SOEP-Core v36eu (Daten 1984-2019, EU-Edition)

Das Sozio-oekonomische Panel (SOEP) ist eine repräsentative Wiederholungsbefragung, die bereits seit 1984 läuft. Im Auftrag des DIW Berlin werden jedes Jahr Personen aus Haushalten in ganz Deutschland von unserem Erhebungsinstitut befragt. Die Daten geben Auskunft zu Fragen über Einkommen, Erwerbstätigkeit, Bildung oder Gesundheit. Weil jedes Jahr die gleichen Personen befragt werden, können langfristige soziale und gesellschaftliche Trends besonders gut verfolgt werden. Zur adäquaten Erfassung des gesellschaftlichen Wandels werden immer wieder Stichproben implementiert, sowie eine Anpassung des Erhebungsprogramms vorgenommen.

Datensatzinformation

Titel: Sozio-oekonomisches Panel (SOEP), Daten der Jahre 1984-2019, (SOEP-Core, v36, EU Edition)

DOI infoZur Erklärung von DOI und dessen Verwendung gibt es hier Informationen . : 10.5684/soep.core.v36eu
Erhebungszeitraum: 1984-2019
Veröffentlichungsdatum: 31.03.2021
PrimärforscherInnen: Stefan Liebig, Jan Goebel, Markus Grabka, Carsten Schröder, Sabine Zinn, Charlotte Bartels, Alexandra Fedorets, Andreas Franken, Martin Gerike, Florian Griese, Jannes Jacobsen, Selin Kara, Johannes König, Peter Krause, Hannes Kröger, Elisabeth Liebau, Maria Metzing, Jana Nebelin, Marvin Petrenz, David Richter, Paul Schmelzer, Christian Schmitt, Jürgen Schupp, Daniel Schnitzlein, Rainer Siegers, Hans Walter Steinhauer, Knut Wenzig, Stefan Zimmermann

Datenerhebung: Kantar Deutschland GmbH

Population: Personen in Privathaushalten in der Bundesrepulik Deutschland.

Anzahl der Haushalte: 19.032 (Quelle: SOEP Wave Report)

Anzahl der Personen: 32.050 + 3476 Kinder (Quelle: SOEP Wave Report)

Besondere Stichproben: BürgerIn der DDR (1990), Zuwanderung/Migration (1994/95, 2013, 2015), Geflüchtete (seit 2016). Eine ausführliche Beschreibung aller Stichproben können Sie im SOEPcompanion unter SOEP-Samples in Detail nachlesen.

Auswahlverfahren: Alle Samples des SOEP werden mittels mehrstufiger Stichprobenziehungen, die regional gebündelt sind, gezogen. Die Befragten (Haushalte) werden per random-walk oder per Registerstichprobe ausgesucht. 

Erhebungsverfahren: Die Methode der Datenerhebung des SOEP basiert auf einem Set von Fragebögen sowohl für die Haushalte als auch für die Individuen. Prinzipiell versucht die interviewende Person face-to-face-Interviews mit allen Haushaltsmitgliedern durchzuführen, die im Befragungsjahr 12 Jahre alt werden oder älter sind. Zusätzlich wird eine Person (Haushaltsvorstand) gebeten, einen Haushaltsfragebogen zu beantworten. Dort werden Fragen zu Wohnsituation und -kosten, verschiedenen Einkommensquellen sowie Fragen zu im Haushalt lebenden Kindern unter 12 Jahren (z.B. Besuch des Kindergartens, der Grundschule etc.) gestellt.

