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Abstract

This paper provides new evidence on the importance of monetary policy for business cycle fluctuations.
We develop a Bayesian framework to estimate a proxy structural vector autoregression (SVAR)—an SVAR
model that is augmented by monetary surprises computed using high frequency financial data—to identify
monetary policy shocks. During the Great Moderation period, monetary policy shocks were key drivers of
fluctuations in industrial output, the unemployment rate, and corporate credit spreads. Central to this result
is a systematic component of monetary policy characterized by a direct and economically significant reaction
to credit spreads. The failure to account for this endogenous reaction induces an attenuation in the response
of all variables to monetary shocks, a result that extends to the narrative identification of Romer and Romer
(2004).
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1 Introduction

Starting with Sims (1980), a large literature has assessed the effects of monetary policy using structural vector

autoregressions (SVARs). Many papers have found that identified monetary tightenings reduce output.1

However, more recent studies, in particular Boivin, Kiley, and Mishkin (2010) and Ramey (2016), find the

effects of monetary policy on the real economy have become muted during the Great Moderation period and

do not significantly contribute to business cycle fluctuations.

This paper provides new evidence on the importance of monetary policy for business cycle fluctuations

over the 1994–2007 period. We estimate a Bayesian proxy SVAR (BP-SVAR)—an SVAR model that is

augmented by monetary surprises computed using high frequency financial data—to identify monetary policy

shocks. We find that positive monetary policy shocks induce a sustained decline in real economic activity

and are accompanied by a significant tightening in financial conditions. Moreover, at the posterior mean

of our preferred model, monetary shocks explain about 20 percent of the volatility of industrial output, the

unemployment rate, and corporate credit spreads at business cycle frequencies, a contribution about four

times larger than standard estimates.

We show that such large effects of monetary policy shocks hinge on the presence of a significant systematic

response of monetary policy to financial conditions, a component of the monetary policy rule often neglected

in the literature. Although several recent papers have concentrated on the transmission of monetary pol-

icy through financial markets, both empirically (Gertler and Karadi, 2015; Gaĺı and Gambetti, 2015) and

theoretically (Bernanke, Gertler, and Gilchrist, 1999; Gertler and Karadi, 2011), substantially less attention

has been devoted to the endogenous response of monetary policy to changes in asset prices.2 We find that

both channels are empirically relevant. In our BP-SVAR, monetary policy shocks are transmitted through

tightening in financial conditions and, at the same time, the monetary policy rule reacts systematically to

corporate credit spreads; for example, all else being equal, a 10 basis point increase in spreads leads to a

contemporaneous 10 basis point drop in the federal funds rate at our mean estimate, an elasticity of -1. An

implication of this systematic response of monetary policy to financial conditions is that the effects of shocks

that originate in or transmit through financial markets—for example, Gilchrist and Zakrajsek (2012)—are

substantially smaller in comparison with standard estimates.

Our analysis shows that the failure to account for the endogenous response of monetary policy to corporate

credit spreads induces an attenuation in the estimated response of real activity to monetary policy shocks. In

misspecified models that omit the endogenous response of monetary policy to credit spreads, a monetary shock

is a mix of truly exogenous changes in policy and negative changes in credit spreads, as the contemporaneous

elasticity of the federal funds rate to spreads is negative. The attenuation happens because a drop in corporate

1See Bernanke and Blinder (1992); Christiano, Eichenbaum, and Evans (1996); Leeper, Sims, and Zha (1996); Leeper and Zha
(2003); Romer and Romer (2004); and, more recently, Arias, Caldara, and Rubio-Ramirez (2015).

2A notable exception is Rigobon and Sack (2003) who document a significant response of the federal funds rate to stock prices.
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spreads generates a persistent increase in real activity.

