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1 Introduction

1.1 Overview

This course provides an introduction to dynamic econometric models and methods.

The course surveys linear and nonlinear econometric models and estimation tech-

niques, presenting them in a method of moments framework. While emphasizing

their applicability under general assumptions on the data generating process, the

emphasis will be on applications in time series analysis.

The first part of the course treats single equation models, while the second part

is devoted to systems of equations. Starting from a review of the linear regression

model (OLS, GLS, FGLS), the course revisits basic properties of stochastic processes

and their implications for time-series regressions, cast in the form of general autore-
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gressive distributed lag (ARDL) and error correction model (ECM) representations.

The second part of the course is devoted to estimation of systems of equations

that describe the joint evolution of several time series. The primary focus is on

vector autoregressive models (VARs). The concept of co-integration of time series

is introduced, and its implications for VARSs is explored in the context of the

vector error correction model (VECM) representation of VARs, as a multivariate

generalization of ECMs for AR(DL)s.

An supplementary section focusses on second moment properties of stochastic

processes. Specifically, it is devoted to time series models of heteroskedasticity which

play a prominent role in the analysis of the volatility of financial time series.

The course is designed as a two-day sequence of alternating lectures and practical

computer exercises. The applications in the computer practicals will use time series

data from microeconomic contexts, rather than macroeconomic series.

1.2 About these Notes

These notes are intended as a reference guide to the material covered in the course.

The lectures will follow the notes closely, but will focus on the main principles

and results, omitting much of the intermittent algebra. The presentation of the

course material rests on the kind of mathematical and statistical tools and the styles

of argument that microeconometricians are typically familiar with. The primary

objective is to provide an approach to econometric concept in time series analysis

that appeals to the intuitive understanding of microeconometricians, not a fully

rigorous delineation of results.
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2 Generalized Method of Moments Estimation

2.1 General Setup and Method of Moments Estimation

This section provides a basic review of Method of Moments estimation in the familiar

context of the linear regression model. It sets up the general framework and notation

in which the remainder of the course and these notes will proceed.

Consider data {(yt,x′
t), t = 1, · · · , T}, where yt denotes a scalar dependent (or

response) variable, while xt denotes a k × 1 vector of independent, exogenous co-

variates. Possible assumptions about the data generating process are:

1. distributional assumptions about the joint or conditional cumulative distribu-

tion function (CDF) F (y,X), or F (y|X) respectively, where y = (y1, · · · , yT )′

and X = (x1, · · · ,xT )
′; this setup gives rise to maximum likelihood estimation

(MLE);

2. conditional population moment assumptions:

(i) EY|X[yt|xt] = g(xt; θ0) a.s. for all t, where θ0 ∈ Θ ⊂ Rk is an unknown

parameter vector, and the function g is possibly nonlinear in θ0; in the

special case of linearity, EY|X[yt|xt] = x′
tθ0 a.s., the linear regression

model; in the latter case, this is equivalent to EY|X[yt − x′
tθ0|xt] = 0 a.s.

for all t;

(ii) continuing with the linear model, EY|X[(yt − xtθ0)
2|xt] = σ2

0 > 0 a.s. for

all t, which is referred to as conditional homoskedasticity.

Note: (i) by itself does not identify θ0, unless k = 1; (ii) identifies σ2
0. Based on (i),

unconditional moment conditions can be derived by iterated expectations:

EY|X[yt − x′
tθ0|xt] = 0 a.s.

⇒ xtEY|X[yt − x′
tθ0|xt] = 0 a.s.

⇒ EX

[
xtEY|X[yt − x′

tθ0|xt]
]

= 0

(i’) ⇒ EYX [xt(yt − x′
tθ0)] = 0 = m(yt,xt; θ0),
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i.e. k unconditional moments, which can identify θ0. Note also that (ii) holds

unconditionally as well: EYX[(yt − x′
tθ0)

2] = σ2
0 for all t.

The idea behind Method of Moments (MOM) estimation of θ0 and σ
2
0 is to replace

population moments by sample analogues (empirical moments, sample averages):

For any θ ∈ Θ,

moments in (i’): ET [xt(yt − x′
tθ)] =

1

T

T∑
t=1

xt(yt − x′
tθ) = mT (y,X; θ)

moments in (ii): ET [(yt − x′
tθ)

2)] =
1

T

T∑
t=1

(yt − x′
tθ)

2.

The MOM estimators θ̂T and σ̂2
T solve the empirical analogues to (i’) and (ii):

(iii) ET [xt(yt − x′
tθ̂T )] = 0

(iv) ET [(yt − x′
tθ̂T )

2)] = σ̂2
T .

In this linear model, the MOM estimator for θ0 is equivalent to the familiar OLS

estimator: (iii) implies

1

T

T∑
t=1

xt(yt − x′
tθ̂T ) = 0(

1

T

∑
t

xtx
′
t

)
θ̂T =

1

T

∑
t

xtyt

ET [xtx
′
t] θ̂T = ET [xtyt]

θ̂T = [ET [xtx
′
t]]

−1
ET [xtyt]

=

[∑
t

xtx
′
t

]−1∑
t

xtyt

= (X′X)
−1

X′y = θ̂OLS,

provided rk(X′X) = k. Hence, θ̂T is conditionally unbiased: E
[
θ̂T |X

]
= θ0. Its con-

ditional variance is var(θ̂T |X) = (X′X)−1X′var(y|X)X(X′X)−1; provided that the

yt are conditionally independent across t, i.e. that var(y|X) = σ2
0IT , the conditional

variance of the MOM estimator reduces to var(θ̂T |X) = σ2
0(X

′X)−1. In this case,

the MOM estimator enjoys all the properties of the OLS estimator, a direct conse-

quence of the Gauss-Markov Theorem which rests entirely on conditional moment
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assumptions: Suppose EY|X[y|X] = Xθ0 = [x′
tθ0]t=1,··· ,T , and var(y|X) = σ2

0IT ,

σ2
0 > 0; then θ̂T is the best linear unbiased estimator (BLUE), i.e. it is efficient (in

the sense of having minimum variance among all linear, unbiased estimators of θ0).

The moment conditions (iv), involving second moments, yield

σ̂2
T =

1

T

∑
t

(yt − x′
tθ̂T )

2 =
T − k

T
s2T ,

where s2T is the OLS estimator of σ2
0. This implies that the MOM estimator σ̂2

T is

biased in small samples (finite T ).

2.2 Variants and Generalizations

2.2.1 IV and 2SLS

Suppose that the previous population orthogonality conditions between xt and resid-

uals yy − x′
tθ0 do not hold, but that for some vector of instruments zt, for any t,

EYX|Z[yt − x′
tθ0|zt] = 0 a.s.

EYXZ[zt(yt − x′
yθ0)] = 0 (1)

var(y|X,Z) = σ2
0IT ,

where Z = (z1, · · · , zT )′.

Suppose (i) dim(zt) = dim(xt) = dim(θ0) = k, in which case θ0 is just identified

by (1). Then, the sample analogue to (1) is

ET [zt(yt − xtθ̂IV )] = 0 ⇒ θ̂IV = (Z′X)−1Z′y,

provided rk(Z′X) = k. Under the conditional homoskedasticity assumption above,

the instrumental variable (IV) estimator θ̂IV has conditional variance var(θ̂IV |X,Z) =
σ2
0(Z

′X)−1Z′Z(Z′X)−1, which reduces to the conditional variance of the OLS esti-

mator when X is a valid array of instruments, i.e. when the orthogonality conditions

(1) hold with zt = xt.

Suppose (ii) dim(zt) = m > k. In this case, θ0 is over-identified by (1), which is

now a system of m (rather than k) equations, and Z′X is an m× k matrix, i.e. it is
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not square. Let PZ = Z(Z′Z)−1Z′, the orthogonal projector onto the column space of

Z, col(Z).; recall that orthogonal projectors are idempotent and symmetric. Then,

orthogonality of y −Xθ0 and Z according to (1) implies orthogonality of y −Xθ0

and X′PZ, so that

EYXZ[X
′PZ(y−Xθ0)] = 0 (1’)

is a system of k unconditional moment conditions. The sample analogue to (1’) is

1

T
X′PZ(y−Xθ̂2SLS) = 0

θ̂2SLS = (X′PZX)−1X′PZy (provided rk(X′PZX) = k)

= (X′PZP
′
ZX)−1X′PZy

= (X̂
′
X̂)−1X̂

′
y,

where X̂ = PZX are the fitted values from the regression of the columns of X

onto Z, i.e. only those components of X which are orthogonal to y −Xθ0 accord-

ing to (1). The conditional variance of the 2SLS estimator is var(θ̂2SLS|X,Z) =

σ2
0(X

′PZX)−1. Note that, if dim(zt) = k and rk(Z′X) = k, then (X′PZX)−1 =

(X′Z(Z′Z)−1Z′X)−1 = (Z′X)−1Z′Z(X′Z)−1 = (Z′X)−1Z′Z((Z′X)−1)′, i.e. the con-

ditional variance collapses to the one of the IV estimator. Note also, for future

reference, that the conditional variances of the IV moment functions are

var(Z′(y−Xθ0)|X,Z) = σ2
0(Z

′Z) = var(Z′(y−Xθ0)|Z).

2.2.2 Non-scalar Variance-Covariance Matrix

Suppose, as at the outset, that EYX[xt(y − x′
tθ0)] = 0 for all t, but var(y|X) = Ω,

a positive definite, symmetric T × T matrix. This change in the second moment as-

sumptions can be expected to affect the second moment properties of the OLS/MOM

estimator θ̂T , i.e. its conditional variance-covariance matrix and, thereby, its effi-

ciency.

As before, the moment conditions involving the first moments yield the OLS/MOM

estimator for θ0, θ̂T = (X′X)−1X′y. The second moment assumptions, however, now
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imply

var(θ̂T |X) = (X′X)−1X′var(y|X)X(X′X)−1

= (X′X)−1X′ΩX(X′X)−1.

The Gauss-Markov Theorem implies that, while θ̂T is still conditionally unbiased, it

is no longer efficient. Note also: The conditional variance of the moment functions

is now var(X′(y−Xθ0)|X) = X′ΩX.

Consider the special case of conditional heteroskedasticity in which var(y|X) =

diag(σ2
1, · · · , σ2

T ). In this case, the conditional moment functions h(yt,xt; θ0) =

yt − x′
tθ0 have conditional variances var(yt − x′

tθ0|xt) = σ2
t for any t. In contrast to

the homoskedastic case, this suggests to weight the conditional moment functions

inversely proportional to their respective conditional variances, so that more infor-

mative (precise) moment conditions receive higher weight. Following this logic, the

weighted conditional moment functions are 1
σ2
t
h(yt,xt; θ0) = 1

σ2
t
(yt − x′

tθ0), so that

the weighted conditional moments are

EY|X

[
1

σ2
t

(yt − x′
tθ0)

∣∣∣∣xt

]
= 0 a.s.,

and the weighted unconditional moments are

EYX

[
xt

1

σ2
t

(yt − x′
tθ0)

]
= 0.

Their sample analogues are

ET

[
xt

1

σ2
t

(yt − x′
tθ̂GLS)

]
=

1

T

∑
t

xt
1

σ2
t

(yt − x′
tθ̂GLS) = 0

⇔ 1

T
X′Ω−1(y−Xθ̂GLS) = 0, where Ω−1 = diag(

1

σ2
1

, · · · , 1

σ2
T

)

⇒ θ̂GLS = (X′Ω−1X)−1X′Ω−1y,

provided rk(X′Ω−1X) = k. The conditional variance of the GLS estimator is

var(θ̂T |X) = (X′Ω−1X)−1. Note that homoskedasticity is a special case in which

Ω = σ2
0IT , θ̂GLS = θ̂OLS and var(θ̂T |X) = (X′Ω−1X)−1 = var(θ̂OLS|X) = σ2

0(X
′X)−1.

