the chances that their second or third most preferred policy gets implemented.

To summarize, given the single crossing condition, the voting equilibrium can be characterized by the location of two "marginal" voters partitioning the set of ideal points between supporters of the three parties. With formateurs chosen randomly according to vote share, given the distribution of voters, the best strategy is for all voters is to vote for the party that will implement the policy closer to their ideal policy.

6. EXTENSIONS AND COMPARATIVE STATICS

The following section discusses some of the assumption in developing the model. We begin by removing the assumption of q converging to zero and examine how this affects the results. Then move on to look at how non-trivial changes in the status quo affect the equilibrium.

6.1 Impatience and probability of disagreement not converging to zero.

The equilibrium of the intergovernmental bargaining game was derived using BRW (1986) result of a correspondence between the alternating offers game (with probability q of breakdown when q tends to zero) and the one shot Nash Bargaining solution assuming that the formateurs were not impatient. If however these two assumptions are relaxed, that is if probability that negotiation breakdown is positive, q>0, and if we allow for time preferences then the version of Nash Bargaining Solution developed by Osborne and Rubinstein (1990, p. 87) can be used to discuss how this affects the intergovernmental bargaining equilibrium.

Given the strictly concave preferences over policy outcomes, a formateur's preferences over
policy lotteries satisfy the assumptions of von Neumann and Morgenstern and also satisfy assumption C1-C6 (p.82 of Osborne and Rubinstein). Let $\Delta > 0$ denote the delay between periods.

The intergovernmental bargaining game of alternating offers has a subgame perfect Nash equilibrium that is characterized by the following pair of agreements

\[(a_{FP}^*(q, \Delta), \tilde{a}_{FP}^*(q, \Delta)) \]

that satisfy the following two conditions where for any pair of policies a_0 and a_1 and any two time periods t and s, $q \cdot (a_0, t) \oplus (1-q) \cdot (a_1, s)$ denote the lottery in which (a_0, t) occurs with probability q and (a_1, s) occurs with probability $(1-q)$:

\[
\begin{align*}
\left(\tilde{a}_{FP}^*(q, \Delta), 0 \right) & \sim_P q \cdot (S, 0) \oplus (1-q) \cdot (a_{FP}^*(q, \Delta), \Delta) \\
\left(a_{FP}^*(q, \Delta), 0 \right) & \sim_F q \cdot (S, 0) \oplus (1-q) \cdot (\tilde{a}_{FP}^*(q, \Delta), \Delta)
\end{align*}
\]

that is, F is indifferent between a_{FP} at $t=0$ and \tilde{a}_{FP} at $t=1$ and vice versa for P.

As is well known, in this game whoever goes first has a first mover advantage. There is no reason any of the two formateurs should go first.\(^{24}\)

The graph depicting the Nash Bargaining solution must now be modified to incorporate the fact that $q > 0$, and $\Delta > 0$. For a more complete derivation of this argument see Appendix A.

\[
\begin{align*}
(u_F(a_{FP}) - u_F(S))(u_P(a_{FP}) - u_P(S)) \\
= \text{constant}
\end{align*}
\]

\(^{24}\) Though there might be a reason for the provincial parties to campaign saying that if elected they would be the first to start the negotiations.
The first mover advantage disappears if the formateur making the first offer is randomly chosen or as assumed in the main model (but not in this section) when q and Δ tend to zero.

This affects in turn the voting equilibrium, as there are now two policy agreements when casting their ballot for a particular party. If we assume that either the federal or provincial formateur go first then only one of the two choices above materializes and we are back to the main model. The two marginal voters are associated with whoever makes the first proposal.

If instead we assume that with probability $=1/2$ each formateur gets to start intergovernmental negotiations then the voting equilibrium changes as follows. Voter i makes decisions using expected payoffs where the expected payoff is over the payoffs derived from each formateur making the first offer.

$$
\max_{j \in \{L,C,R\}} E u(\theta) = \sum_{j \in \{L,C,R\}} \frac{v^i(\pi(\theta))}{2} \left\{ u_i(a_{FP}^*) + u_i(\tilde{a}_{FP}^*) \right\}
$$

where a_{FP}^* and \tilde{a}_{FP}^* are the equilibrium policy agreements implemented when either the federal or the provincial formateurs goes first. The probability of j being elected provincial formateur depends on the location of the two marginal voters. Of course a_{FP}^* and \tilde{a}_{FP}^* differ for different pairs of formateurs.

The marginal voters when one of the formateur is randomly chosen to begin negotiations would be between a left-most position determined by the formateur who has a the left-most ideal policy going first and by a right-most position determined by the formateur with the right most ideal policy when it goes first. Electoral outcomes can still be determined.