To quantify the importance of accounting for the endogenous response of monetary policy to spreads

when assessing the role of monetary shocks in economic fluctuations, we estimate two additional variants of

the model: one that omits credit spreads, and one where monetary shocks are identified by imposing that

the federal funds rate does not react contemporaneously to changes in credit spreads (a standard Cholesky

identification). In the first variant, monetary shocks induce no change in industrial production. In the second

variant, monetary policy shocks induce a decline in industrial production that is 40 percent smaller than

in our preferred BP-SVAR specification. These results explain why our findings about the importance of

monetary policy shocks differ from the conventional wisdom that they not contribute much to business cycle

fluctuations.

In light of the relationship between monetary policy and corporate credit spreads uncovered by the BP-

SVAR, we revisit the narrative identification proposed by Romer and Romer (2004). Under this identification,

monetary policy shocks are the residual of a regression of intended changes in the federal funds rate on the

Federal Reserve’s Greenbook forecasts of output and inflation. The macroeconomic impact of these shocks

is typically studied using reduced-form VARs—as in Romer and Romer (2004) and Coibion (2012)—or by

running local projections—as in Ramey (2016). For the 1994–2007 sample, we show that the intended

federal funds rate reacts to corporate spreads beyond its response to forecasted output and inflation, as in

the monetary policy rule identified in the BP-SVAR. Moreover, in both the reduced-form VAR and local

projection approaches, we find that the implications for inference are the same as in the BP-SVAR: shocks

constructed without controlling for the response of monetary policy to corporate spreads have no effects on

real activity, in line with the evidence in Ramey (2016). By contrast, the shocks constructed controlling for

corporate spreads have large effects on the real economy.

Our paper also provides a methodological contribution to the recent literature on proxy SVARs. The

standard framework of Stock and Watson (2012) and Mertens and Ravn (2013) uses an instrumental vari-

ables approach to estimate proxy SVARs in multiple stages, while we provide an encompassing framework

that jointly models the interaction between the SVAR and the proxy. In particular, we write the likelihood of

an SVAR model augmented with a measurement equation that relates the proxy to the unobserved structural

shock of interest and estimate the model using Bayesian techniques. Our framework has several advantages

over the standard framework. First, inference is valid even if the information content of the proxy is weak.

Second, as we coherently incorporate all sources of uncertainty in the estimation, the proxy becomes informa-

tive about both the reduced-form and structural parameters of the model. Third, through prior distributions,

we can adjust the informativeness of the proxy for the estimation of the parameters of the SVAR model–that

is, researchers that are convinced of the relevance of their proxies for the identification of the structural shock

of interest can express this view via the prior distribution. This prior induces the estimation to take a lot of
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signal from the proxy.

In our applications, we find that the use of such a high relevance prior can substantially sharpen inference.

By contrast, we show that VAR misspecification in the form of omitted variables can severely bias the dynamic

response of the endogenous variables to the shock of interest, regardless of the relevance of the proxy. This

result has important implications for the existing literature on proxy SVARs, because most of the literature

focuses on the proxy rather than the specification of the VAR model.

To construct the proxy for monetary policy shocks, we follow the literature pioneered by Kuttner (2001)

and use high frequency data to capture the surprise component of policy actions announced in Federal Open

Market Committee (FOMC) statements. The bulk of this literature—which includes Bernanke and Kuttner

(2005); Gürkaynak, Sack, and Swanson (2005); Campbell, Evans, Fisher, and Justiniano (2012); and Gilchrist,

López-Salido, and Zakraǰsek (2015)—considers univariate regressions for assessing the effects on monetary

policy on daily changes in asset prices. An important exception is Gertler and Karadi (2015), who like we

do in this paper identify a monetary proxy SVAR that includes corporate spreads. However, the focus of

the analysis in the two papers is different. While Gertler and Karadi concentrate on impulse responses to

monetary policy shocks; we show the centrality of the systematic response of monetary policy to corporate

spreads for understanding the transmission of both monetary policy and non-policy shocks and their relative

importance in explaining business cycle fluctuations. Finally, our work is also related to Faust, Swanson, and

Wright (2004), who pioneered the use of high frequency monetary surprises to identify monetary shocks in a

VAR using a different estimation framework and omitting measures of financial conditions that, as we show,

are crucial for characterizing the role of monetary policy for business cycle fluctuations.