The GLS estimator is efficient among linear, unbiased estimators under the above

assumptions. In this framework, θ̂GLS has the interpretation of efficient MOM esti-

mator.
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The GLS estimator above is only feasible if Ω is known. If it is not known, it

needs to be estimated, based on first-stage residuals obtained from consistent, but

inefficient OLS estimation of θ0. Once a consistent estimator Ω̂T is obtained, θ0 can

be re-estimated in a second step, using Ω̂T in lieu of Ω:

θ̂FGLS = (X′Ω̂−1
T X)−1X′Ω̂−1

T y.

This feasible GLS (FGLS) estimator is asymptotically equivalent to the infeasible

GLS estimator, i.e. it is asymptotically efficient.

2.3 Generalized Method of Moments

This line of reasoning suggests that it is generally beneficial (in the sense of efficiency)

to weight moment functions by their conditional variances. The Generalized Method

of Moments (GMM) proceeds in this fashion.1

To illustrate this, re-consider the instrumental variable set-up above, with dim(zt) =

m ≥ k and var(y|X,Z) = σ2
0IT . In this case, as shown above, the moment functions

zt(yt − x′
tθ0) have conditional variance var(Z′(y−Xθ0)|X,Z) = σ2

0(Z
′Z).

Starting with an arbitrary positive definite, symmetric weighting matrix Σ of

dimension m×m, the GMM estimator minimizes the generalized distance from zero

of the empirical moments, relative to the metric defined by Σ:

θ̂GMM = argmin
θ∈Θ

ET [Z′(y−Xθ)]
′
ΣET [Z′(y−Xθ)] .

The first-order conditions of the minimization problem define the GMM estimator

θ̂GMM ; in this case:

(y−Xθ̂GMM)′ZΣZ′X = 0

θ̂GMM = (X′ZΣZ′X)−1X′ZΣZ′y,

1Hansen, L.P. (1982): “Large Sample Properties of Generalized Methods of Moments Estima-

tors”, Econometrica, 50(4), 1029-1054; and Hansen, L.P. and K.J. Singleton (1982): “Generalized

Instrumental Variables Estimators of Nonlinear Rational Expectations Models”, Econometrica,

50(5), 1269-1286.

8



with conditional variance

var(θ̂GMM |X,Z; Σ) = (X′ZΣZ′X)−1X′ZΣZ′σ2
0ITZΣZ

′X(X′ZΣZ′X)−1.

This variance-covariance matrix is minimized with respect to Σ by choosing Σ⋆ =
1
σ2
0
(Z′Z)−1 = [var(Z′(y−Xθ0)|X,Z)]−1

, i.e. by weighting the moment functions

inversely proportional to their conditional variances. With this optimal weighting

matrix in place, the optimal GMM estimator is seen to be equivalent to the 2SLS

estimator:

var(θ̂GMM |X,Z; Σ⋆) = σ2
0(X

′PZX)−1.

This generalizes to general nonlinear moment functions with sufficient smooth-

ness.

2.4 Testing of Moment Conditions

2.4.1 Hausman Test

The Hausman test examines the consistency of MOM estimators in the face of

possible failures of moment conditions.2

Suppose θ̃T and θ̂T are two estimators of θ0, obtained on the basis of different

assumptions about valid moment restrictions; e.g. θ̃T uses moments beyond those

used by θ̂T . The null hypothesis H0 is that both θ̂T and θ̃T are
√
T consistent; i.e.,

in the example, that the additional moments are valid, so that θ̃T is relatively more

efficient than θ̂T . Under H0,

√
T (θ̂T − θ̃T )

d→ N(0, VD),

for some asymptotic variance-covariance matric VD, which may be singular. The

alternative hypothesisHA implies that limT→∞ Pr
(
|θ̂T − θ̃T | > ϵ

)
> 0 for any ϵ > 0.

The Hausman test statistic takes the usual quadratic form

HT = T
(
θ̃T − θ̂T

)′
V̂ −
D

(
θ̃T − θ̂T

)
,

2Hausman, J.A. (1978): “Specification Tests in Econometrics”, Econometrica, 46(5), 1251-

1271.
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where V̂ −
D is a consistent estimator of the (generalized) inverse of VD. Under the

null hypothesis, its asymptotic distribution is χ2 with degrees of freedom equal to

the number of restrictions imposed by the null hypothesis.

Example: In the context of endogenous regressors, the OLS estimator β̂OLS
is best linear unbiased if E[X′u] = 0, but biased otherwise. If Z is an array of

valid instruments, then the IV/2SLS estimator β̂IV/2SLS is unbiased, regardless

of whether E[X′u] = 0 holds or not, but if this moment condition holds, then it is

inefficient, relative to the OLS estimator. Then, this moment condition can be tested

using the Hausman testing framework. Since β̂OLS− β̂IV/2SLS|X,Z ∼ N(0,V),

where V = var
(
β̂OLS − β̂IV/2SLS

)
, the Hausman test statistic is

HT =
(
β̂OLS − β̂IV/2SLS

)′
V−

(
β̂OLS − β̂IV/2SLS

)
,

and the null hypothesis of the validity of the k moment conditions is rejected at the

α-level if HT > χ2
k(1− α). Note that it follows from the orthogonality of relatively

efficient estimators that, under the null hypothesis,

cov
(
β̂OLS,

β̂OLS − β̂IV/2SLS

)
= 0

⇒ var
(
β̂OLS

)
= cov

(
β̂OLS, β̂IV/2SLS

)
.

Hence,

V = var
(
β̂OLS − β̂IV/2SLS

)
= var

(
β̂IV/2SLS

)
− var

(
β̂OLS

)
= σ2

0

[
(X′PZX)

−1 − (X′X)
−1
]
.

Often, however, the latter matrix is singular.

A convenient fact often facilitates the computation of the Hausman test statistic

HT . A consequence of the (conditional) orthogonality of a relative efficient estimator

and its difference to other consistent, but inefficient estimators is that the (condi-

tional) covariances between such estimators is equal to the variance of the efficient

estimator. Hence, if θ̃T is efficient relative to θ̂T , then VD = avar(
√
T (θ̃T − θ̂T )) =

avar(
√
T (θ̂T − θ0))− avar(

√
T (θ̃T − θ0)).
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As an example, consider the linear, homoskedastic model and let X = [X1,X2],

where X1 consists of exogenous covariates, while X2 is suspected of lack of exo-

geneity. In other words, the validity of the set of unconditional moment conditions

E[X2(y − X1θ1 − X2θ2)] = 0 is in doubt. Let W be an array of instruments for

X2 in case X2 is endogenous, and let Z = [X1,W] denote the array of all in-

struments (i.e. the columns of X1 act as instruments for themselves). Then, the

null hypothesis H0 is that X2 is exogenous, while the alternative hypothesis HA

is that X2 is not exogenous. Under H0, the Gauss-Markov Theorem implies that

the OLS estimator for θ0 = (θ′1, θ
′
2)

′, θ̂OLS, is efficient; its asymptotic distribution

is
√
T (θ̂OLS − θ0)

d→ N(0, σ2
0(X

′X)−1), conditional on X. Under HA, θ̂OLS is in-

consistent, but the 2SLS estimator θ̂2SLS is consistent; its asymptotic distribution

is
√
T (θ̂2SLS − θ0)

d→ N(0, σ2
0(X

′PZX)−1), conditional on X and Z. Since the OLS

and 2SLS estimators are (conditionally) orthogonal under the null hypothesis, their

conditional covariance matrix is zero under H0. Hence, conditional on X and Z,
√
T (θ̂OLS − θ̂2SLS)

d→ N
(
0, σ2

0((X
′PZX)−1 − (X′X)−1)

)
,

so that the test statistic becomes

HT = T
(
θ̂OLS − θ̂2SLS

)′ [(X′PZX)−1 − (X′X)−1]
−

σ̂2
T

(
θ̂OLS − θ̂2SLS

)
d→ χ2

dim(col(X2))
,

where σ̂2
T is an estimator of σ2

0 based on either the OLS or 2SLS regression residuals.

This test is referred to as Hausman-Wu Exogeneity Test.

The computation of the Hausman-Wu test statistics is complicated by the re-

quirement of a generalized inverse. A convenient representation of the test in an

easily implementable form was suggested by Wu (1973)3. The null hypothesis of

exogeneity of X is equivalent to the null hypothesis that γ = 0 in the augmented

regression

y = Xθ + X̂2γ + ϵ, where X̂2 = PZX2.

This hypothesis can be tested using an F -test with dim(col(X2)) numerator and

dim(col(X)) − dim(col(X2)) denominator degrees of freedom. The null hypothesis

of exogeneity is also equivalent to the hypothesis that δ = 0 in the regression

y = Xθ + ûδ + ν, where û = (I− PZ)X2,

3Wu, D. (1973): “Alternative Tests of Independence between Stochastic Regressors and Dis-

turbances”, Econometrica, 41(4), 733-775.
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where û is a set of the vectors of fitted residuals from the reduced form regressions

of the hypothesized endogenous RHS variables onto all exogenous variables. This

hypothesis can be tested using a t-test with dim(col(X2)) = 1 degrees of freedom if

X2 ∈ R, and an F -test as above otherwise.

2.4.2 Sargan-Hansen J Test

Another test of the validity of moment conditions can be based on the GMM criterion

function. When the parameter vector of interest θ0 is exactly identified under the

alternative hypothesis and over-identified under the null hypothesis, then GMM

moment tests are called test of over-identifying restrictions. Let EYX[m(yt,xt; θ0)] =

0 denote the r population moment conditions under the null hypothesis, where

dim(θ0) = k and r > k, i.e. there are r − k over-identifying restrictions. The

empirical analogues to the population moment functions are ET [m(yt,xt; θ0)]. Let

Σ̂⋆
T be (a consistent estimator of) the (optimal) GMM weighting matrix Σ⋆, and let

θ̂GMM be the GMM estimator of θ0. The minimized, second round GMM criterion

function

JT = TET

[
m(yt,xt; θ̂GMM)

]′
Σ̂⋆

TET

[
m(yt,xt; θ̂GMM)

]
then serves as a test statistic for the validity of the over-identifying moment con-

ditions. This particular test statistic is referred to as the Sargan-Hansen (1982)

J-test4. Its asymptotic distribution, as T → ∞, is χ2
r−k, and the test rejects the null

hypothesis when the statistic exceeds the critical values of a χ2
r−k random variable

for the appropriate test size. This does not permit any inference about which of the

moment conditions is invalid, however.

In the case of the example in the preceding subsection, the Sargan-Hansen J test

statistic of the null hypothesis that Z is a valid array of instruments is

JT =
(y−Xθ̂2SLS)

′Z′ [Z′(I− PX)Z]
−1

Z(y−Xθ̂2SLS)

σ̂2
T

,

and its asymptotic distribution under the null hypothesis is also χ2
r−k; see Appendix

for details. Note that, in general, the Hausman-Wu test requires estimation under

4Hansen, L.P. (1982): “Large Sample Properties of Generalized Methods of Moments Estima-

tors”, Econometrica, 50(4), 1029-1054
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both the null and the alternative hypothesis, while the Sargan-Hansen J test only

requires estimation under the null hypothesis.

This test for over-identifying restrictions can also be implemented in terms of

a regression of the 2SLS residuals û = y − Xβ̂2SLS on all the instruments Z and

testing whether all regression coefficients are jointly equal to zero. The test statistic

is asymptotically distributed χ2 with degrees of freedom equal to the number of

over-identifying restrictions.

2.4.3 Weak Instruments

Broadly speaking, the case of weak instruments refers to a situation in which the

correlation between the endogenous variable and its instrument(s) is low. The treat-

ment of situations with weak instruments is an area of active current research.5 In

the case of a single endogenous variable x2, a test for the weakness of instruments,

due to Bound et al. (1995)6, is a partial R2, denoted by R2
p, that isolates the impact

of the instruments on the endogenous variable, after eliminating the effect of the

other exogenous variables on the latter. The statistic R2
p is given by the R2 of the

regression

x2 − x̂2 = (z− ẑ)′δ + ν,

where x̂2 = PX1x2 and ẑ = PX1z. When R2
p is low, then z is considered an array of

weak instruments for x2.