6.2 Changes in Status quo.

The following examples illustrate how strategic vote balancing is affected by intergovernmental bargaining and the location of the status quo. Assume agents have quadratic preferences
distinguished only by their ideal policies: an agent with ideal policy \(\theta \) preferences are represented by
\[
u(\theta, \hat{\theta}) = -(\theta - \hat{\theta})^2.
\]
Assume that these ideal points of the voters are distributed to approximate a uniform distribution on the zero-one interval. For each of the following cases, assume that the three political parties' preferences are given by
\[
\hat{\theta}_L = 0, \, \hat{\theta}_C = 1/2, \text{ and } \hat{\theta}_R = 1.
\]
Given this, were voters to vote for the party with preferences closest to their own, the provincial election would result in a partition of
\[
(0,0.25) \text{ vote for party } L \\
(0.25,0.75) \text{ vote for party } C \\
(0.75,1) \text{ vote for party } R
\]
Finally assume that party R holds a majority in the Federal house. This means that for each of the cases below there are five relevant outcomes to the provincial election: R wins a majority, R wins a minority, C wins a majority, L wins a majority, and L wins a minority. The remaining possibility that C wins a minority adds nothing by Lemma *, since an agreement acceptable to C will always attract the support of either L or R.

Example 1. Let \(S = 0 \). Thus the status quo is at party L's ideal point, and if it gains control of the provincial house this party will prefer indefinite delay in the negotiations to any change in the status quo. In contrast, the other parties will prefer to change the status quo. Formally, the outcomes of negotiation in the five cases are:

(i) R majority \(a^{FP} = \hat{\theta}_R = 1 \) \hspace{1cm} (Lemma 1(i))
(ii) R minority \(a^{FP} = \hat{\theta}_C = 1 \) \hspace{1cm} (Lemma 1(ii))
(iii) C majority or minority \(a^{FP} = 0.61 \) \hspace{1cm} (Lemma 3)
(iv) L majority \(a^{FP} = S = 0 \) \hspace{1cm} (Lemma 2)
(v) L minority \(a^{FP} = S = 0 \) \hspace{1cm} (Lemma 2)

Case (i) and (ii) have the same outcome since for \(S=0 \) party C is indifference between the status quo
and R's ideal. In case (iii) the agreement maximizes the Nash Product

\[(u(a^{FP}, \hat{a}_C) - u(S, \hat{a}_C)) \cdot (u(a^{FP}, \hat{a}_R) - u(S, \hat{a}_R))\]

For cases (iv) and (v) party L can ensure a deadlock in negotiations and cause its most preferred policy, the status quo, to prevail.

\[\text{Voting}\]

Voters understand the outcome of negotiation for each of the possible formateurs. In this example, it is a Nash equilibrium for each voter to vote for the party that, conditional on being selected formateur, would negotiate the outcome \(a^{FP}\) the voter most prefers. This induces the partition

\[
\begin{align*}
(0,0.305) & \text{ vote for L} \\
(0.305,0.80) & \text{ vote for C} \\
(0.80,1) & \text{ vote for R}
\end{align*}
\]

Comparing this to the "true" preferences of the voters, it is clear that party C still receives approximately the same vote share, and a substantial chance of forming government, but those supporters are drawn from a more right-leaning segment of the electorate. Consequently, party L's prospects have improved and those of party R have diminished as voters balance the influence of party R's control of the federal house.

\[\text{Example 2. } S=1/4. \text{ The function } a^{FP} \text{ is given by}\]

\[
\begin{align*}
(i) & \text{ R majority } a^{FP} = \hat{a}_R = 1 \quad \text{(Lemma 1(i))} \\
(ii) & \text{ R minority } a^{FP} = \hat{a}_C = 3/4 \quad \text{(Lemma 1(ii))} \\
(iii) & a^{FP} = 0.57 \quad \text{(Lemma 3)} \\
(iv) & a^{FP} = S = 1/4 \quad \text{(Lemma 2)} \\
(v) & a^{FP} = S = 1/4 \quad \text{(Lemma 2)}
\end{align*}
\]

Again party L prefers deadlock to any other potential agreement with C or R, but now party C's "power" is increased. If C is the provincial formateur it is able to negotiate an agreement it prefers relative to that in example 1. Also, if R fails to form a majority, C can use its veto power to constrain the party R from imposing the policy \(\hat{a}_R\).
Voting

In contrast to example 1, the requirement to ratify the policy agreement binds when party R forms a minority. Consider the perspective of a voter with preferences $\hat{\theta} = 3/4$. If this voter were faced with the choice of a majority for party R or a majority for party C, she would choose the latter. However, the best outcome is a party R with a minority. In a Nash Equilibrium, it must be that voters on the margin between voting for C and R recognize the true effect of switching to R. If this voter's ideal policy is strictly left of 0.5 the resulting distribution would provide R a majority; if the marginal voter is of type 0.5 or greater, the resulting distribution would provide R a minority. With this in mind, it is straightforward to check that the following is a Nash equilibrium:

$$\begin{align*}
(0,0.41) & \text{ vote for L} \\
(0.41,0.66) & \text{ vote for C} \\
(0.66,1) & \text{ vote for R}
\end{align*}$$

Both the extreme parties benefit from the rightward movement of the status quo. The center party is greatly reduced in power. The intuition is that with the much less extreme status quo, electing party C becomes a more credible way to moderate the extreme tendencies of party R, so C's "right wing" moves to support R. At the same time, many voters hesitant to let the extreme party L negotiate, are now less worried about the result of the (inevitable) deadlock.