The BP-SVAR and our revaluation of the narrative identification of Romer and Romer (2004) clearly

point to the existence of a significant systematic response of monetary policy to financial conditions beyond

the well-understood response to real economic activity and prices. This evidence is consistent with Peek,

Rosengren, and Tootell (2016), who use textual analysis to examine FOMC transcripts and find that, even

after controlling for forecasts of inflation and unemployment, the word counts of terms related to financial

conditions predict monetary policy decisions.

This paper is structured as follows. Section 2 describes the econometric framework. Section 3 describes

the construction of the proxy and its properties. Section 4 shows the main empirical findings based on the

BP-SVARs. Section 5 shows the implications of the interaction between monetary policy and corporate

spreads for the Romer and Romer (2004) identification of monetary shocks. Section 6 explores the robustness

of our main findings to an alternative estimation methodology and model specifications. Section 7 concludes.
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2 Econometric Methodology

In this section, we first describe a standard SVAR model and derive the monetary policy rule embedded in

the SVAR. We then present the BP-SVAR and explain the identification of the monetary policy rule and, by

implication, of the monetary policy shock. Finally, we discuss the prior distributions of the model parameters

and the samplers used to draw from their posterior distributions.

2.1 The SVAR Model

Consider the following VAR, written in structural form:

y′tA0 =

p∑
`=1

y′t−`A` + c+ e′t, for 1 ≤ t ≤ T, (1)

where yt is an n× 1 vector of endogenous variables, et is an n× 1 vector of structural shocks, A` is an n× n

matrix of structural parameters for 0 ≤ ` ≤ p with A0 invertible, c is a 1×n vector of intercepts, p is the lag

length, and T is the sample size. The vector et, conditional on past information and the initial conditions

y0, ..., y1−p, is Gaussian with a mean of zero and covariance matrix In (the n× n identity matrix).

The model described in Equation (1) can be written in compact form as

y′tA0 = x′tA+ + e′t, for 1 ≤ t ≤ T, (2)

where xt = [y′t−1, . . . , y
′
t−p, 1] and A+ = [A′1, . . . , A

′
p, c
′]′. The reduced-form representation of this model is

given by

y′t = x′tΦ + u′t, ut ∼ N (0,Σ). (3)

The reduced-form parameters and the structural parameters are linked through

Σ = (A0A
′
0)−1 and Φ = A+A

−1
0 . (4)

2.2 The Monetary Policy Equation

To study the effects of monetary policy, we need to select an element of et that represents monetary policy

shocks. As discussed in Leeper, Sims, and Zha (1996), specifying the element of et that corresponds to

monetary policy is equivalent to specifying an equation that characterizes monetary policy behavior. In what

follows we assume, without loss of generality, that the first variable in yt is the policy rate rt. Thus, the first

equation of the SVAR is the monetary policy equation:
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y′tA0,1 = x′tA+,1 + eMP,t, for 1 ≤ t ≤ T, (5)

where A0,1 and A+,1 denote the first column of A0 and A+, respectively, and eMP,t denotes the monetary

policy shock. We can rewrite Equation (5) as follows:

rt =

n∑
j=2

y′j,tψ0,j +

p∑
l=1

y′t−lψl + σMP eMP,t, for 1 ≤ t ≤ T, (6)

where ψ0,j = a0,1j/a0,11, ψl = al,1/a0,11, and σMP = 1/a0,11, with al,ij denoting the ijth element of Al.

The first two terms on the right-hand-side of Equation (6) describe the systematic component of monetary

policy, characterizing how the policy rate at time t responds to contemporaneous and lagged movements in

the variables included in the model.