2.4.4 Model Selection, Specification Testing and Diagnostic Tests

Various tests for model selection have been proposed in the literature, but none

is entirely satisfactory. In regression models, the regression R2 = 1 − û′û/y′y is

often considered, where û is the vector of fitted residuals. Superior models exhibit

smaller R2. This measure does not require distributional assumptions and, hence,

5For a recent survey, see Stock and Yogo (2002), NBER Technical Working Paper 284.
6Bound, J., Jaeger, D.A., and R.M. Baker (1995): “Problems with Instrumental Variables

Estimation When the Correlation between Instruments and Endogenous Explanatory Variables Is

Weak”, Journal of the American Statistical Association, 90, No. 430, 443-350.
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is embedded in the method of moments framework. Alternatively, under distri-

butional assumptions, measures based on the log-likelihood are available and have

some information theoretic interpretation. The Akaike information criterion (AIC)

adjusts the sample log-likelihood at the MLE θ̂ for model j, lT (θ̂(j)), for the number

of estimated parameters, kj = dim(θ(j)), so that AICj = −2lT (θ̂(j)) + 2kj. Under

normality assumptions, the AIC reduces to AICj = 2kj + T ln
(
û′
jûj/T

)
, where ûj

is the vector of fitted residuals of model j. The Schwarz Bayesian information or

posterior odds criterion (SBC), in addition, accounts for sample size T and is de-

fined as SBC = −2lT (θ̂(j)) + kj ln(T ). The SBC is a closely related variant of the

Bayes Information Criterion (BIC), which is defined as BIC = SBC/T . Under nor-

mality assumptions, the BIC reduces to BIC = ln
(
û′
jûj/T

)
+ kj ln(T )/T . Models

with higher information criteria are deemed superior. In comparison to AIC, the

SBC/BIC criterion tends to choose more parsimonious models. Many practitioners

also test the goodness-of-fit in terms of the accuracy of out-of-sample prediction.

Diagnostic tests examine various assumptions underlying estimation. In the

context of the linear regression model, this section surveys the tests which are used

most often and typically provided by standard statistical software.

1. Structural Stability: Tests for structural stability examine whether the pa-

rameters to be estimated are constant over the sampling period, the null hy-

pothesis. Considering a simple linear regression model, under the alternative

hypothesis,

yt = x′
tθ1 + ϵt t = 1, · · · , T1,

yt = xtθ2 + ϵt, t = T1 + 1, · · · , T,

where θ1 ̸= θ2 and ϵt are assumed i.i.d. and homoskedastic. Under H0,

θ = θ1 = θ2, i.e. k = dim(xt) restrictions are imposed. The restricted OLS

estimator for θ yields the restricted sum of squares ϵ̂′ϵ̂ with T − k degrees of

freedom, while the unrestricted OLS estimators for θ1 and θ2 yield the un-

restricted sum of squares ϵ̂′1ϵ̂1 + ϵ̂′2ϵ̂2 with T − 2k degrees of freedom, where

ϵ̂it = yt − xtβ̂i for i = 1 while t ≤ T1, and i = 2 while t > T1. Chow’s first
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breakpoint test statistic is

CT =
(ϵ̂′ϵ̂− (ϵ̂′1ϵ̂1 + ϵ̂′2ϵ̂2)) /k

(ϵ̂′1ϵ̂1 + ϵ̂′2ϵ̂2) /(T − k)
∼ Fk,T−k.

This test requires that the variances of the residuals ϵt are the same in both

subperiods. This can be tested using the Goldfeld-Quandt test

GQT =
s21
s22

=
ϵ̂′1ϵ̂1/(T1 − k)

ϵ̂′2ϵ̂2/(T2 − k)
∼ FT1−k,T2−k,

where the larger variance estimate should form the numerator so that the

statistic is greater than unity. Chow also suggested a test for predictive failure

for the case when T2 < k,

C̃T =
(ϵ̂′ϵ̂− ϵ̂′1ϵ̂1) /T2
ϵ̂′1ϵ̂1/(T1 − k)

∼ FT2,T1−k.

2. Non-linearity in covariates: Using the estimated residuals from the estimation

of the linear model,

ϵ̂t = yt − x′
tθ̂,

the Ramsey RESET test amounts to running a second stage regression of ϵ̂t on

xt and the squared predicted dependent variable ŷ2t and to testing whether the

coefficient on ŷ2t is zero, using a t-test. A numerically equivalent implemen-

tation of the test uses yt in lieu of ϵ̂t in the second-stage regression. Higher

powers of ŷt can be included to test for further degrees of curvature, using

F -tests.

3. Serial Correlation in Residuals: Suppose the data generating process is

yt = x′
tθ0 + ϵt

ϵt = ρϵt−1 + νt,

where νt is white noise, i.e. serially uncorrelated and has mean zero and

constant variance. If θ0 were estimated by OLS, then the estimated residuals

would be

ϵ̂t = yt − x′
tθ̂ = x′

t(θ0 − θ̂) + ρϵt−1 + νt.

This suggests to test the null hypothesis of no serial correlation, i.e. ρ = 0, by

regressing ϵ̂t onto xt and ϵ̂t−1 and test whether the coefficient on ϵ̂t−1 is zero,
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using a t-test. Testing against the alternative hypothesis of higher-order serial

correlation on the process for ϵt can be done analogously by including further

lags of ϵ̂t and testing that their coefficients are jointly equal to zero, using an

F -test.

4. Heteroskedasticity: Suppose that the residual variance is suspected to be some

function σ2(·) of a vector of variables zt, var(ϵt) = σ2(zt). Then, a test for

heteroskedasticity against the null hypothesis of homoskedasticity amounts to

regressing OLS residuals ϵ̂t on a constant and zt and testing whether the coef-

ficient vector on zt is zero, using an F -test. Candidates for zt are (i) elements

of the regressors xt, (ii) squares and cross-products of the regressors (White

test), (iii) the squared predicted dependent variable ŷ2t (RESET version), (iv)

lagged squared estimated residuals (autoregressive conditional heteroskedas-

ticity, ARCH), and others.

It should be noted that cases (3.) and (4.) do not impede the usual first-

moment properties of the OLS estimator for θ0 (unbiasedness, consistency),

because they pertain to second-moment assumptions. But the conditional

variance-covariance matrix of θ̂ is no longer σ2
0(X

′X)−1, but

var(θ̂OLS|X) = (X′X)−1X′ΩX(X′X)−1,

where the structure of Ω is as in subsection 2.2.2 in case (4.), and as in subsec-

tion 3.1.1 below in case (3.). Corrected variance-covariance matrix estimators

are available, for example the Eicker-White estimator

̂var(θ̂OLS|X) = (X′X)−1X′Ω̂X(X′X)−1,

where Ω̂ is a suitable consistent estimator of Ω; see subsection 3.1.2 for an

example. A popular estimator in the presence of residual serial correlation is

suggested by Newey and West (1987).

5. Influential Observations

An influential observation is a data point that is crucial to inferences drawn

from the data. While the various approaches described here provide quanti-

tative measures of the statistical influence of an observation, it is important
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to keep in kind, however, that only knowledge of the subject matter and the

data itself can determine whether this influence is substantively informative

or merely due to data reporting error.

Consider the linear regression model in which the k × k matrix X′X has full

rank case. Define the orthogonal projection matrix H = X(X′X)−1X′. Then,

Ŷt = HttYt +
∑
s̸=t

HtsYs,

where Hts is the row t, column s element of H, t, s = 1, · · · , T . The value

Htt is a measure of the leverage or influence of Yt on its linear conditional

prediction, Ŷt. It can be shown that 0 ≤ Htt ≤ 1, and that Htt = 1 implies

that Ŷt = Yt, while Htt = 0 implies that Ŷt = 0. This suggests that, in the case

of high values of Htt, the model requires a separate parameter to fit Yt, while

in the case of low values of Htt the prediction Ŷt = 0 is fixed by design, i.e. by

the choice of X. Furthermore, it can be shown that H̄ = 1
T

∑T
t=1 Htt =

k
T
. One

definition of leverage point is an observation indexed t for which Htt > 2 k
T
.

Define θ̂−t and s2−t = σ̂2
−t as the estimates of θ0 and σ2

0 based on the T − 1

observations, excluding the tth data point. These are referred to as Jackknife

or cross-validatory estimates.7 These can be used to obtain Jackknife residuals

ϵ⋆t = (yt − x′
tθ̂−t)/(s−t

√
1−Htt),

which can be highly effective for picking up single outliers or influential obser-

vations. Another Jackknife measure of the influence of an observation on the

joint inference regarding θ0 are Cook’s distances

CDt = (θ̂−t − θ̂)′
X′X

ks2
(θ̂−t − θ̂), t = 1, · · · , T,

which can be compared to an F -distribution to estimate the percentage influ-

ence of Yt on θ̂.

7The idea of the Jackknife is due to Tukey. Based on the ”leave one out” estimates θ̂−t,

t = 1, · · · , T , the random variables T θ̂ − (T − 1)θ̂−t may be treated as i.i.d. estimates of θ0.

They provide an effective way to get a sampling distribution of θ̂ without recourse to asymptotic

arguments and as an alternative to the bootstrap.
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Best econometric practice usually derives an estimable statistical model from an

underlying economic model or theory that rationalizes the data generating process.

It is important to recognize that, while the various goodness-of-fit measures and

diagnostic tests may be generally useful statistical tools for specification testing

and model selection, when they fail to support the estimated model they do not

provide any guidance as to how to adjust the model because they are not linked

to the economic model. Failures of these tests, therefore, may be indicative of

a misspecified economic model and suggest a re-examination at that level of the

econometric analysis.

3 Univariate Stochastic Processes

3.1 Moving Averages

3.1.1 Stochastic Properties

Let E[yt − x′
tθ0|xt] = E[ϵt|xt] = 0 for all t, but suppose that

ϵt = yt − x′
tθ0 = ut + αut−1,

where

ut−s|xt ∼ i.i.d. E[ut−s|xt] = 0, E[u2t−s|xt] = σ2
0, s = 0, 1, · · ·

This assumption about the intertemporal correlation of residuals ϵt induces the

following additional conditional second moments

var(yt − x′
tθ0|xt) = σ2

0(1 + α2)

cov(yt − x′
tθ0, yt−s − x′

t−sθ0|xt,xt−s)) = ασ2
01{|s|=1},

for any t, where 1{A} is an indicator function taking value 1 if the event A occurs,

and zero otherwise. Hence, the conditional second moment matrix of the residuals
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is bidiagonal,

var(y−Xθ0|X) = σ2
0


1 + α2 α 0 · · ·
α 1 + α2 α · · ·

0 α 1 + α2 . . .
... · · · . . . . . .

 =: Ω.

This model is a moving average process of order 1, MA(1). It can be generalized

in a straightforward manner to higher orders, MA(q) for positive integers q. In the

case of an MA(q), the conditional covariances vanish for observations more than q

periods apart.

3.1.2 Estimation

This model is another instance of a non-scalar conditional variance covariance matrix

(next to the heteroskedastic case discussed above), and it permits estimation of θ0 by

FGLS. In order to implement the FGLS estimator for the MA(1), the bidiagonal pa-

rameters of Ω need to be estimated from first-stage OLS residuals {ϵ̂t, t = 1, · · · , T}.
A consistent estimator of σ2

0(1 + α2) is s2T = ET [ϵ̂
2
t ], while a consistent estimator

of ασ2
0 is cT = ET−1[ϵ̂tϵ̂t−1]. As an aside,

s2T
cT

=
1+α̂2

T

α̂T
can be solved to obtain an

estimator of α (with sgn(α̂T ) = sgn(cT )), and this can be used in conjunction with

cT to obtain an estimator of σ2
0.