7. CONCLUSION

This paper develops a model that explains how parties and citizens living in lower level jurisdictions in a two-tier government use the institutional balancing features of parliamentary systems to their advantage. The innovation of our model is that it endogencizes intergovernmental policy negotiations in a political-economy framework where both voters and parties influence not only the outcome of legislative bargaining in lower level governments but also the outcome of intergovernmental negotiations. The model incorporates two advantages of being a formateur: the ability of choosing a legislative policy closer to its ideal policy (even if subject to a compromise) and
the ability to use its policy preferences when engaging in intergovernmental negotiations.

The sequential Nash equilibrium of the game yields interesting results and predictions. 1) The equilibrium policy depends on the provincial election outcome, on majority or coalition status of the federal and provincial formateurs, on their policy preferences and on the location of the status quo policy. 2) Policy compromises may be reached in the provincial legislature when no party wins a provincial majority. 3) Additional compromises are negotiated when federal and provincial formateurs differ. 4) The range of policies that may be implemented depends on the location of the status quo. 5) There are many circumstances in which the status quo prevails, i.e., the status quo is difficult to change. 6) Strategic voting occurs, as certain voters would change their ballot if a different federal formateur were in power or if the location of the status quo changes. 7) Unless the policy preferences of either voters or parties are oddly distributed over the policy space, voters elect a different party than the one governing at the federal level.

The model predicts that some voters may vote for different provincial parties if they face different federal formateurs, thus giving a plausible explanation for some Canadian voters having weak political allegiances and for federal governing parties losing votes in subsequent provincial elections (Erikson and Filippov, 2001; Johnson, 1999). The model also predicts that citizens vote to balance unless voters or parties are oddly distributed over the policy space and so offers a credible explanation as to why macro-politically, Canada often (albeit not always) exhibits divided government, with different parties governing at federal and provincial levels. In addition, by allowing for three parties at both levels of government the model shows why Canadian voters occasional elect minority or coalition governments.

Though the model addresses issues relating to policymaking in Canada, the model makes useful predictions for other parliamentary systems. In particular, the model can be used to study the British parliamentary system where the UK parliament and the “new” sub-national Scottish and Welsh parliaments engage in policy negotiations. The model can also be applied to thinking about
issues regarding the European Union where countries and the representative of the European parliament engage on policymaking.

APPENDIX A: RUBINSTEIN AND NASH BARGAINING

Proposition 3 applies the result of BRW to the particular situation in this paper. This appendix provides a brief and incomplete summary of Rubinstein's (1982) bargaining model and its relationship to the Nash Bargaining Solution. An accessible reference to these issues is contained in Osborne and Rubinstein (1990).

Rubinstein's (1982) model examines the following "bargaining problem": what agreement will be selected by rational individuals with conflicting interests but a mutual desire to achieving an agreement? Rubinstein constructs an extensive form bargaining game of alternating offers. The goal is to divide a "pie". Each bargainer takes turns suggesting divisions; if a division is accepted the game ends, otherwise, roles switch and the other bargainer makes an offer. Bargainers prefer more to less, and prefer agreeing sooner to later. Surprisingly, for a broad class of preferences Rubinstein solves the game for a unique subgame perfect equilibrium outcome. One key restriction on preferences is stationarity, which means that agents' preferences over two divisions of the pie in two consecutive rounds do not depend on the specific (adjacent) periods considered. (Another important assumption is that the larger the anticipated share, the more costly is the delay in achieving it.) The present model, adapted from BRW (1986), differs from Rubinstein's basic model in that impatience for a solution comes not from discounting, but from the possibility that negotiations may breakdown, leaving in place the Pareto inferior status quo. This motive remains within scope of Rubinstein's model.

Subgame perfection requires that all "threats" to refuse an offer are credible, in that they must lead to situations in which those making the threats are indeed as well or better off after the rejection. Similarly, parties should not accept an agreement if there exists an alternative that they prefer and can obtain by refusing the agreement and making an acceptable counteroffer the
following round. These conditions are stringent and, in principle with an unlimited time horizon, numerous. It turns out that restricting attention to stationary preferences limits things considerably. Then the equilibrium can be derived from a pair of conditions on expected utility. Let the two formateurs be represented by parties 1 and 2.

\[u_2(a^{FP}) = (1 - q)u_2(\tilde{a}^{FP}) + qu_2(S) \]

(A1)

\[u_1(\tilde{a}^{FP}) = (1 - q)u_1(a^{FP}) + qu_1(S) \]

(A2)

Let party 1 be that chosen to first propose an agreement and party 2 be the first round respondent. To avoid breakdown, party 1 should in the first round make the best acceptable offer, \(a^{FP} \). If this offer is part of a subgame perfect equilibrium and is acceptable to party 2, the proposed agreement is as good now for party 2 as is waiting until the next round, risking the probability \(q \) of breakdown, and making the counterproposal it most prefers, \(\tilde{a}^{FP} \). This condition is expressed in A1. The counterproposal "threat" must be credible, requiring that party 1 would as well accept \(\tilde{a}^{FP} \) in round 2 rather than wait another round (face the risk of breakdown) and offer its most preferred, credible offer, \(a^{FP} \). This condition is expressed in A2.