It is clear from Equations (5) and (6) that the identification of the monetary policy shock eMP,t is

equivalent to the identification of the systematic component of monetary policy. In turn, to characterize

the systematic component we require knowledge of a subset of the structural parameters, (A0,1, A+,1). As

is well known, without additional restrictions, it is not possible to discriminate between the many possible

combinations of structural parameters (A0, A+) that yield the same reduced-form parameters (Φ,Σ)—that

is, the likelihood of the SVAR model (2) is flat with respect to these combinations. The majority of the

literature, beginning with Sims (1980), has used theoretical restrictions to achieve identification—that is, to

inform the choice of (A0, A+)—and most debates in the SVAR literature are about the “correct” choice of

restrictions for any given application. By contrast, in this paper we follow a different strategy, which we

discuss next.

2.3 The BP-SVAR

We inform the identification of (A0,1, A+,1)—the structural parameters that describe the systematic compo-

nent of monetary policy—by incorporating additional data in the estimation of the model. The framework is

a Bayesian implementation of the proxy SVAR approach of Stock and Watson (2012) and Mertens and Ravn

(2013). In particular, in our application, we achieve identification by observing a series of surprise monetary

policy changes constructed using high frequency financial data. As discussed in Section 3, this series is not

a perfect measure—instead, it serves as a proxy—for the unobserved monetary policy shock eMP,t.

In what follows, we take the proxy, mt and we link it to the monetary policy shock eMP,t as follows:

mt = βeMP,t + σννt, νt ∼ N (0, 1) and νt ⊥ et, for 1 ≤ t ≤ T. (7)
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The formulation in Equation (7), which we extend in Section 5 to incorporate multiple proxies, has two

implications. The first is that the squared correlation between mt and eMP,t,

ρ ≡ CORR (mt, eMP,t)
2

=
β2

β2 + σ2
ν

, (8)

measures the “relevance” of the external information for the structural shock of interest. Equation (8) makes

clear that the relevance of the proxy is directly related to the signal-to-noise ratio β/σ. The larger this value,

the more information the proxy brings to bear on the identification of the SVAR.3

The second implication of Equation (7) is that mt is orthogonal to other structural shocks in the VAR,

e/MP,t:

E
[
mte/MP,t

]
= 0. (9)

Equation (9) conveys the exogeneity of the proxy, which ensures that our proxy is only informative about

the monetary policy shock. These two conditions are very similar to those required of an instrument in an

instrumental variables regression. The setting, though, is different, as both the relevance and exogeneity

of the proxy cannot be directly inferred by the data, but depend on the specification of the model used to

generate the vector of unobserved structural shocks eMP,t.

To examine in detail how the proxy interacts with the rest of the SVAR, we augment Equation (2) with

Equation (7). Letting ỹt = [y′t,mt]
′

and ẽt = [e′t, νt]
′
, we can rewrite Equation (2) as a system of equations

for ỹt:

ỹ′tÃ0 = x′tÃ+ + ẽ′t. (10)

The structural matrices Ã0 and Ã+ are functions of the original SVAR matrices, (A0, A+), and the parameters

governing the proxy equation, (β, σν), with

Ã0 =

 A0 − β
σν
A0,1

O1×n
1
σν

 , and Ã+ =
[
A+ −βσA+,1

]
. (11)

As can be seen from Equation (11), the proxy SVAR is a model that links the proxy to the structural shock

of interest, the monetary policy shock, through the structural coefficients (A0,1, A+,1) associated with the

systematic component of monetary policy. The zero restrictions in the bottom left partition of Ã0 and Ã+

are implied by the assumption stated in Equation (7) that the measurement error νt is orthogonal to all

structural shocks et.