3.2 Autoregressive Processes

3.2.1 Stochastic Properties

In the case of the simplest autoregressive process of order 1, AR(1), xt is a scalar

and takes xt = yt−1, so that the residuals are ϵt = yt−ρ0yt−1, where ρ0 takes the rôle

of the parameter of interest θ0. The residuals ϵt are assumed i.i.d. with moments

E[ϵt|yt−1] = E[ϵt] = 0 and var(yt − ρ0yt−1|yt−1) = var(ϵt|yt−1) = var(ϵt) = σ2
0;

independence implies here, in particular, independence of past realizations of the

process {yt, t ≥ 0}.
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Let X = y− = (y0, · · · , yT−1)
′. Note that y − Xθ0 = y − y−ρ0 = [yt −

ρ0yt−1]t=1,··· ,T . While y−Xθ0|X involved T random variables with non-degenerate

distribution, its analogue in the AR(1) model is the vector y − y−ρ0|y−, but this

involves T −1 constants (since it is conditioned on y−), and only yT −ρ0yT−1|y−1
d
=

yT − ρ0yT−1|yT−1 has a non-degenerate distribution. Therefore, in the case of au-

toregressive processes, the joint distribution of the vector y conditional on initial

conditions (i.e. y0 in the case of an AR(1); on (y0, · · · , y−p+1) in the case of an

AR(p), for integer p) needs to be determined.

By recursive substitution,

yt = ρ0yt−1 + ϵt

= ρ0(ρ0yt−2 + ϵt−1) + ϵt

= ρt0y0 +
t−1∑
s=0

ρs0ϵt−s.

This implies the conditional moments

E[yt|y0] = ρt0y0

var(yt|y0) = σ2
0

t−1∑
τ=0

ρ2τ0 =
σ2
0(1− ρ2t0 )

1− ρ20

cov(yt, ys|y0) = σ2
0

min{t,s}−1∑
τ=0

ρ2τ0 =
σ2
0(1− ρ

2max{t,s}
0 )

1− ρ20
.

Note that both first and second conditional moments depend on t. Without

further restrictions, this would imply that any MOM estimator of ρ0 (OLS, FGLS)

would depend on t as well, which is inconsistent with the notion of ρ0 being a

time-invariant population parameter. This problem could only be overcome if the

unconditional moments did not depend on t. Regarding the first unconditional

moments, by iterated expectations

E[yt] = E[E[yt|y0]] = ρt0E[y0],

which is independent of t if, and only if, E[y0] = E[yt] = 0 for all t. Regarding the
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second unconditional moments,

var(yt) = var(E[yt|y0]) + E[var(yt|y0)]

= ρ2t0 var(y0) + σ2
0

1

1− ρ20
(1− ρ2t0 )

=
σ2
0

1− ρ20
+ ρ2t0

[
var(y0)−

σ2
0

1− ρ20

]
,

which is independent of t if, and only if, var(y0) = var(yt) =
σ2
0

1−ρ20
for all t. Note

that this is only valid if |ρ0| < 1. If this condition holds, then the AR(1) process

{yt, t ≥ 0} is said to be covariance stationary. Covariance stationarity will be

assumed for the remainder of this section.

Assuming (covariance) stationarity, i.e. |ρ0| < 1, the above results on the mo-

ments of the stationary distribution can now be obtained more easily: Discarding

the trivial case ρ0 = 0, for the first moments, for any t,

E[yt] = ρ0E[yt−1] = ρ0E[yt] = 0,

and for the second moments, for any t,

var(yt) = var(ρ0yt−1 + ϵt)

= ρ20var(yt) + σ2
0 (because cov(yt−1, ϵt) = 0)

=
σ2
0

1− ρ20

cov(yt, yt−s) = cov

(
ρs0yt−s +

s−1∑
τ=0

ρτ0ϵt−τ , yt−s

)
= ρs0var(yt−s)

= ρs0
σ2
0

1− ρ20
.

Notice that, in the case of autoregressive processes, the autocovariance function

c(s) = cov(yt, yt−s), s = 0,±1,±2, · · · , dies off gradually, unlike in the case of

moving average processes.

21



3.2.2 Estimation

Estimation of ρ0 can proceed by OLS,

ρ̂T =

(
T∑
t=1

y2t−1

)−1 T∑
t=1

ytyt−1

= ρ0 +

(
T∑
t=1

y2t−1

)−1 T∑
t=1

yt−1ϵt.

Serial independence of ϵt and E[ϵt] = 0 for all t yields unbiasedness, E[ρ̂T ] = ρ0.

Assuming covariance stationarity, the asymptotic variance of ρ̂T is

avar(
√
T (ρ̂T − ρ0)) = σ2

0

(
E[y2t ]

)−1
= 1− ρ20.

Note that |ρ0| → 1 implies avar(
√
T (ρ̂T − ρ0) → 0. This feature will be discussed at

length below. Note also that, surprisingly, the asymptotic variance does not depend

on the data noise σ2
0.

3.2.3 Unit Roots

Denote the characteristic polynomial in the lag operator L of the AR(1) process by

Φ(L) = 1−ρ0L, so that Φ(L)yt = ϵt.
8 It is necessary and sufficient for the AR(1) to

be stationary that the roots z of the characteristic equation |Φ(z)| = 0 lie outside

the unit circle, i.e. that |z| = 1
|ρ0| > 1, which is equivalent to the previous condition

for covariance stationarity. If ϵt is also i.i.d., then this is a random walk.

Suppose that ρ0 = 1, so that the characteristic equation Φ(z) = 0 has a unit

root. The process takes then the form

yt = yt−1 + ϵt.

Notice that its first difference, yt − yt−1 = ϵt is stationary. Hence, in the case of

ρ0 = 1, the process {yt, t ≥ 0} is said to be difference-stationary, or integrated of

order 1, denoted by I(1). In this notation, the covariance stationary case is denoted

by I(0).

8The lag operator L is defined by Lyt = yt−1.
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W.l.o.g. let y0 = 0 a.s. for the remainder of this section. Then,

ρ̂− 1 =

(
T∑
t=1

y2t−1

)−1 T∑
t=1

yt−1ϵt,

and the conditional moments are

E
[
y2t−1|y0 = 0

]
= E

( t−1∑
s=1

ϵs

)2


=
t−1∑
s=1

E[ϵ2s]

= (t− 1)σ2
0 a.s.,

so that a.s.9

E

[
T∑
t=1

y2t−1

∣∣∣∣∣ y0 = 0

]
=

T∑
t=1

(t− 1)σ2
0

≈ σ2
0

∫ T

1

(t− 1)dt

∝ σ2
0T

2 = Op(T
2).

Similarly, E[yt−1ϵt] = E [yt−1E[ϵt|yt−1]] = 0, and, since E[yt−1ϵt] = E[1
2
(y2t − y2t−1 −

ϵ2t )],

E

[
T∑
t=1

yt−1ϵt

∣∣∣∣∣ y0 = 0

]
= E

[
1

2
(y2T − y20)−

1

2

T∑
t=1

ϵ2t

∣∣∣∣∣ y0 = 0

]

= E

 1

2

( T∑
t=1

ϵt

)2

−
T∑
t=1

ϵ2t

∣∣∣∣∣∣ y0 = 0


= E

[∑
s̸=t

ϵsϵt

∣∣∣∣∣ y0 = 0

]
= 0 a.s.,

so that a.s.

E

( T∑
t=1

yt−1ϵt

)2
∣∣∣∣∣∣ y0 = 0

 = E

(∑
s ̸=t

ϵsϵt

)2
∣∣∣∣∣∣ y0 = 0


= T (T − 1)σ4

0

= Op(T
2).

9This section uses the Mann-Wald notation: A random variable wT = Op(T
α) if, for any δ > 0,

there exists M > 0 such that Pr(|T−αwT | > M) < δ for all T ; wT = op(T
α) if Pr(|T−αwT | > δ) →

0 for every δ > 0, as T → ∞.
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This suggests that

avar(ρ̂T − 1) ∼ (σ2
0T

2)−1T (T − 1)σ4
0(σ

2
0T

2)−1 = O(T−2),

i.e. that, in the unit root case, T (ρ̂ − 1) = Op(1). This is to be compared to

the stationary case, in which
√
T (ρ̂T − ρ0) = Op(1), with asymptotic distribution

N(0, 1 − ρ20). The preceding argument makes clear why the asymptotic variance

of this distribution collapses in the unit root case when ρ → 1: In the unit root

case, ρ̂T converges to ρ0 = 1 at rate T−1, i.e. faster than T− 1
2 , the reason being

that
∑

t y
2
t−1 = Op(T

2) in the non-stationary case, while
∑

t y
2
t−1 = Op(T ) in the

stationary case. In the stationary case, |ρ0| < 1,

ρ̂− ρ0 =

(
1

T

T∑
t=1

y2t−1

)−1

1

T

T∑
t=1

yt−1ϵt,

it follows from a LLN that 1
T

∑T
t=1 y

2
t−1 → E[y2t ] =

σ2
0

1−ρ20
, while var( 1

T

∑T
t=1 yt−1ϵt) =

1
T

σ2
0

1−ρ20
. Therefore, by a CLT,

1√
T

T∑
t=1

yt−1ϵt
d→ N

(
0,

σ2
0

1− ρ20

)
√
T (ρ̂T − ρ0)

d→ N
(
0, 1− ρ20

)
i.e.

√
T (ρ̂T − ρ0) = Op(1).

An alternative representation of the AR(1) model is

∆yt = (ρ0 − 1)yt−1 + ϵt,

where the difference operator ∆ = 1 − L. Define β0 = ρ0 − 1. Then, (covariance)

stationarity implies β0 < 0, while non-stationarity (unit root) implies β0 = 0. The

OLS estimator of β0 in the re-parameterized linear regression model

∆yt = β0yt−1 + ϵt

is

β̂T = β0 +

(∑
t

y2t−1

)−1∑
t

yt−1ϵt.
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The preceding discussion shows that this estimator converges to β0 < 0 at rate
√
T

if the process {yt, t ≥ 0} is I(0), and it converges to β0 = 0 ar rate T if {yt, t ≥ 0}
is I(1). This is the basis for the Dickey-Fuller unit root test, which tests the null

hypothesis of a unit root (equivalent to β0 = 0) against the alternative hypothesis

of stationarity (equivalent to β0 < 0). The Dickey-Fuller test statistics10 is

DFT =
β̂T

se(β̂T )
.

The Dickey-Fuller test statistic has a non-standard (Dickey-Fuller) distribution un-

der the null hypothesis. This distribution depends both on the estimated model and

the true data generating process; e.g. the critical value of this test in this model

with 5 percent probability of rejecting a true null hypothesis is approximately -2.9,

while it would be around -2 for a standard one-sided t-test.

3.2.4 Extensions

(a) Deterministic Trends

Suppose a deterministic trend is included in the previous AR(1) model,

yt = α0 + ρ0yt−1 + γ0t+ ϵt,

where ϵt is white noise, i.e. i.i.d. across t with mean zero and constant variance.

The model can be re-parameterized as before, for β0 = ρ0 − 1,

∆yt = α0 + β0(yt−1 − δ0t) + ϵt,

where δ0 = γ0/(1− ρ0). If β0 = 0, then ∆yt = α0 + ϵt, i.e. yt is I(1), a random walk

with drift α0:

yt = y0 + α0t+
t−1∑
s=0

ϵt−s,

where y0 is the initial condition, α0t is a deterministic trend component, while∑t−1
s=0 ϵt−s is a stochastic trend. In this model for the true data generating process,

the Dickey-Fuller test is based on the OLS estimator for β in the regression

∆yt = α+ βyt−1 + γt+ ϵt,

10Dickey, D.A. and W.A. Fuller (1979): “Distribution of the Estimators for Autoregressive Time

Series with a Unit Root”, Journal of the American Statistical Association, 74, 427-431.
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and the Dickey-Fuller test statistics is, as before, DFT = β̂T

se(β̂T )
, but the distribution

of this test statistic differs from above, because a deterministic trend is included in

the regression.

(b) AR(p) with trend

Just as moving average models can be expanded by including further lags, so

can autoregressive models. Consider the AR(2) model with trend,

yt = α0 + ρ01yt−1 + ρ02yt−2 + γ0t+ ϵt.