When \(q > 0 \) the agreement reached differs depending on which party, F or P, is chosen to make the first offer. This is the case considered in Section 6. Figure A1 illustrates how, given the set of feasible agreements, these equations pin down the location of the two agreements \(a^{FP} \) and \(\tilde{a}^{FP} \).
The relationship with the Nash Bargaining Solution in the limit as $q \rightarrow 0$ can be observed as follows. Solving A1 and A2 for q and equating the results yields

$$\frac{u_1(a_{FP}) - u_1(\tilde{a}_{FP})}{u_1(a_{FP}) - u_1(S)} = \frac{u_2(\tilde{a}_{FP}) - u_2(a_{FP})}{u_2(\tilde{a}_{FP}) - u_2(S)}$$

Cross multiplying this expression, eliminating the common term $u_1(a_{FP})u_2(\tilde{a}_{FP})$ from and adding the term $u_1(S)u_2(S)$ to both sides of the result, and gathering terms shows that the pair of agreements are related by

$$(u_1(a_{FP}) - u_1(S))(u_2(a_{FP}) - u_2(S)) = (u_1(\tilde{a}_{FP}) - u_1(S))(u_2(\tilde{a}_{FP}) - u_2(S))$$

Which agreement, a_{FP} or \tilde{a}_{FP}, is reached depends on which party is chosen to make the first offer, but in either case the outcome lies on a level curve of the function $(u_1(\theta) - u_1(S))(u_2(\theta) - u_2(S))$.

See Figure A1. Moreover, in the limit as the probability of breakdown gets small, a single agreement will be offered by each party. That is, from A1 and A2,
\[\lim_{q \to 0} (u_i(a^{FP}) - (1-q)u_i(\hat{a}^{FP}) - qu_i(S)) = 0 \text{ for } i = 1,2 \]

so in the limit \(\hat{a}^{FP} = a^{FP} \). From Figure A1, it is clear that this agreement maximizes the Nash Product \((u_1(a^{FP}) - u_1(S))(u_2(a^{FP}) - u_2(S))\) over the set of feasible agreements.
Appendix B

Table 1

Elections and Party seats at Federal and Provincial Levels

<table>
<thead>
<tr>
<th>Election Date</th>
<th>Formateur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>minority (m)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>PC</th>
<th>CCF/NDP</th>
<th>SC</th>
<th>BQ</th>
<th>Ref/CA</th>
<th>L Prog.</th>
<th>PLQ</th>
<th>UN</th>
<th>PQ</th>
<th>RdeC</th>
<th>SKP</th>
<th>Other</th>
<th>Total SEATS</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-May-1979</td>
<td>PC m</td>
<td>114</td>
<td>136</td>
<td>26</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>282</td>
<td>141</td>
</tr>
<tr>
<td>18-Feb-1980</td>
<td>L</td>
<td>147</td>
<td>103</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>282</td>
<td>141</td>
</tr>
<tr>
<td>4-Sep-1984</td>
<td>PC</td>
<td>40</td>
<td>211</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>282</td>
<td>141</td>
</tr>
<tr>
<td>21-Nov-1988</td>
<td>PC</td>
<td>169</td>
<td>83</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>295</td>
<td>148</td>
</tr>
<tr>
<td>25-Oct-1993</td>
<td>L</td>
<td>177</td>
<td>2</td>
<td>9</td>
<td>54</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>295</td>
<td>148</td>
</tr>
<tr>
<td>2-Jun-1997</td>
<td>L</td>
<td>155</td>
<td>20</td>
<td>21</td>
<td>44</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>301</td>
<td>151</td>
</tr>
<tr>
<td>27-Nov-2000</td>
<td>L</td>
<td>172</td>
<td>12</td>
<td>13</td>
<td>38</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>301</td>
<td>151</td>
</tr>
</tbody>
</table>

ALBERTA (AB)

<table>
<thead>
<tr>
<th>Election Date</th>
<th>Formateur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>minority (m)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>PC</th>
<th>SC</th>
<th>BQ</th>
<th>Ref/CA</th>
<th>L Prog.</th>
<th>PLQ</th>
<th>UN</th>
<th>PQ</th>
<th>RdeC</th>
<th>SKP</th>
<th>Other</th>
<th>Total SEATS</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-Mar-1979</td>
<td>PC</td>
<td>0</td>
<td>74</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2-Nov-1982</td>
<td>PC</td>
<td>0</td>
<td>75</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>8-May-1986</td>
<td>PC</td>
<td>4</td>
<td>61</td>
<td>16</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>20-Mar-1989</td>
<td>PC</td>
<td>8</td>
<td>59</td>
<td>16</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>15-Jun-1993</td>
<td>PC</td>
<td>32</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>11-Mar-1997</td>
<td>PC</td>
<td>18</td>
<td>63</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>12-Mar-2001</td>
<td>PC</td>
<td>7</td>
<td>74</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

BRITISH COLUMBIA (BC)