Zitation der Daten: Sozio-oekonomisches Panel (SOEP), Version 36, Daten der Jahre 1984-2019 (SOEP-Core v36, EU-Edition). 2021. DOI: 10.5684/soep.core.v36eu

Wenn Sie bei Ihrer Analyse nicht die Fälle der Migrations-Stichproben ausschliessen, dann zitieren Sie bitte auch:
IAB-SOEP-Migrationsstichproben (M1, M2), Daten der Jahre 2013-2019, DOI: 10.5684/soep.iab-soep-mig.2019

Wenn Sie bei Ihrer Analyse nicht die Fälle der Geflüchteten-Stichproben ausschliessen, dann zitieren Sie auch bitte auch: IAB-BAMF-SOEP-Befragung Geflüchteter (M3-M5), Daten der Jahre 2016-2019, DOI: 10.5684/soep.iab-bamf-soep-mig.2019

In Publikationen, die diese Datei verwenden, soll auf die oben genannte DOI infoZur Erklärung von DOI und dessen Verwendung gibt es hier Informationen . verwiesen und eine der folgende Referenzen zitiert werden:

  • Goebel, Jan, Markus M. Grabka, Stefan Liebig, Martin Kroh, David Richter, Carsten Schröder, and Jürgen Schupp. 2019. The German Socio-Economic Panel (SOEP). Jahrbücher für Nationalökonomie und Statistik 239 (2), 345-360. (https://doi.org/10.1515/jbnst-2018-0022)
  • Schröder, Carsten, Johannes König, Alexandra Fedorets, Jan Goebel, Markus M. Grabka, Holger Lüthen, Maria Metzing, Felicitas Schikora, and Stefan Liebig. 2020. The economic research potentials of the German Socio-Economic Panel study. German Economic Review 21 (3), 335-371. (https://doi.org/10.1515/ger-2020-0033)
  • Giesselmann, Marco, Sandra Bohmann, Jan Goebel, Peter Krause, Elisabeth Liebau, David Richter, Diana Schacht, Carsten Schröder, Jürgen Schupp, and Stefan Liebig. 2019. The Individual in Context(s): Research Potentials of the Socio-Economic Panel Study (SOEP) in Sociology. European Sociological Review 35 (5), 738-755. (https://doi.org/10.1093/esr/jcz029)

Für die SOEP-Core-Daten 1984-2019 (v36) - Wellen A bis BJ - stehen folgende Datensätze zur Verfügung:

soep.core.v36eu (EU Edition, 100%)

soep.core.v36i (International Scientific Use Version, 95%)

soep.core.v36t (Teaching Edition, 50%)

soep.core.v36at (Add-on: Area types)

soep.core.v36pr (Add-on: Planning regions)

soep,core.v36r (Remote Edition)

soep.core.v36o (Onsite Edition)

Ausführliche Informationen zu allen Editionen sind auf dem SOEPcompanion zu finden.

In der aktuellen Datenweitergabe komplett enthalten, auf spezielle Anfrage auch als Einzeldatensatz erhältlich:

soep.iab-soep-mig.2019 (Migrationsstichproben)

soep.iab-bamf-soep-mig.2019 (Geflüchtetenstichproben)

New samples in the main SOEP study

New Sample P

“Top Shareholder Sample”: Sample P was conceptualized as a sample of highly affluent households in Germany. Against the backdrop of the increasing income and wealth inequality in Germany over recent decades, despite economic growth, there has been a growing need for data on wealthy populations in the social sciences. Sample P was created to improve the empirical base for the German government’s poverty and wealth report and to lay the foundation for medium- and long-term cross-sectional and longitudinal analysis. The gross sample consisted of 23,259 households.

New Sample Q

“LGB* Sample”: Sample Q is a boost sample of a hard-to-survey population: lesbians, gays, bisexuals, transgender people, and those who identify as non-binary. While the actual percentage of LGBTQ+ people in the general population is unknown, this group was too scarcely represented in the SOEP to allow for meaningful analysis. 835 households were recruited through an approximately 9-month-long telephone screening process. Of these households, 477 participated in the survey between April and November.

Changes in our new main data format, SOEPlong

Dataset BIOL - Variables on recognition of occupational qualifications in samples M3-M5 and the CAMCES module (identifiable in the variable label by the abbreviation AA/AAC) were corrected. The slightly different biographical questionnaire for samples M1-M2 is no longer used, and variables on migration history have been added to the SOEP-Core biographical questionnaire, which is now used for all samples. The variables have been integrated, versioned, and harmonized in biol accordingly. The religious affiliation of the father and mother has been reversioned and harmonized to include the response option “konfessionslos” (no religious affiliation). Additional variables with occupational codes have been added. Some variables at the federal state level were included as East-West variables with the suffix _ew. Since bioresid and biosoc will no longer be part of the data distribution, some data processing steps for the variables in these datasets have been included in the versioning and harmonization routines for biol.