In this model, the characteristic polynomial in the lag operator is Φ(L) = 1−ρ10L−
ρ20L

2, and stationarity requires that the roots of |Φ(z)| = |1− ρ01z − ρ02z
2| = 0 lie

outside the unit circle. Conversely, the process has a unit root if the characteristic

equation permits z = 1 as a solution, i.e. if 1 − ρ01 − ρ02 = 0. In this case, a

re-parametrization suitable for testing the hypothesis of a unit root is

∆yt = α0 + (ρ01 + ρ02 − 1)yt−1 + ρ02(yt−2 − yt−1) + γ0t+ ϵt

= α0 + β0(yt−1 − δ0t)− ρ02∆yt−1 + ϵt,

where β0 = ρ01+ρ02−1 is zero under the null hypothesis, and δ0 = γ0/(1−ρ01−ρ02).
Running this regression and testing H0 : β0 = 0 yields an Augmented Dickey-Fuller

test. Again, the Dickey-Fuller test statistic has a different distribution under the

null hypothesis, because of the presence of the lagged differences ∆yt−1. Notice that,

if the AR(2) process is the true data generating process, but ∆yt−1 were omitted

in the Dickey-Fuller regression, then this omission would induce serial correlation

in the estimated residuals: The regression residuals in the mis-specified regression

estimate ρ02∆yt−1+ϵt, and these terms are correlated, because the yts are correlated.

All of this generalizes to AR(p) processes, with and without deterministic trend,

where p is a positive integer. The relevant re-parametrization of an AR(p), without

deterministic trend, becomes

∆yt = α0 + β0yt−1 +

p−1∑
s=1

δ0s∆yt−s + ϵt,

where

β0 = ρ01 + · · ·+ ρ0p − 1

δ0s = −(ρ0,s+1 + · · ·+ ρ0p), for s = 1, · · · , p− 1.
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To see this, define ρ(L) = ρ01 + · · · + ρ0p − 1, δ(L) = δ01L + · · · + δ0,p−1L
p−1, and

notice that

∆yt = α0 + ρ(L)yt + ϵt

= α0 + (β0L+ δ(L)(1− L))yt + ϵt,

because

β0L+ δ(L)(1− L) = β0 + (δ01L+ · · ·+ δ0,p−1L
p−1)(1− L)

= β0L+ δ01L− δ01L
2 + δ02L

2 − δ02L
3 + · · ·+ δ0,p−1L

p−1 − δ0,p−1L
p

= (β0 + δ01)L+ (δ02 − δ01)L
2 + · · ·+ (δ0,p−1 − δ0,p−2)L

p−1 − δ0,p−1L
p

= (ρ01 − 1)L+ ρ02L
2 + · · ·+ ρ0,p−1L

p−1 + ρ0pL
p

= ρ(L).

The Augmented Dickey-Fuller test, as before, examines H0 : β0 = 0 (unit root) vs.

HA : β0 < 0 (stationarity).

3.3 Autoregressive Distributed Lag Models

The issues discussed above remain essentially the same when contemporaneous and

lagged xts are re-introduced. Such models are called autoregressive distributed lag

(ARDL) models. The easiest version is an ARDL(1,1), in which xt is a scalar

covariate which appears next to lagged yt (the AR(1) part) contemporaneously and

with one lag (the DL(1) part),

yt = α0 + α1yt−1 + β0xt + β1xt−1 + ϵt.

The implicit assumption in this model is that the process {xt, t ≥ 0} is weakly

exogenous, i.e. the parameters of its marginal distribution are not linked with the

parameters of the conditional distribution of yt, given xt and the past.

If α1 = 1, then yt is I(1). Re-parameterizing,

∆yt = α0 + (α1 − 1)yt−1 + β0xt + β1xt−1 + ϵt,

this balances LHS and RHS in terms of order of integration if xt is I(0) and α1 = 1.
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If xt itself also is I(1),

∆yt = α0 + (α1 − 1)yt−1 + β0∆xt + (β0 + β1)xt−1 + ϵt,

and in order to balance LHS and RHS in terms of order of integration, either

(i) β0 + β1 = 0 and α1 = 1, or

(ii) α0 + (α1 − 1)yt−1 + (β0 + β1)xt−1 is I(0).11

Case (i) yields a model in first differences, ∆yt = α0 + β0∆xt + ϵt. Case (ii) is

equivalent to

yt =
α0

1− α1

+
β0 + β1
1− α1

xt + νt

y⋆ = E[yt|xt] =
α0

1− α1

+
β0 + β1
1− α1

xt,

where νt is white noise (I(0)). In this case, with both yt and xt being I(1) processes

(so that ∆yt and ∆xt are I(0)), but a particular linear combination of yt and xt,

yt − α0

1−α1
− β0+β1

1−α1
xt, being I(0), the two stochastic processes are said to be co-

integrated. Note that this co-integration relationship has the interpretation of a

stable long-run equilibrium relationship between yt and xt, i.e. it is implied by the

original model if yt = yt−1 and xt = xt−1. This permits the model to be re-cast in

its error correction model (ECM) representation

∆yt = α0 + (α1 − 1)yt−1 + β0∆xt + (β0 + β1)xt−1 + ϵt

= (α1 − 1)

[
yt−1 −

α0

1− α1

− β0 + β1
1− α1

xt−1

]
+ β0∆xt + ϵt

= (α1 − 1)
[
yt−1 − y⋆t−1

]
+ β0∆xt + ϵt

= (α1 − 1)
[
yt−1 − y⋆t−1

]
+

β0
β0 + β1

(1− α1)∆y
⋆
t + ϵt.

This model provides consistent equilibrium dynamics. Note that α1 − 1 < 0 implies

that yt adjusts downwards (upwards) if its previous level yt−1 was above (below)

11In this case, it must be that α1 ̸= 1 (β0+β1 ̸= 0), because otherwise this would contradict the

hypothesized non-stationarity of xt (yt). It also must be the case that |α1| < 1, because otherwise

the process is explosive.
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its long-run equilibrium level y⋆t−1, and that it adjusts upwards (downwards) if the

long-run equilibrium level increases (decreases).

These re-parameterizations nest other models of interest, by imposing various

restrictions on the parameters. The purely static model has α1 = β1 = 0. A model

of only partial adjustment has β1 = 0. A model in which the two processes yt and

xt have a so-called common factor (mathematically speaking: share a polynomial in

the lag operator, say 1− ρL) takes the form

(1− ρL)yt = (1− ρL)(α+ βxt) + ϵt

⇒ yt = α(1− ρ) + ρyt−1 + βxt − βρxt−1 + ϵt,

i.e. α0 = α(1 − ρ), α1 = ρ, β0 = β, β1 = −βρ. Note that this is equivalent to a

linear model with AR(1) errors,

yt = α+ βxt + νt

νt = ρνt−1 + ϵt.

A model with unit long-run coefficient would impose the restriction β0+β1

1−α1
= 1. A

random walk with drift requires α1 = 1 and β0 = β1 = 0.

Different re-parameterizations are of interest because they permit various inter-

pretations of the dynamics of the processes being modelled, e.g. in terms of long-run

and short-run dynamics. Moreover, they have important implications for estima-

tion. They determine whether a model that is linear or nonlinear (e.g. ECM) in

the parameters is to be estimated. And they ensure that I(0) series are balanced

on the LHS and RHS of a regression equation, so that estimators enjoy standard
√
T convergence properties and conventional regression output retains its validity.

To appreciate this latter point, the next section illustrates a case in which failure to

recognize the order of integration leads to invalid inference.
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3.4 Spurious Regression

Granger and Newbold (1974)12 and Phillips (1986)13 were the first to identify the

issue of spurious regressions. An example common in applied work, and used here to

illustrate the issues involved, might consider the monthly price of a good or service

provided by a firm (yt) as a function of monthly trading volume or sales (xt).
14 The

question of interest is whether a change in industry structure, such as for example

the merger of the firm with another firm in the same industry at time T0, translated

into latent synergies that were passed on to consumers in the form of lower prices.

Let δt = 1{t≥T0} denote a binary variable that takes on value 1 after the merger was

completed. The proposed model is

yt = α0δt + β0xt + ut,

and the hypothesis of interest is that α0 < 0, vs. α0 = 0.

Suppose that both yt and xt are I(1), satisfying

E[yt|y0] = y0, var(yt|y0) = tσ2
y

E[xt|x0] = x0, var(xt|x0) = tσ2
x

yt ⊥ xt, ∀t.

The last property, independence of yt and xt, implies that β0 = 0, and in this case,

if the merger has no effect on prices, then ut = yt = yt−1+ϵt, where ϵt is white noise.

Examine the OLS estimator of α0. By the partitioned regression formula,

α̂T = α0 +

(∑
t

δt

(
1− x2t∑

t x
2
t

))−1(∑
t

δt

(
1− x2t∑

t x
2
t

)
ut

)

= α0 +

(∑
t

δt −
∑
t

δt
x2t∑
t x

2
t

)−1(∑
t

δtut −
∑
t

δt
x2tut∑

t x
2
t

)

= α0 +

(
(T − T0) +

∑
t≥T0

x2t∑
t x

2
t

)−1(∑
t≥T0

ut +
∑
t≥T0

x2tut∑
t x

2
t

)
.

12Granger, C.W. and P. Newbold (1974): “Spurious Regression in Econometrics, Journal of

Econometrics, 2, 111-120
13Phillips, P.C.B. (1986): “Understanding Spurious Regressions in Econometrics”, Journal of

Econometrics, 33, 311-340
14The additional issue of endogeneity of xt is ignored in the discussion of this section.
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The individual components of this expression can be expected to have the following

asymptotic properties: With probability one,

E[x2t |x0] = tσ2
x + x20

E

[∑
t

x2t

∣∣∣∣∣ x0
]

= σ2
x

∑
t

t+ Tx20 ≈
σ2
x

2
T 2 + Tx20 = Op(T

2)

E

[∑
t≥T0

x2t

∣∣∣∣∣ x0
]

≈ σ2
x

2
(T 2 − T 2

0 ) + (T − T0)x
2
0 = Op(T

2)

E

[∑
t

ut

∣∣∣∣∣ y0
]

= E

[∑
t≥T0

(yt−1 + ϵt)

∣∣∣∣∣ y0
]
= (T − T0 + 1)y0 = Op(T )

E

[∑
t≥T0

x2tut

∣∣∣∣∣ x0, y0
]

=
∑
t≥T0

E[x2t |x0]E[ut|y0]

=
∑
t≥T0

E[x2t |x0]E[yt−1 + ϵt|y0]

= y0

(
σ2
x

2
(T 2 − T 2

0 ) + (T − T0)x
2
0

)
= Op(T

2).

Hence,

α̂T = α0 +

(
Op(T )−

Op(T
2)

Op(T 2)

)−1(
Op(T )−

Op(T
2)

Op(T 2)

)
= α0 +Op(1),

i.e. limT→∞ Pr(|α̂T − α0| > ϵ) > 0 for any ϵ > 0. In other words, if α0 = 0, then a

conventional t-test will erroneously reject this hypothesis with positive probability.

There are two features to note about this. First, non-stationarity of a regressor

(xt) can spill over, in the sense of having an impact on statistical properties of

coefficient estimates of other regressors, not just on its own coefficient. Second,

if Case (ii) in the preceding section were true, i.e. yt and xt were co-integrated,

then
√
T consistency would be preserved; in this case, a linear combination of I(1)

variables is stationary (I(0)), and this renders the regression residuals I(0). This also

suggests one (single equation based) test for co-integration: First, the individual

variables are tested for unit roots; second, if unit roots are not rejected, a linear

regression model of one variable onto the others is estimated, and the estimated
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regression residuals are tested for a unit root, using an ADF test (again with different

critical values). This is the original Engle-Granger procedure15. It suffers from

inherent problems, however: The assignment of the variables to LHS and RHS

is arbitrary, and it implicity assumes weak exogeneity of the RHS variables. The

conclusion from this is that all variables should be treated equally and symmetrically,

in some sense, i.e. in a system based, multivariate, rather a single equation based,

univariate approach.

4 Multivariate Stochastic Processes

4.1 Vector Auto-Regressive Processes

Let yt = (y1t, · · · , ymt)
′ be an m× 1 vector, and consider the vector auto-regression

of order p, VAR(p) for positive integers p,

yt = A0 +A1yt−1 + · · ·+Apyt−p + ϵt,

where Ai, i = 0, · · · , p, are m×m coefficient matrices, and ϵt is multivariate white

noise, i.e. a vector of serially uncorrelated, mean zero random variables with constant

variance-covariance matrix, E[ϵt] = 0 and E[ϵtϵ
′
s] = Σ1{s=t} p.d.s. for all s, t. Define

the underlying characteristic polynomial in the lag operator by

A(L) = A1L+ · · ·+ApL
p.