<table>
<thead>
<tr>
<th>Election Date</th>
<th>Formateur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>minority (m)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>PC</th>
<th>SC</th>
<th>BQ</th>
<th>Ref/CA</th>
<th>L Prog.</th>
<th>PLQ</th>
<th>UN</th>
<th>PQ</th>
<th>RdeC</th>
<th>SKP</th>
<th>Other</th>
<th>Total SEATS</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-May-1979</td>
<td>SC</td>
<td>26</td>
<td>31</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>5-May-1983</td>
<td>SC</td>
<td>22</td>
<td>35</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>22-Oct-1986</td>
<td>SC</td>
<td>22</td>
<td>47</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>17-Oct-1991</td>
<td>NDP</td>
<td>17</td>
<td>51</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>28-May-1996</td>
<td>NDP</td>
<td>33</td>
<td>39</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>16-May-2001</td>
<td>L</td>
<td>77</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79</td>
<td>39.5</td>
</tr>
</tbody>
</table>

MANITOBA (MB)

<table>
<thead>
<tr>
<th>Election Date</th>
<th>Formateur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>minority (m)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>PC</th>
<th>SC</th>
<th>BQ</th>
<th>Ref/CA</th>
<th>L Prog.</th>
<th>PLQ</th>
<th>UN</th>
<th>PQ</th>
<th>RdeC</th>
<th>SKP</th>
<th>Other</th>
<th>Total SEATS</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-Oct-1977</td>
<td>PC</td>
<td>1</td>
<td>33</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>17-Nov-1981</td>
<td>NDP</td>
<td>23</td>
<td>34</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>18-Mar-1986</td>
<td>NDP</td>
<td>1</td>
<td>26</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>26-Apr-1988</td>
<td>PC m</td>
<td>20</td>
<td>25</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>11-Sep-1990</td>
<td>PC</td>
<td>7</td>
<td>30</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>25-Apr-1995</td>
<td>PC</td>
<td>3</td>
<td>31</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>21-Sep-1999</td>
<td>NDP</td>
<td>1</td>
<td>24</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
</tbody>
</table>

25 The three most important parties over the period of study are placed first. Other parties follow the list. For a list of federal and provincial and their acronyms in this table see Table 2.

26 Minority governments and their corresponding seats in the legislature in bold.
Table 1
Elections and Party seats at Federal and Provincial Levels