Dataset PL - Variables on balance of assets (identifiable in variable label by abbreviation VB) have been corrected, re-sorted, and labeled. Inheritance variables have been re-versioned. Religious background has been re-versioned and harmonized to include the response option “konfessionslos” (no religious affiliation).

Dataset HBRUTTO - Some regional variables at the federal state level have been included as East-West variables with the suffix _ew. New variables on incentive type, incentive model, and variables describing screening process for the LGB sample have been added. Residential environment variables (wum) will no longer be included in the survey starting in 2019.

Dataset PBRUTTO - Some regional variables at the federal state level have been included as East-West variables with the suffix _ew. New variables on DRV record linkage and IAB record linkage have been added. Variables have been added indicating which questionnaire was used.

Dataset JUGENDL - Since bioage17 will no longer be part of the data distribution, some of the data processing steps for bioage17 variables have been included in the versioning and harmonization routines for jugendl.

Dataset KIDLONG - k_nrkid has been corrected to count only 16-year-old children in the household. Households with children without a stated birth year have been assigned a missing value of -1. - bgk93_r/kd_cty_r included incorrect values and has been corrected.

Dataset PLUECKEL - lpid has been removed.

Dataset HBRUTT - Some regional variables at the federal state level have been included as East-West variables with the suffix _ew.

Introducing SOEP Data Editions and a new missing value to manage restricted-access information

Due to changes in data protection and privacy law, variables containing information on Germany’s federal states (Bundesländer) may not be transmitted to recipients outside the European Union. We have developed a new concept with different editions for the different data access procedures resulting from the change in law (listed in ascending order by the amount of information contained in each edition):

  • Teaching Edition (50% sample, doi:10.5684/soep-core.v36t)
  • International Edition (95% sample, doi:10.5684/soep-core.v36i)
  • EU Edition (100% sample, doi:10.5684/soep-core.v36eu)
  • Area Types (add-on for EU Edition: classification of areas, 100% sample, doi:10.5684/soep-core.v36at)
  • Planning Regions (add-on for EU edition: 96 planning regions, doi:10.5684/soep-core.v36pr)
  • Remote Edition (available through remote execution including counties, doi:10.5684/soep-core.v36r)
  • On-Site Edition (available only on site including municipalities, zip codes, and geo-coordinates, doi:10.5684/soep-core.v36o)

The default edition that we transmit to European users by sending them a personalized download link is the EU Edition. Some datasets may not be available in more restricted editions. If variables are not available in a more restricted edition, they are recoded to -7, a new missing value labeled “only available in less restricted edition”.

New datasets

Dataset BIOREGION

  • A new dataset on places in Germany that are of biographical importance to respondents (place of birth, first place of residence).
  • Information about the federal state of these important places is includes in the EU data edition. More localized information (county or municipality) is only available remotely or on site.

Dataset BIORESIDREFING

  • A new dataset on refugees’ place(s) of residence in Germany (Wohnorthistorie).
  • Information about the federal state in which refugees reside is included in the EU data edition. More localized information (county or municipality) is only available remotely or on site.

Dataset MORE_DOCU

  • A new dataset on the Mentoring of Refugees (MORE) project. Carried out in partnership with Start with a Friend (SWAF), this project aimed at bringing refugees and locals together to form friendships. This dataset contains information on German contacts provided to refugees.
  • Information about the federal state of the SWAF location is includes in the EU data edition. More localized information (county or municipality) is only available remotely or on site.

Dataset MORE_LOCAL

  • A new dataset on the Mentoring of Refugees (MORE) project. Carried out in partnership with Start with a Friend (SWAF), this project aimed at bringing refugees and locals together to form friendships. This dataset contains information from the surveys of the locals in the project.