Then, the VAR(p) can be written as (I − A(L))yt = A0 + ϵt. It is covariance

stationary if all the roots of |I−A(z)| = 0 lie outside the unit circle. Conversely, it

is non-stationary (each series has a unit root) if |I−A(1)| = 0, which is equivalent

to

I−A(1) = I−A1 − · · · −Ap = 0.

If the process is stationary, its coefficient matrices can be estimated (with
√
T con-

sistency) using OLS for each equation. The parameters of Σ can be estimated from

15Engle, R.F. and C.W.J. Granger (1987): “Co-integration and Error Correction: Representa-

tion, Estimation, and Testing”, Econometrica, 55(2), 251-76
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the regression residuals {ϵ̂t, t = p+1, · · · , T} in the usual way, i.e. the (i, j) element

Σ̂ij =
1

T−p

∑T
t=p+1 ϵ̂itϵ̂jt, for i, j = 1, · · · ,m.

A component variable yj is said to Granger cause another component variable

yi if lagged values of yj help predicting yi, i.e. if any of the matrix elements Ai,j
s ,

s = 1, · · · , p, are non-zero16. Note that Granger causality does not mean economic

causality, only statistical validity as a predictor variable. Often, Granger causality

and economic causality run in opposite ways. An example, borrowed from Hamilton

(1994)17, illustrates this: Dividends do not Granger cause stock prices, even though

stock prices are the present discounted value of expected future dividends and capital

gains; stock prices do Granger cause dividends, however, because they aggregate all

the relevant information regarding expected future dividends.

Stationary VAR(p)s have an equivalent MA(∞) representation. Formally,

yt = (I−A(L))−1(A0 + ϵt)

= (I−A(1))−1A0 +
∞∑
i=1

ψiϵt−i,

where the convention is adopted that ψ0 = I. The leading constant follows from

E[yt] = A0 +

p∑
i=1

AiE[yt] = A0 +A(1)E[yt] = (I−A(1))−1A0.

The coefficients {ψs, s ≥ 0} can be determined by matching the polynomials in the

lag operator

(I−A1L− · · · −ApL
p)−1 = I+ ψ1L+ ψ2L

2 + · · · ,

which is equivalent to

(I−A1L− · · · −ApL
p)(I+ ψ1L+ ψ2L

2 + · · · ) = I.

16Granger, C.W.J. (1969): “Investigating Causal Relations by Econometric Models and Cross-

Spectral Methods”, Econometrica, 37(3), 424-348; also, Sims, C.A. (1972): “Money, Income and

Causality”, American Economic Review, 62(4), 540-552
17Hamilton, J.D. (1994): Time Series Analysis, Princeton: Princeton University Press

33



Hence, matching coefficients on L,L2, · · · ,

−A1 + ψ1 = 0 ⇒ ψ1 = A1

−A2 + ψ2 −A1ψ1 = 0 ⇒ ψ2 = A1ψ1 +A2 = A2
1 +A2

...

general result: ψs = A1ψs−1 +A2ψs−2 + · · ·+Apψs−p, s = 1, 2, · · ·

An alternative route to determine the sequence of {ψs,≥ 0} is by recursive substi-

tution. The coefficients in the MA(∞) representation can be interpreted as impulse

response function, i.e. as marginal impacts of past innovations, e.g. the (i, j) ele-

ment of ψk is the marginal impact of the innovation ϵj,t−k on yi,t, i, j = 1, · · · ,m,

k = 0, 1, 2, · · · . Note, however, that for this interpretation to be meaningful, the

components of ϵt must be orthogonal to each other.

4.2 Vector Error Correction Representation

In the context of modelling multivariate series and estimation of such models, essen-

tially the same issues arise as in the univariate setting, as discussed above. Hence,

in a multivariate context, error correction representations of VAR(p)s, called Vector

ECMs (VECMs), are useful for the same reasons given before.

A VAR(p) can be represented as

yt = A0 + Φyt−1 +

p−1∑
i=1

Γi∆yt−1 + ϵt,

which is equivalent to[
(I− ΦL)−

(
p−1∑
i=1

ΓiL
i

)
(I− L)

]
yt = A0 + ϵt,

where

Φ = A(1) = A1 + · · ·Ap

Γi = − [Ai+1 + · · ·+Ap] , i = 1, 2, · · · , p− 1.
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To see this, note that

(I− ΦL)−

(
p−1∑
i=1

ΓiL
i

)
(I− L)

= I− ΦL− Γ1L+ Γ1L
2 − Γ2L

2 + Γ2L
3 − · · · − Γp−1L

p−1 + Γp−1L
p

= I− (Φ + Γ1)L− (Γ2 − Γ1)L
2 − · · · − (Γp−1 − Γp−2)L

p−1 + Γp−1L
p

= I−A1L− · · ·ApL
p.

An equivalent representation is the VECM

∆yt = A0 + (Φ− I)yt−1 +

p−1∑
i=1

Γi∆yt−1 + ϵt.

This is referred to as the Sims, Stock and Watson (1990) canonical representa-

tion, originally due to Fuller (1976)18. Notice that this is yet again simply a re-

parametrization, and there exists a one-to-one mapping between the coefficient ma-

trices of the VAR and the VECM. The VECM can be estimated by OLS, and VAR

coefficients can be determined via the above formulae.

Just as the coefficient on lagged yt in a univariate ECM plays a critical rôle

in determining the integration properties of the series being modelled, so does the

coefficient matrix Π = Φ−I = A(1)−I in the multivariate case. From the definition

of covariance stationary in the multivariate context, it follows that the VAR(p) is

non-stationary if, and only if, z = 1 is a solution to the determinatal equation

|I−A(z)| = 0.

It is straightforward to see that Π having full rank m corresponds to the other

extreme case of yt being I(0). Suppose, to the contrary, that rk(Π) < m. Then,

there exists a vector α ∈ Rm such that α′Π = 0. Consider, for simplicity, a VAR(1)

for which Π = A1 − I. Then,

∆yt = A0 +Πyt−1 + ϵt

⇒ α′∆yt = α′A0 + α′Πyt−1 + α′ϵt

⇒ α′∆yt = α′A0 + α′ϵt,

18Sims, C.A., Stock, J.H. and M.W. Watson (1990): “Inference in Linear Time Series Models

with Some Unit Roots”, Econometrica, 58(1), 123-144; Fuller, W.A. (1976): Introduction to

Statistical Time Series, New York: Wiley
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i.e. α′yt is I(1), a contradiction to the hypothesis that yt is I(0). Hence, full rank

of Π is equivalent to all components of yt being covariance stationary.

Noting that each equation in a VECM looks just like an univariate ARDL model

in which xt represents another component of the vector yt, one might expect the

matrix Π to be informative about co-integrating relationships as well, because Πyt−1

is just a collection of m linear combinations of the elements of yt−1. In order to then

balance the order of integration of the LHS and RHS, it must be the case that Π,

in a sense that will be made precise below, contains all coefficients of co-integrating

relationships among the elements of yt, i.e. all co-integrating vectors that induce

linear combinations of the elements of yt which are I(0). It follows from the preceding

two paragraphs that the case of co-integration among the component series of yt

corresponds to 0 < rk(Π) = r < m. In this case, it is said that there exist r distinct

co-integrating relationships between the m elements of yt, each corresponding to a

co-integrating vector βj so that β
′
jyt is I(0), j = 1, · · · , r. In terms of the solutions to

the determinantal equation, the case of r co-integration relationships between the m

elements of yt is equivalent to m−r solutions (out of mp solutions of |I−A(z)| = 0)

that lie on the unit circle, with a real part equal to unity, while all other solutions

lie outside the unit circle and correspond to the co-integrating relationships and

higher-order dynamics.

The foregoing discussion is summarized in the Granger Representation Theorem:

Consider the vector-valued process {yt, t ≥ 0} of dimension m, satisfying

yt = A(L)yt + ϵt =

p∑
i=1

Aiyt−1 + ϵt,

where ϵt is multivariate white noise. Suppose there exist r co-integrating relationships

among the m elements of yt. Then,

(1) there exists an m× r matrix β with rk(β) = r, such that zt = β′yt is a system

of r I(0) series;

(2) ∆yt has an MA(∞) representation: ∆yt = ψ(L)ϵt, where ψ(L) = I+
∑∞

i=1 ψiL
i,

and β′ψ(1) = 0;
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(3) Π = A(1) − I has rk(Π) = r, and there exists an m × r matrix α, such that

Π = αβ′;

(4) there exists a VECM: ∆yt = αzt−1 +
∑p−1

i=1 γi∆yt−i + ϵt.

The last assertion of part (2) is not critical for the understanding of the further

development; its proof is given in an appendix.

If some of the series in the VAR are subject to a deterministic time trend - which,

if present, in the case of economic series is typically linear - then it can be included

into the co-integrated relationship, in analogy to Section 3.2.4 above.19 Formally, in

terms of the formalism of the preceding Theorem, if the original VAR(p) is of the

form

yt = A(L)yt + γt+ ϵt =

p∑
i=1

Aiyt−1 + γt+ ϵt,

where γ is a m× 1 vector of coefficients on the time variable t, then the associated

VECM is

∆yt = α(zt−1 + δt) +

p−1∑
i=1

γi∆yt−i + ϵt,

where the r × 1 vector δ satisfies αδ = γ.

It is important to note that α and β are not uniquely determined, since for any

non-singular r × r matrix Q, Π = αβ′ = αQQ−1β′ = α̃β̃′, where α̃ = αQ and

β̃ = β(Q−1)′. The same argument applies to δ. The appropriate choice of Q is

usually guided by economic theory and equivalent to imposing r2 restrictions on the

elements of Q.

19If it were included without being restricted to be part of the co-integrating relationship, then

this might imply a quadratic trend in the respective original series.
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4.3 Johansen Co-integration Tests

Johansen co-integration tests20 present a formal statistical framework to test hy-

potheses about the rank of the matrix Π in the VECM representation of a VAR(p),

which, as shown above, relate to the integration properties of the multivariate

stochastic process yt. Testing can thereby take various forms. For instance,

(I) H0 : rk(Π) = 0, vs. HA : rk(Π) > 0.

(II) H0 : rk(Π) = 0, vs. HA : rk(Π) = 1.

(III) H0 : rk(Π) = r, vs. HA : rk(Π) > r.

(IV) H0 : rk(Π) = r, vs. HA : rk(Π) = r + 1.

Cases (I) and (II) are considered here in turn.21 As in the case of testing for unit

roots in the case of univariate stochastic processes, there are further test variants

when deterministic trends are included in the model.

4.3.1 Case (I)

Consider the model ∆yt = Πyt−1 + vt; here, the intercept vector and the lagged

differences ∆yt−s, s = 1, · · · , p1 are omitted, as they are irrelevant to the under-

standing of the underlying principles of the test procedure. Stack up the T systems

∆y′
t = y′

t−1Π
′ + v′

t, to form

∆Y = Y−1Π
′ + v,

where Y = (y1, · · · ,yT )
′, Y−1 = (y0, · · · ,yT−1)

′ and v = (v1, · · · ,vT )
′ are T ×m

matrices. If the rows of v are assumed to be normally distributed, with mean zero,

20Johansen, S. (1988): “Statistical Analysis of Co-integration Vectors”, Journal of Economic

Dynamics and Control, 12, 231-254; and Johansen, S. (1991): “Estimation and Hypothesis Testing

of Co-integration Vectors in Gaussian Vector Autoregressive Models”, Econometrica, 59(6), 1551-

1580
21The organization and presentation of Johansen tests provided in this section builds on Tom

Rothenberg’s exposition of this material in a graduate time-series course at U.C. Berkeley. I am

indebted to him for his lucid introduction to this topic. All errors are mine.
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contemporaneous variance-covariance matrix Ω and serially independent, then the

joint probability density of this model, or the likelihood function of the parameters

Π and Ω, given the data, is

T∏
t=1

f(vt; Π,Ω) ∝ |Ω|−
T
2 exp

(
−1

2

∑
t

v′
tΩ

−1vt

)

= |Ω|−
T
2 exp

(
−1

2
tr

(∑
t

v′
tΩ

−1vt

))

= |Ω|−
T
2 exp

(
−1

2

∑
t

tr
(
v′
tΩ

−1vt

))

= |Ω|−
T
2 exp

(
−1

2

∑
t

tr
(
Ω−1vtv

′
t

))

= |Ω|−
T
2 exp

(
−1

2
tr

(
Ω−1

∑
t

vtv
′
t

))

= |Ω|−
T
2 exp

(
−1

2
tr
(
Ω−1V′V

))
,

where V = ∆Y −Y−1Π
′.22 Given Π, Ω can be concentrated out in the usual way,

i.e. by choosing Ω = 1
T
V′V.23 Then, the concentrated likelihood function is

T∏
t=1

f(vt; Π) ∝
∣∣∣∣ 1TV′V

∣∣∣∣−T
2

exp

(
1

2
tr

((
V′V

T

)−1

V′V

))

∝
∣∣∣∣ 1TV′V

∣∣∣∣−T
2

=

∣∣∣∣ 1T (Y−Y−1Π
′)
′
(Y−Y−1Π

′)

∣∣∣∣−T
2

→ max
Π

⇔ min
Π

T

2
ln
(∣∣(Y−Y−1Π

′)
′
(Y−Y−1Π

′)
∣∣) .