<table>
<thead>
<tr>
<th>Election Date</th>
<th>Formateur minority (m)</th>
<th>L</th>
<th>PC</th>
<th>CCF/NDP</th>
<th>SC</th>
<th>BQ</th>
<th>CA</th>
<th>Prog.</th>
<th>PLQ</th>
<th>UN</th>
<th>PQ</th>
<th>RdeC</th>
<th>SKP</th>
<th>Other</th>
<th>Total</th>
<th>SEATS 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW BRUNSWIK (NB)</td>
<td></td>
</tr>
<tr>
<td>23-Oct-1978</td>
<td>PC</td>
<td>28</td>
<td>30</td>
<td>58</td>
<td>58</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>29</td>
</tr>
<tr>
<td>12-Oct-1982</td>
<td>PC</td>
<td>18</td>
<td>39</td>
<td>1</td>
<td>58</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>29</td>
</tr>
<tr>
<td>13-Oct-1987</td>
<td>L</td>
<td>58</td>
<td></td>
<td></td>
<td>58</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>29</td>
</tr>
<tr>
<td>23-Sep-1991</td>
<td>L</td>
<td>46</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>58</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>29</td>
</tr>
<tr>
<td>11-Sep-1995</td>
<td>L</td>
<td>48</td>
<td>6</td>
<td>1</td>
<td>55</td>
<td>27.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>27.5</td>
</tr>
<tr>
<td>7-Jun-1999</td>
<td>PC</td>
<td>10</td>
<td>44</td>
<td>1</td>
<td>55</td>
<td>27.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>27.5</td>
</tr>
<tr>
<td>NEWFOUNDLAND (NF)</td>
<td></td>
</tr>
<tr>
<td>18-Jun-1979</td>
<td>PC</td>
<td>19</td>
<td>33</td>
<td>52</td>
<td>52</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td>26</td>
</tr>
<tr>
<td>6-Apr-1982</td>
<td>PC</td>
<td>8</td>
<td>44</td>
<td>52</td>
<td>52</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td>26</td>
</tr>
<tr>
<td>2-Apr-1985</td>
<td>PC</td>
<td>15</td>
<td>36</td>
<td>1</td>
<td>52</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td>26</td>
</tr>
<tr>
<td>20-Apr-1989</td>
<td>L</td>
<td>31</td>
<td>21</td>
<td>52</td>
<td>52</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td>26</td>
</tr>
<tr>
<td>3-May-1993</td>
<td>L</td>
<td>35</td>
<td>16</td>
<td>1</td>
<td>52</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td>26</td>
</tr>
<tr>
<td>22-Feb-1996</td>
<td>L</td>
<td>37</td>
<td>9</td>
<td>1</td>
<td>48</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>24</td>
</tr>
<tr>
<td>9-Feb-1999</td>
<td>L</td>
<td>32</td>
<td>14</td>
<td>2</td>
<td>48</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>24</td>
</tr>
<tr>
<td>NOVA SCOTIA (NS)</td>
<td></td>
</tr>
<tr>
<td>19-Sep-1978</td>
<td>PC</td>
<td>17</td>
<td>31</td>
<td>4</td>
<td>52</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td>26</td>
</tr>
<tr>
<td>6-Oct-1981</td>
<td>PC</td>
<td>13</td>
<td>37</td>
<td>1</td>
<td>1</td>
<td>52</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td>26</td>
</tr>
<tr>
<td>6-Nov-1984</td>
<td>PC</td>
<td>6</td>
<td>42</td>
<td>3</td>
<td>1</td>
<td>52</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td>26</td>
</tr>
<tr>
<td>6-Sep-1988</td>
<td>PC</td>
<td>20</td>
<td>29</td>
<td>2</td>
<td>1</td>
<td>52</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td>26</td>
</tr>
<tr>
<td>25-May-1993</td>
<td>L</td>
<td>40</td>
<td>9</td>
<td>3</td>
<td>52</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td>26</td>
</tr>
<tr>
<td>24-Mar-1998</td>
<td>L m</td>
<td>19</td>
<td>14</td>
<td>19</td>
<td>52</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td>26</td>
</tr>
<tr>
<td>27-Jul-1999</td>
<td>PC</td>
<td>11</td>
<td>30</td>
<td>11</td>
<td>52</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td>26</td>
</tr>
<tr>
<td>ONTARIO (ON)</td>
<td></td>
</tr>
<tr>
<td>18-Sep-1975</td>
<td>PC m</td>
<td>35</td>
<td>51</td>
<td>38</td>
<td>1</td>
<td>125</td>
<td>62.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>62.5</td>
</tr>
<tr>
<td>9-Jun-1977</td>
<td>PC m</td>
<td>33</td>
<td>58</td>
<td>33</td>
<td>1</td>
<td>125</td>
<td>62.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>62.5</td>
</tr>
<tr>
<td>19-Mar-1981</td>
<td>PC</td>
<td>33</td>
<td>70</td>
<td>21</td>
<td>1</td>
<td>125</td>
<td>62.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>62.5</td>
</tr>
<tr>
<td>2-May-1985</td>
<td>L m -NDP</td>
<td>48</td>
<td>52</td>
<td>25</td>
<td>125</td>
<td>62.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>62.5</td>
</tr>
<tr>
<td>10-Sep-1987</td>
<td>L</td>
<td>95</td>
<td>16</td>
<td>19</td>
<td>130</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>130</td>
<td>65</td>
</tr>
<tr>
<td>6-Sep-1990</td>
<td>NDP</td>
<td>36</td>
<td>20</td>
<td>74</td>
<td>130</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>130</td>
<td>65</td>
</tr>
<tr>
<td>8-Jun-1995</td>
<td>PC</td>
<td>30</td>
<td>82</td>
<td>17</td>
<td>1</td>
<td>130</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>130</td>
<td>65</td>
</tr>
<tr>
<td>3-Jun-1999</td>
<td>PC</td>
<td>35</td>
<td>59</td>
<td>9</td>
<td>103</td>
<td>51.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>103</td>
<td>51.5</td>
</tr>
</tbody>
</table>
Table 1
Elections and Party seats at Federal and Provincial Levels

<table>
<thead>
<tr>
<th>Election Date</th>
<th>Formateur minority (m)</th>
<th>L</th>
<th>PC</th>
<th>CCF/NDP</th>
<th>SC</th>
<th>BQ</th>
<th>Ref/CA</th>
<th>L Prog.</th>
<th>PLQ</th>
<th>UN</th>
<th>PQ</th>
<th>R de C</th>
<th>SKP</th>
<th>Other</th>
<th>Total SEATS 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>23-Apr-1979</td>
<td>PC</td>
<td>11</td>
<td>21</td>
<td>32</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>27-Sep-1982</td>
<td>PC</td>
<td>11</td>
<td>21</td>
<td>32</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>21-Apr-1986</td>
<td>L</td>
<td>21</td>
<td>11</td>
<td>32</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>29-May-1989</td>
<td>L</td>
<td>30</td>
<td>2</td>
<td>32</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>29-Mar-1993</td>
<td>L</td>
<td>31</td>
<td>1</td>
<td>32</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>18-Nov-1996</td>
<td>PC</td>
<td>8</td>
<td>18</td>
<td>27</td>
<td>13.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>17-Apr-2000</td>
<td>PC</td>
<td>1</td>
<td>26</td>
<td>27</td>
<td>13.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>

PRINCE EDWARD ISLAND (PEI)

QUEBEC (QC)