Changes in datasets and individual variables

1. REGIONL

  • The dataset REGIONL includes regional information relating to household address, such as the municipality size, county, or zip code. Because most variables included in this dataset are only available in more restricted data editions, these variables are included with "-7" for all cases. However, users without access to the more restricted version can at least see the variable definitions and the structure of the dataset.

2. BIOIMMIG

Originally, BIOIMMIG was generated by appending each new wave of data to the data from the previous years. This practice bears potential for errors since the SOEP includes a large number of variables that need to be comparable over time. In order to minimize this potential for error, v36 of BIOIMMIG is the first version of the dataset that has been generated using longitudinal data.

Variable bireason “Main reason for moving to Germany”

  • The values for the variable bireason were changed due to incorrect integration of different variable versions. Previously, the version of the variable from the biographical questionnaire for samples A-L3, N was integrated into the version of the variable from the individual and biographical questionnaires for sample M1/2, which led to an inaccurate assignment of this variable. In addition, there are fewer cases with the variable bireason due to the removal of the variables "reasons for leaving country of origin" (biol: lr3136-lr3146) that were used. These variables had been integrated inaccurately into the bioimmig variable bireason.

Variable biscger “Attended school in Germany”

There has been a significant increase in cases due to the addition of further variables and the new migration questions from the biographical questionnaire. The variable “country of last school attendance” was only included as an indicator from wave bd (2013) onwards to generate the variable biscger. The corresponding long variable, lb0186_v1, also has values for the years 2001-2012.

Variable bicamp “Refugee residence Y, N”

Due to two newly added variables (lr3440, plm0679), there are significantly more cases with a value of "2 No".

Variables birelh[p|gp|c|sb|sh|dr|fr] “Family in Country of Origin”

Previously, in the generation process, it was not defined whether these variables should represent country of origin or country of residence or both. In the previous versions, the two were arbitrarily merged. The decision to include only the country of origin leads to a significant reduction of cases.

Variable birelhc2 "Underage children not in Germany”

Due to two newly added years (1997, 1999), there are significantly more cases with the value "2 No".

Variable biwfam "Already had family in country”

The variable biwfam was changed from a category (y/n) to a binary variable, since otherwise there would be a distortion of the content. The data generated previously were too imprecise, since the recoding to value “2 No” does not unambiguously exclude cases in which respondents have no family members in Germany.

For a closer look at the changes and variables used, see the bioimmig documentation.

3. HGEN

Variable hgtyp2hh in hgen

  • The variable no longer distinguishes the gender of single households, meaning that the old categories 11-16 were replaced with categories 11 (1-Person HH less than 35 years), 12 (1-Person HH 35 to less than 60 years), and 13 (1-Person HH greater than or equal to 60 years).

Datasets no longer distributed

Datasets BIOSOC, BIORESID, BIOAGE17

The datasets biosoc, bioage17, and bioresid will no longer be provided. Most of the information from biosoc and bioresid will be maintained in the biol dataset with different variable names. In jugendl, the variables from bioage17 are retained. In order to reduce the number of datasets and to avoid redundant information, we decided to include the variables from biosoc and bioresid in biol and bioage17 in jugendl. The generated data from biosoc, bioage17, and bioresid are reproduced in the best possible way in biol and jugendl by applying versioning and harmonization. Users who have used biosoc, bioage17, or bioresid should use this table to facilitate transition.

The datasets with the suffixes mig and refugees—for instance, bep_mig and bgp_refugees—are no longer available. This information from the migration and refugee samples is fully integrated into the associated “raw” and “long” files.

 