Imposing the null hypothesis of Case (I), i.e. the m2 restrictions Π = 0, yields
T
2
ln (|∆Y′∆Y|), which is proportional to the log-likelihood function under the null

hypothesis.

22Strictly speaking, the preceding expression is the conditional density of Y, given y0.
23Appendix B.3 is a brief review of concentrating out parameters from a likelihood function.
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Under the alternative hypothesis, the unrestricted estimator of Π is the OLS es-

timator (on each equation), and the log-likelihood function, evaluated at the estima-

tor, is proportional to the logarithm of the residual sum of squares, i.e. proportional

to T
2
ln
(∣∣∆Y′MY−1∆Y

∣∣), where the T ×T matrixMY−1 = I−Y−1(Y
′
−1Y−1)

−1Y′
−1

is the orthogonal projector onto the space orthogonal to the column space of Y−1.

The likelihood ratio test statistic for Case (I) is then, as usual, twice the difference

between the log-likelihood of the unrestricted and restricted model, i.e.

LRT = −T ln

(∣∣∣∣∆Y′MY−1∆Y

∆Y′∆Y

∣∣∣∣) ∼ χ2
m2 ,

and the null hypothesis is rejected when this statistic exceeds the critical value of a

χ2
m2 distribution for the appropriate size of the test.

The usual representation of the Johansen test is in terms of certain eigenvalues.

To deduce this, notice that

LRT = −T ln
(
|∆Y′∆Y|−1 ∣∣∆Y′MY−1∆Y

∣∣)
= −T ln

(
|∆Y′∆Y|−1 ∣∣∆Y′∆Y−∆Y′Y−1(Y

′
−1Y−1)

−1Y′
−1∆Y

∣∣)
= −T ln

(∣∣∣I− (∆Y′∆Y)
− 1

2 ∆Y′Y−1(Y
′
−1Y−1)

−1Y′
−1∆Y (∆Y′∆Y)

− 1
2

∣∣∣)
= −T ln

(
m∏
i=1

µi

)
= −T

m∑
i=1

ln(µi),

where the third (fourth) equality follows from a linear algebra result provided in

Appendix B.1.1 (B.1.2), and {µi, i = 1, · · · ,m} are the characteristic roots (eigen-

values) of the matrix

Q = I− (∆Y′∆Y)
− 1

2 ∆Y′Y−1(Y
′
−1Y−1)

−1Y′
−1∆Y (∆Y′∆Y)

− 1
2 .

The representation of the log-likelihood test statistic in terms of eigenvalues is usu-

ally referred to as Johansen trace statistic for Case (I).

4.3.2 Case (II)

In this case, since the null hypothesis is the same as in Case (I), the denominator

of the test statistics (the log-likelihood function under the null hypothesis) remains
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the same as before. The numerator is proportional to the logarithm of the sum of

squared residuals when the restriction Π′ = αβ′ is imposed, where α, β ∈ Rm, and

the model is

∆Y = Y−1Π
′ + v = Y−1αβ

′ + v.

Hence, the log-likelihood function under the alternative hypothesis is proportional

to T
2
ln
(∣∣(∆Y−Y−1αβ

′)′ (∆Y−Y−1αβ
′)
∣∣), which is to be minimized with respect

to β, given α, i.e. concentrating out β, and subsequently with respect to α.

Let z = Y−1α, which is stationary under the alternative hypothesis, with co-

efficient vector β; i.e. α is the single co-integrating vector under the alternative

hypothesis. Cast in this form, the model under the alternative hypothesis amounts

to m LHS variables collected in ∆yt and a single RHS variable zt, which enters each

equation with an individual coefficient βi, i = 1, · · · ,m:

∆yi,t = βizt + vi,t, i = 1, · · · ,m; t = 1, · · · , T.

The coefficients βi can be estimated by individual OLS regressions. Consequently,

and analogously to Case (I), the log-likelihood function under the alternative hy-

pothesis is proportional to T
2
ln
(∣∣∆Y′MY−1α∆Y

∣∣), where MY−1α = Mz = I − zz′

z′z
.

Using the result provided in Appendix B.2,

T

2
ln
(∣∣∆Y′MY−1α∆Y

∣∣) = T

2

(∣∣α′Y′
−1M∆YY−1α

∣∣ |∆Y′∆Y|∣∣α′Y′
−1Y−1α

∣∣
)

→ min
α
.

This is a ratio of quadratics in α, i.e. of the form T
2
ln
(
α′Aα
α′Bα

)
, whereA = Y′

−1M∆YY−1

and B = Y′
−1Y−1, which is p.d.s. The FOCs of this minimization problem yield

0 = (α̂′Bα̂)
−2

(α̂′Bα̂2Aα̂− α̂′Aα̂2Bα̂)

⇒ 0 =

(
A− α̂′Aα̂

α̂′Bα̂
B

)
α̂

= (A− r̂B)α̂

⇔ 0 =
(
B− 1

2AB− 1
2 − r̂I

)
γ̂,

where r̂ are the characteristic roots (eigenvalues) of B− 1
2AB− 1

2 and γ̂ = B
1
2 α̂. There

are m pairs of eigenvalues r̂ and associated eigenvectors α̂. Minimization with re-

spect to α̂ leads to choosing the smallest eigenvalue, r̂min. Hence, the log-likelihood
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under the alternative hypothesis is proportional to T
2
ln
(
|∆Y′∆Y| r̂min

)
, so that

the Johansen likelihood ratio test statistic for Case (II) is

LRT = −T ln
(
r̂min

)
.

Note that, as a consequence of the result provided in Appendix B.1.3,

B− 1
2AB− 1

2 =
(
Y′

−1Y−1

)− 1
2 Y−1M∆YY−1

(
Y′

−1Y−1

)− 1
2

has the same eigenvalues as

(∆Y′∆Y)
− 1

2 ∆Y′MY−1∆Y (∆Y′∆Y)
− 1

2 ,

and these are 1 − µi, i = 1, · · · ,m (see Appendix B.1.4), where the µi are the

eigenvalues of the matrix Q encountered in Case (I). Hence, the Johansen likelihood

ratio test statistic can also be expressed as

LRT = −T ln (1− µmax) .

4.3.3 Further Results

Using the same principles as in the preceding two subsections, the Johansen likeli-

hood ratio test statistics for the remaining two test cases can be deduced. For Case

(III), H0 : rk(Π) = r against HA : rk(Π) > r, the test statistic is

LRT = −T
m∑

i=r+1

ln
(
µ(i)

)
,

where µ(1) < · · · < µ(m) are the ordered eigenvalues of the matrix Q obtained in

Case (I). Similarly, for Case (IV), H0 : rk(Π) = r against HA : rk(Π) = r + 1,

LRT = −T ln
(
1− µ(m−r)

)
= −T ln

(
r̂(r+1)

)
,

where r̂(1) < · · · < r̂(m) are the ordered eigenvalue of I − Q. The critical values

depend on m and r and are provided in tables or by statistical software.

42



5 Supplement: Time Series Models of Heteroskedas-

ticity

5.1 Basic Concepts

Up to this point, it was assumed that the stochastic processes being modelled are

propelled by innovations that have constant variances and covariances over time.

This assumption impedes the analysis of potential volatility in the series, i.e. chang-

ing or heteroskedastic variances (and covariances) over time. Time series models

of heteroskedasticity have important applications as a useful tool to capture the

volatility of a stochastic process, notably in empirical finance. Recent experience in

financial markets shows that - beyond the theory of efficient financial markets which

predicts no autocorrelation in asset returns - squared returns vary widely and, to

some extent, predictably depend on the past. This suggests that conditional vari-

ances may follow a time series process as well, and sometimes this process may be

characterized by a distribution with thick tails.

For the purpose of illustration, consider the univariate stationary AR(p) process

yt = c+
∑p

i=1 ϕiyt−i+ut, where ut is assumed to be white noise, i.e. ut is i.i.d. with

E[ut] = 0 and E[utus] = σ21{t=s}, σ
2 > 0. The white noise assumption implies that

the process’ unconditional variance is constant. This does not preclude that the

conditional variance may vary over time. One way to model this is as a stationary

AR(m) for {u2t , t = 1, · · · }:

u2t = ξ +
m∑
j=1

αju
2
t−j + ωt,

where ωt is white noise, i.e. ωt is i.i.d. with E[ωt] = 0 and E[ωtωs] = λ21{t=s},

λ2 > 0, for all t. Since E[ut|ut−s, s = 1, 2, · · · ] = 0 this implies for the conditional

variance of ut, given the past,

E[u2t |u2t−s, s = 1, 2, · · · ] = ξ +
m∑
j=1

αju
2
t−j.

This AR(m) model for u2t is called Autoregressive Conditional Heteroskedasticity

43



(ARCH) model (Engle (1982)24 ).

This model requires further restrictions in order to be an adequate representation

of volatility and to be compatible with the stationary AR model for the primary

series of interest, yt. (i) To ensure that the conditional variances are positive, it is

required that αj ≥ 0, j = 1 · · · ,m, and ξ > 0. (ii) To ensure that u2t is covariance

stationary, it is required that |1−α(z)| = |1−
∑m

j=1 αjz
j| = 0 have all roots outside

the unit circle. Provided these conditions hold, the unconditional variance of ut can

be expressed in terms of the ARCH model parameters as

σ2 = ξ/(1− α(1)).

Further restrictions are required if the model is designed to eliminate thick tails,

i.e. to control higher-order moments. To see this, consider the alternative represen-

tation of the innovations ut =
√
htvt, ht = ξ +

∑m
j=1 αju

2
t−j, so that vt =

ut√
ht

have

the interpretation of standardized innovations of the primary process yt, satisfying

E[vt] = E [E[vt|ut−s, s = 1, · · · ]] = 0

var(vt|ut−s, s = 1, · · · ) =
1

ht
var(ut|ut−s, s = 1, · · · ) = 1

ht
(ht + λ2)

var(vt) = E[u2t/ht] = E
[
E[u2t |ut−s, s = 1, · · · ]/ht

]
= 1.

The thickness of the tails of the distribution of vt is governed by its fourth moment,

E[(v2t − 1)2]. Since u2t = htv
2
t = ht + ωt, it follows that ωt = ht(v

2
t − 1), so that

E[ω2
t ] = λ2 = E[h2t (v2t −1)2] = E[h2t ]E[(v2t −1)2], because vt is independent. Consider,

for simplicity, the case of an ARCH(1) model, for which ht = ξ +α1u
2
t−1. Then, the

24Engle, R.F. (1982): “Autoregressive Conditional Heteroscedasticity with Estimates of the

Variance of United Kingdom Inflation”, Econometrica, 50(4), 987-1009.
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unconditional expectation of h2t is

E[h2t ] = E
[
(ξ + α1u

2
t−1)

2
]

= ξ2 + α2
1E[u4t−1] + 2α1E[u2t−1]

= ξ2 + α2
1

(
var(u2t−1) + (E[u2t−1])

2
)
+ 2α1ξ

ξ

1− α1

= ξ2 + α2
1

(
λ2

1− α2
1

+
ξ2

(1− α1)2

)
+ 2α1ξ

ξ

1− α1

=
α2
1λ

2

1− α2
1

+
(1− α1)

2ξ2 + α2
1ξ

2 + 2(1− α1)α1ξ
2

(1− α1)2

=
ξ2

(1− α1)2
+

α2
1λ

2

1− α2
1

.