<table>
<thead>
<tr>
<th>Election Date</th>
<th>Formateur minority (m)</th>
<th>L</th>
<th>PC</th>
<th>CCF/NDP</th>
<th>SC</th>
<th>BQ</th>
<th>Ref/CA</th>
<th>L Prog.</th>
<th>PLQ</th>
<th>UN</th>
<th>PQ</th>
<th>R de C</th>
<th>SKP</th>
<th>Other</th>
<th>Total SEATS 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-Nov-1976</td>
<td>PQ</td>
<td>27</td>
<td>11</td>
<td>70</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>110</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>13-Apr-1981</td>
<td>PQ</td>
<td>42</td>
<td>80</td>
<td>122</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>122</td>
</tr>
<tr>
<td>2- Dec-1985</td>
<td>PLQ</td>
<td>99</td>
<td>23</td>
<td>122</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>122</td>
</tr>
<tr>
<td>25-Sep-1989</td>
<td>PLQ</td>
<td>93</td>
<td>28</td>
<td>125</td>
<td>62.5</td>
<td>4</td>
<td>125</td>
<td>62.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>12-Sep-1994</td>
<td>PQ</td>
<td>47</td>
<td>77</td>
<td>125</td>
<td>62.5</td>
<td>1</td>
<td>125</td>
<td>62.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>30-Nov-1998</td>
<td>PQ</td>
<td>48</td>
<td>76</td>
<td>125</td>
<td>62.5</td>
<td>1</td>
<td>125</td>
<td>62.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
</tr>
</tbody>
</table>

SASKATCHEWAN (SK)

<table>
<thead>
<tr>
<th>Election Date</th>
<th>Formateur minority (m)</th>
<th>L</th>
<th>PC</th>
<th>CCF/NDP</th>
<th>SC</th>
<th>BQ</th>
<th>Ref/CA</th>
<th>L Prog.</th>
<th>PLQ</th>
<th>UN</th>
<th>PQ</th>
<th>R de C</th>
<th>SKP</th>
<th>Other</th>
<th>Total SEATS 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-Oct-1978</td>
<td>NDP</td>
<td>17</td>
<td>44</td>
<td>61</td>
<td>30.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>26-Apr-1982</td>
<td>PC</td>
<td>55</td>
<td>9</td>
<td>64</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>20-Oct-1986</td>
<td>PC</td>
<td>1</td>
<td>38</td>
<td>64</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>21-Oct-1991</td>
<td>NDP</td>
<td>1</td>
<td>10</td>
<td>66</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>21-Jun-1995</td>
<td>NDP</td>
<td>10</td>
<td>5</td>
<td>68</td>
<td>29</td>
<td>1</td>
<td>58</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>16-Sep-1999</td>
<td>NDP</td>
<td>3</td>
<td>29</td>
<td>58</td>
<td>29</td>
<td>1</td>
<td>57</td>
<td>28.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
</tr>
</tbody>
</table>

Table 2
List of Parties

FEDERAL PARTIES

- L: Liberal
- BQ: Bloc Quebecois
- CCF/NDP: First called Co-operative Commonwealth Federation then changed name to New Democratic Party
- PC: Progressive Conservative
- Ref./CA: First called Reform Party then changed name to Canadian Alliance
- R de C: Ralliement des Créditiste
- SC: Social Credit

PROVINCIAL PARTIES

- L Prog.: Liberal Progressive
- PLQ: Parti Libéral du Québec
- UN: Unité Nationale
- PQ: Parti Québécois
- SKP: Saskatchewan Party