Individual (PAPI) 2019: Field-de Field-en
Individual (CAPI) 2019: Var-de
Household (PAPI) 2019: Field-de Field-en
Household (CAPI) 2019: Var-de
Biography (PAPI) 2019: Field-de Field-en
Biography (CAPI) 2019: Var-de
Catch-up Individual (PAPI) 2019: Field-de
Catch-up Individual (CAPI) 2019: Var-de
Youth (16-17-year-olds, PAPI) 2019: Field-de
Youth (16-17-year-olds, CAPI) 2019: Var-de
Early Youth (13-14-year-olds, PAPI) 2019: Field-de
Early Youth (13-14-year-olds, CAPI) 2019: Var-de
Pre-teen (11-12-year-olds, PAPI) 2019: Field-de
Pre-teen (11-12-year-olds, CAPI) 2019: Var-de
Mother and Child (Newborns, PAPI) 2019: Field-de
Mother and Child (Newborns, CAPI) 2019: Var-de
Mother and Child (2-3-year-olds, PAPI) 2019: Field-de
Mother and Child (2-3-year-olds, CAPI) 2019: Var-de
Mother and Child (5-6-year-olds, PAPI) 2019: Field-de
Mother and Child (5-6-year-olds, CAPI) 2019: Var-de
Parents and Child (7-8-year-olds, PAPI) 2019: Field-de
Parents and Child (7-8-year-olds, CAPI) 2019: Var-de
Mother and Child (9-10-year-olds, PAPI) 2019: Field-de
Mother and Child (9-10-year-olds, CAPI) 2019: Var-de
Deceased Individual (PAPI) 2019: Field-de
Deceased Individual (CAPI) 2019: Var-de

Alle Sample-spezifischen Fragebögen dieses Jahres und alle Fragebögen der vorherigen Befragungsjahre finden Sie auf dieser Seite

1) Handgreifkraftmessung im Sozio-oekonomischen Panel (SOEP) 2006 und 2008

2) The new IAB-SOEP Migration Sample: an introduction into the methodology and the contents

3) The Request for Record Linkage in the IAB-SOEP Migration Sample

4) Flowcharts for the Integrated Individual-Biography Questionnaire of the IAB-SOEP Migration Sample 2013

5) The Measurement of Labor Market Entries with SOEP Data: Introduction to the Variable EINSTIEG_ARTK

6) Job submission instructions for the SOEPremote System at DIW Berlin – Update 2014

7) SOEP 2015 – Informationen zu den SOEP-Geocodes in SOEP v32

8) Editing and Multiple Imputation of Item Non-response in the Wealth Module of the German Socio-Economic Panel

9) Die Vercodung der offenen Angaben zu den Ausbildungsberufen im Sozio-Oekonomischen Panel

10) Das Studiendesign der IAB-BAMF-SOEP Befragung von Geflüchteten

11) Scales Manual IAB-BAMF-SOEP Survey of Refugees in Germany – revised version

12) SOEP 2010 – Preparation of data from the new SOEP consumption module: Editing, imputation, and smoothing

13) SOEP Scales Manual (updated for SOEP-Core v32.1)

14) Kognitionspotenziale Jugendlicher - Ergänzung zum Jugendfragebogen der Längsschnittstudie Sozio-oekonomisches Panel (SOEP)

15) Die Vercodung der offenen Angaben zur beruflichen Tätigkeit nach der International Standard Classification of Occupations 2008 (ISCO08) - Direktvercodung - Vorgehensweise und Entscheidungsregeln bei nicht eindeutigen Angaben

16) Die Vercodung der offenen Angaben zur beruflichen Tätigkeit nach der Klassifikation der Berufe 2010 (KldB 2010): Vorgehensweise und Entscheidungsregeln bei nicht eindeutigen Angaben

17) Multi-Itemskalen im SOEP Jugendfragebogen

18) Zur Erhebung des adaptiven Verhaltens von zwei- und dreijährigen Kindern im Sozio-oekonomischen Panel (SOEP)

19) Documentation of ISCED Generation Based on the CAMCES Tool in the IAB-SOEP Migration Samples M1/M2 and IAB-BAMF-SOEP Survey of Refugees M3/M4 until 2017

20) Missing Income Data in the German SOEP: Incidence, Imputation and its Impact on the Income Distribution

21) SOEP 2006 – TIMEPREF: Dataset on the Economic Behavior Experiment on Time Preferences in the 2006 SOEP Survey

22) Assessing the distributional impact of "imputed rent" and "non-cash employee income" in microdata : Case studies based on EU-SILC (2004) and SOEP (2002)

Alle Dokumentationen zum Filtern finden Sie auf dieser Seite

keyboard_arrow_up