Therefore,

E
[
(v2t − 1)2

]
=

λ2

ξ2

(1−α1)2
+

α2
1λ

2

1−α2
1

.

Suppose the assumptions are slightly strengthened, so that the standardized

innovations vt = ut√
ht

have a distribution whose tails are not thick, say they be

distributed N(0, 1). Then, the fourth moment satisfies E [(v2t − 1)2] = 2. The above

expression for the fourth moment then implies

λ2(1− 3α2
1)

1− α2
1

=
2ξ2

(1− α1)2
.

The right-hand side is positive. Therefore, for the left-hand side to be positive, it is

required that α1 ≥ 1/
√
3.

Empirically, for financial time series, such restrictions on the tails of their distri-

butions are typically rejected. Researchers, therefore, often maintain distributional

assumptions that allow for thicker tails, e.g. t-distribution instead of normality.

5.2 Estimation of ARCH(m) Model

Assuming vt is Gaussian, then estimation can proceed by Maximum Likelihood

methods. The likelihood function is thereby set up recursively.
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Let Yt = (yt, yt−1, · · · ). Then, the conditional density of yt, given the past, is

f(yt|Yt−1; θ) =
1√
2πht

exp

(
− 1

2ht
((1− ϕ(L))yt − c)2

)
where θ′ = (c, ϕ1, · · · , ϕp, α1, · · · , αm, ξ). The log-likelihood function l(θ; y−m+1, · · · , yT )
can then be expressed as

l(θ; y−m+1, · · · , yT ) = ln (f(y1, · · · , yT |y0, · · · , y−m+1; θ))

=
T∑
t=1

ln (f(yt|Yt−1; θ))

= −T
2
ln(2π)− 1

2

T∑
t=1

ln(ht)−
1

2

T∑
t=1

((1− ϕ(L))yt − c)2

ht

→ max
θ

!

5.3 Extensions

5.3.1 Generalized ARCH (GARCH)

Consider the model ht = ξ+π(L)u2t , where π(L) =
∑∞

j=1 πjL
j is an infinite polyno-

mial in the lag operator L and the ut are white noise, as above. Parameterize π(L)

as the ratio of two finite order polynomials in L:

π(L) =
α(L)

1− δ(L)
,

where

α(L) =
m∑
j=1

αjL
j

δ(L) =
r∑

k=1

δkL
k,

where it is assumed that |1− δ(z)| = 0 has all roots outside the unit circle.

This yields

ht = ξ +
α(L)

1− δ(L)
u2t ,
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from which it follows that

(1− δ(L))ht = (1− δ(1))ξ + α(L)u2t ,

which is equivalent to

ht = (1− δ(1))ξ + δ1ht−1 + · · ·+ δrht−r + α1u
2
t−1 + · · ·+ αmu

2
t−m,

i.e. ht follows an ARMA(r,m) process. This model is referred to as Generalized

ARCH (GARCH; Bollerslev (1986)25). Estimation proceeds my maximum likeli-

hood, analogous to the case of ARCH.

5.3.2 Integrated GARCH (IGARCH)

Consider the following GARCH model. Suppose (1− δ(L))ht = ξ +α(L)u2t , so that

ht = ξ +
r∑

i=1

δiht−i +
m∑
j=1

αju
2
t−j.

Then,

ht + u2t = ξ − δ1(u
2
t−1 − ht−1)− · · · − δr(u

2
t−r − ht−r) +

r∑
i=1

δiu
2
t−i +

m∑
j=1

αju
2
t−j + u2t .

Defining the martingale difference sequences ωt = u2t−ht which satisfies E[ωt|past] =
0, and p = max{r,m}, this model is equivalent to

u2t = ξ +

p∑
s=1

(δs + αs)u
2
t−s + ωt −

r∑
k=1

δkωt−k,

where δs = 0 for s > r and αs = 0 for s > m, k, s = 1, · · · , p. This is an ARMA(p, r)

process for u2t . It has a unit root if
∑p

s=1(δs + αs) = 1. This special case is called

IGARCH (Engle and Bollerslev (1986)26).

25Bollerslev, T. (1986): “Generalized Autoregressive Conditional Heteroskedasticity”, Journal

of Econometrics, 31, 307-27.
26Engle, R.F. and T. Bollerslev (1986): “Modelling the Persistence of Conditional Variances”,

Econometric Reviews, 5, 1-50.
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A Granger Representation Theorem, part (2)

Note, first, that β′ψ(1) = 0 implies Πψ(1) = 0, which, in turn, is equivalent to

(A(1)− I)ψ(1) = 0. To prove the assertion, notice that the MA(∞) representation

∆yt = (I− L)yt = ψ(L)ϵyimplies

(I−A(L))(I− L)yt = (I−A(L))ψ(L)ϵt

⇔ (I− L)(I−A(L))yt = (I−A(L))ψ(L)ϵt (linear operators commute)

⇔ (I− L)ϵt = (I−A(L))ψ(L)ϵt,

for any realization of the random vector ϵt. Therefore, (I− L) and (I−A(L))ψ(L)

represent the same polynomials in the lag operator, i.e.

(I− z) = (I−A(z))ψ(z) for any z;

Choosing z = 1 yields the desired result. �

B Useful Auxiliary Results

The following results are useful for the development of the Johansen Tests for

the number of cointegrating vectors.

1. Let A and B be matrices of dimension n× n.

1.1 Distributive law: det(AB) = |AB| = |A||B|.

1.2 Eigenvalues and matrix spectrum: The eigenvalues (characteristic roots)

λi, i = 1, . . . , n, of A satisfy the characteristic equation

det(A− λiIn) = 0.

Furthermore, there exist n eigenvectors (characteristic vectors) ai, i =

1, . . . , n, of dimension n× 1, such that

(A− λiIn)ai = 0, i = 1, . . . , n.
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The collection of eigenvalues of A, λ(A) = {λi, i = 1, . . . , n}, is called

the matrix spectrum of A and satisfies

|A| =
n∏

i=1

λi.

1.3 Let λi, i = 1, . . . , n, satisfy

(1) |λiIn − (A′A)−
1
2A′B(B′B)−1B′A(A′A)−

1
2 | = 0.

Then, µi, i = 1, . . . , n, satisfying

(2) |µiIn − (B′B)−
1
2B′A(A′A)−1A′B(B′B)−

1
2 | = 0

are pairwise identical to λi.

Proof : Let Ã = A(A′A)−
1
2 , and B̃ = B(B′B)−

1
2 . Then, (1) is equivalent

to |λiIn − Ã
′
B̃B̃

′
Ã| = 0, while (2) is equivalent to |µiIn − B̃

′
ÃÃ

′
B̃| = 0.

Letting C = Ã
′
B̃, (1) is equivalent to |λiIn − CC′| = 0, while (2) is

|µiIn − C′C| = 0. Denoting the corresponding characteristic vectors by

xi and zi,

C′Cxi = λixi,

CC′zi = µizi,

implying

z′iC
′CC′xi = λiz

′
iC

′xi,

x′
iCC′Czi = µix

′
iCzi,

so that µi = λi.

1.4 Let λi, i = 1, . . . , n, be the eigenvalues of A. Then, γi = 1 − λi, i =

1, . . . , n, are the eigenvalues if In −A.

Proof : This follows immediately from the definition of λi,

0 = |A− λiIn| = |A− In − (λi − 1)In| = (−1)n|In −A− (1− λi)In|.

and so 0 = |In −A− (1− λi)In|.
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2. Let W = [U,V], where the matrices U and V have dimensions n × a and

n × b, respectively. Let MU = In − U(U′U)−1U′, and analogously for MV .

Then,

W′W =

[
U′U U′V

V′U V′V

]
.

For the case a = b = 1, U and V are column vectors, hence their inner

products are scalars, and so it can readily be verified that

det(W′W) = (U′U)(V′V)− (U′V)2

= (U′U)(V′V− (U′V)2/U′U) = (U′U)(V′MUV)

= (V′V)(U′U− (U′V)2/V′V) = (V′V)(U′MVU).

This generalizes for arbitrary integers n:

det(W′W) = |W′W| = |U′U||V′MUV| = |V′V||U′MVU|.

3. Concentrated Likelihood Function: Consider the normal linear regression model

yn|xn ∼ i.i.d. N(x′
nβ0, σ

2
0), n = 1, . . . , N . Let y = [y1, . . . , yN ]

′ and X =

[x1, . . . ,xN ]
′. ML estimation of β0 and σ

2
0 amounts to maximizing the average

log-likelihood function

L(β, σ2;y,X) =
1

N

N∑
n=1

ln

(
1√
2πσ2

exp

(
− 1

2σ2
(yn − x′

nβ)
2

))
,

i.e. max
β,σ2

L(β, σ2;y,X) ⇔ max
β,σ2

{
−N

2
ln(σ2)− 1

2σ2

1

N

N∑
n=1

(yn − x′
nβ)

2

}
.

Note that the order of maximization is immaterial. For any value of β, max-

imization with respect to σ2 yields the solution σ2(β) = 1
N

∑N
n=1(yn − x′

nβ)
2.

This allows to concentrate out σ2 in the average log-likelihood function and

cast the maximization problem as a maximization over β alone:

max
β,σ2

L(β, σ2;y,X) ⇔ max
β

L(β, σ2(β);y,X)

⇔ max
β

−N
2
ln(σ2(β))− 1

2

⇔ max
β

−N
2
ln(u(β)′u(β)), where u(β) = y−Xβ.
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It is straightforward to check that this results in the well-known MLE for β0,

β̂, equivalent to the OLS estimator, and in the MLE for σ2
0, σ̂

2 = σ2(β̂).

4. Details on the Sargan-Hansen J-test statistic: Let rk(Z) = m > rk(X) =

k. It follows from the definition of the 2SLS estimator that var
(
β̂2SLS

)
=

σ2 (X′PZX)
−1
. Therefore,

var
(
y−Xβ̂2SLS

∣∣∣X,Z) = var (y|X,Z) + var
(
Xβ̂2SLS

∣∣∣X,Z)
−cov

(
y,Xβ̂2SLS

∣∣∣X,Z)
−cov

(
Xβ̂2SLS,y

∣∣∣X,Z) .
Since X′PZ

[
I−X (X′PZX)

−1
X′PZ

]
= 0 implies cov

(
Xβ̂2SLS

∣∣∣X,Z) = 0,

it also follows that X (X′PZX)
−1

XPZ = X (X′PZX)
−1

X′. Hence,

cov
(
y,Xβ̂2SLS

∣∣∣X,Z) = var
(
Xβ̂2SLS

∣∣∣X,Z)
⇒ var

(
y−Xβ̂2SLS

∣∣∣X,Z) = σ2
[
I−X(X′PZX)−1X′]

= σ2
[
I−X(X′PZX)−1X′PZ

]
.

Also, the matrix in square brackets in the preceding expressions is idempotent

and symmetric, and so

rk
(
I−X(X′PZX)−1X′) = tr

(
I−X(X′PZX)−1X′PZ

)
= N − tr

(
(X′PZX)−1X′PZX

)
= N − k.

Finally,

var
(
Z′(y−Xβ̂2SLS

∣∣∣X,Z) = σ2Z′ (I−X(X′PZX)−1X′)Z
= σ2

(
Z′Z− Z′X(X′PZX)−1X′Z

)
.

Then, rk(Z′Z) = m, rk(Z′X) = k and rk(X′PZX) = k imply that the central

matrix of the J-statistic satisfies rk (Z′ (I−X(X′PZX)−1X′)Z) = m− k.
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