37
<table>
<thead>
<tr>
<th>Dates</th>
<th>Canada</th>
<th>ON</th>
<th>QC</th>
<th>BC</th>
<th>AB</th>
<th>MB</th>
<th>SK</th>
<th>NS</th>
<th>NB</th>
<th>NF</th>
<th>PEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979.05</td>
<td>PC * m</td>
<td>PC m</td>
<td>PQ</td>
<td>SC *</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1979.06</td>
<td>PC m</td>
<td>PC m</td>
<td>PQ</td>
<td>SC</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1980.02</td>
<td>L *</td>
<td>PC m</td>
<td>PQ</td>
<td>SC</td>
<td>PC</td>
<td>PC</td>
<td>PC m</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1981.03</td>
<td>L</td>
<td>PC *</td>
<td>PQ</td>
<td>SC</td>
<td>PC</td>
<td>PC</td>
<td>PC m</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1981.04</td>
<td>L</td>
<td>PC</td>
<td>PQ *</td>
<td>SC</td>
<td>PC</td>
<td>PC</td>
<td>PC m</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1981.10</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>SC</td>
<td>PC</td>
<td>PC</td>
<td>PC m</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1981.11</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>SC</td>
<td>PC</td>
<td>NDP *</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1982.04</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>SC</td>
<td>PC</td>
<td>NDP</td>
<td>PC *</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1982.09</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>SC</td>
<td>PC</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1982.10</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>SC</td>
<td>PC</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1982.11</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>SC</td>
<td>PC</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1983.05</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>SC *</td>
<td>PC</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1984.09</td>
<td>PC *</td>
<td>PC</td>
<td>PQ</td>
<td>SC</td>
<td>PC</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1984.11</td>
<td>PC</td>
<td>PC</td>
<td>PQ</td>
<td>SC</td>
<td>PC</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1985.04</td>
<td>PC</td>
<td>PC</td>
<td>PQ</td>
<td>SC</td>
<td>PC</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1985.05</td>
<td>L * m (NDP)</td>
<td>PQ</td>
<td>SC</td>
<td>PC</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1985.12</td>
<td>PC</td>
<td>L m (NDP)</td>
<td>PLQ *</td>
<td>SC</td>
<td>PC</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1986.03</td>
<td>PC</td>
<td>L m (NDP)</td>
<td>PLQ</td>
<td>SC</td>
<td>PC</td>
<td>NDP *</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1986.04</td>
<td>PC</td>
<td>L m (NDP)</td>
<td>PLQ</td>
<td>SC</td>
<td>PC</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1986.05</td>
<td>PC</td>
<td>L m (NDP)</td>
<td>PLQ</td>
<td>SC</td>
<td>PC</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1986.10</td>
<td>PC</td>
<td>L m (NDP)</td>
<td>PLQ</td>
<td>SC</td>
<td>PC</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1987.09</td>
<td>PC</td>
<td>L *</td>
<td>PLQ</td>
<td>SC</td>
<td>PC</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1987.10</td>
<td>PC</td>
<td>L</td>
<td>PLQ</td>
<td>SC</td>
<td>PC</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1988.04</td>
<td>PC</td>
<td>L</td>
<td>PLQ</td>
<td>SC</td>
<td>PC</td>
<td>PC</td>
<td>PC * m</td>
<td>PC</td>
<td>L</td>
<td>PC</td>
<td>L</td>
</tr>
<tr>
<td>1988.09</td>
<td>PC</td>
<td>L</td>
<td>PLQ</td>
<td>SC</td>
<td>PC</td>
<td>PC</td>
<td>PC m</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1988.11</td>
<td>PC *</td>
<td>L</td>
<td>PLQ</td>
<td>SC</td>
<td>PC</td>
<td>PC</td>
<td>PC m</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1989.03</td>
<td>PC</td>
<td>L</td>
<td>PLQ</td>
<td>SC</td>
<td>PC</td>
<td>PC</td>
<td>PC m</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1989.04</td>
<td>PC</td>
<td>L</td>
<td>PLQ</td>
<td>SC</td>
<td>PC</td>
<td>PC</td>
<td>PC m</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1989.05</td>
<td>PC</td>
<td>L</td>
<td>PLQ</td>
<td>SC</td>
<td>PC</td>
<td>PC</td>
<td>PC m</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1989.09</td>
<td>PC</td>
<td>L</td>
<td>PLQ *</td>
<td>SC</td>
<td>PC</td>
<td>PC</td>
<td>PC m</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1990.09</td>
<td>PC</td>
<td>NDP *</td>
<td>PLQ</td>
<td>SC</td>
<td>PC</td>
<td>PC</td>
<td>PC *</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1991.09</td>
<td>PC</td>
<td>NDP</td>
<td>PLQ</td>
<td>SC</td>
<td>PC</td>
<td>PC</td>
<td>PC *</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>1991.10</td>
<td>PC</td>
<td>NDP</td>
<td>PLQ</td>
<td>NDP *</td>
<td>PC</td>
<td>PC</td>
<td>NDP *</td>
<td>PC</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1993.03</td>
<td>PC</td>
<td>NDP</td>
<td>PLQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>PC</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1993.05</td>
<td>PC</td>
<td>NDP</td>
<td>PLQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1993.06</td>
<td>PC</td>
<td>NDP</td>
<td>PLQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

Note: Federal and provincial election date stared and bolded for easy identification. Official coalition partner if available in parentheses. For BC in 1949.06 two parties ran as coalition partners in election. See list of parties in Table 2. Provinces ordered using 2001 census from largest to smallest. ON=Ontario; QC=Quebec; BC=British Columbia; AB=Alberta; MB=Manitoba; SK=Saskatchewan; NS=Nova Scotia; NB=New Brunswick; NF=Newfoundland; PEI=Prince Edward Island.

27 Federal and provincial election date stared and bolded for easy identification. Official coalition partner if available in parentheses. For BC in 1949.06 two parties ran as coalition partners in election. See list of parties in Table 2. Provinces ordered using 2001 census from largest to smallest. ON=Ontario; QC=Quebec; BC=British Columbia; AB=Alberta; MB=Manitoba; SK=Saskatchewan; NS=Nova Scotia; NB=New Brunswick; NF=Newfoundland; PEI=Prince Edward Island.
<table>
<thead>
<tr>
<th>Dates</th>
<th>Canada</th>
<th>ON</th>
<th>QC</th>
<th>BC</th>
<th>AB</th>
<th>MB</th>
<th>SK</th>
<th>NS</th>
<th>NB</th>
<th>NF</th>
<th>PEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993.10</td>
<td>L *</td>
<td>NDP</td>
<td>PLQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1994.09</td>
<td>L</td>
<td>NDP</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1995.04</td>
<td>L</td>
<td>NDP</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1995.06</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1995.09</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1996.02</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1996.05</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1996.11</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1997.03</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1997.06</td>
<td>L *</td>
<td>PC</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1998.03</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1998.11</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1999.02</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1999.06</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1999.07</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1999.09</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>2000.04</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>2000.11</td>
<td>L *</td>
<td>PC</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>2001.03</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>NDP</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>2001.05</td>
<td>L</td>
<td>PC</td>
<td>PQ</td>
<td>L *</td>
<td>PC</td>
<td>PC</td>
<td>NDP</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