The relationship between mt and eMP,t is what distinguishes a proxy SVAR from an SVAR where mt

enters into the vector of observables,yt, which we call a hybrid VAR as in Coibion (2012). In proxy SVARs

3Mertens and Ravn (2013) call ρ the reliability indicator for the proxy.
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the monetary policy shock is an innovation defined and identified through a structural model. By contrast,

hybrid VARs are typically used under the assumption that mt is the monetary policy shock, and the VAR

model is used simply to track the dynamic effects of the shock. If mt and eMP,t happen to be closely related,

both in terms of high relevance and exogeneity to the non-policy variables included in the models, the proxy

and hybrid VARs will provide similar impulse responses to a monetary policy shock. The key advantage of

proxy SVARs relative to hybrid VARs is the identification of the monetary policy rule which, as we show

in the remainder of the paper, is important to understand the propagation and the importance for business

cycle fluctuations of both policy and non-policy shocks. We revisit the relationship between these two classes

of models in Section 5.4

2.4 Identification in BP-SVARs

To understand identification, it is instructive to write the likelihood function for the model:5

p(Y1:T ,M1:T |Ã0, Ã+) = p(Y1:T |Ã0, Ã+)p(M1:T |Y1:T , Ã0, Ã+)

= p(Y1:T |Φ,Σ)p(M1:T |Y1:T , A0, A+, β, σν), (12)

where Y1:T = [y1, . . . , yT ]′. The first term on the right-hand side of Equation (12) is the likelihood of the

VAR data Y1:T . This likelihood contains information only about the reduced-form parameters Φ and Σ. The

second term, which is unique to BP-SVARs, is the conditional likelihood of the proxy M1:T given the VAR

data Y1:T . As we show in Appendix A, this likelihood has the following form:

M1:T |Y1:T , A0, A+, β, σν ∼ N
(
µM |Y , VM |Y

)
,

with

µM |Y = βeMP,1:T and VM |Y = σ2
νIT , (13)

where µM |Y and VM |Y are the mean and variance, respectively, associated with the multivariate normal

distribution. Equation (13) reveals that the signal-to-noise ratio β/σν is crucial for identifying the coefficients

of the SVAR. On the one hand, when β/σν is large, mt provides a lot of information about eMP,t. On the

other hand, when β = 0, mt is simply noise and provides no information about eMP,t. Finally, when β/σν is

4Hybrid SVARs cannot be used to identify the systematic component because, as mt is already exogenous, the associated
equation cannot be interpreted as the monetary policy rule. Similarly, the equation associated with the policy rate rt cannot be
interpreted as the monetary rule because the shock to that equation is not the monetary policy shock. In fact, monetary hybrid
VARs such as Romer and Romer (2004), Coibion (2012), and Barakchian and Crowe (2013) do not include the federal funds rate.

5In this and what follows, we suppress any dependence on the initial conditions Y1−p:0 for convenience.
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close to zero we have weak identification.6

We can rewrite µM |Y in terms of the systematic component of monetary policy by substituting the

definition of eMP,1:T implied by Equation (5):

µM |Y = β [Y1:TA0,1 −X1:TA+,1] . (14)

As we see from Equations (13) and (14), for given β, and σν , the econometrician updates the beliefs about

the systematic component of monetary policy described by (A0,1, A+,1) by giving relatively more weight to

structural parameters that result in monetary policy shocks that look like a scaled version of the proxy.

Equation (14) also highlights that in a BP-SVAR the specification of the VAR part of the model is

crucial for identification. As we show in Section 4, VAR misspecification in the form of omitted variables

can severely bias inference. The reason is that, irrespective of the quality of the proxy, the omission of a

variable that is crucial to characterize the systematic component implies that the identified monetary policy

shock is contaminated by the endogenous response of monetary policy to the omitted variable. Although it

is true that variable omission can affect inference in a large class of models (Sims, 1992), we think it is worth

underscoring this feature of proxy SVARs as the literature has placed a large emphasis on the proxy and not

on the specification of the VAR model.

2.5 Specification of the Prior and Posterior Sampler

Prior Distributions. The prior for the structural parameters (A0, A+), which we describe in Ap-

pendix A, is based on a standard Minnesota Prior. For the parameters of the measurement Equation (7),

we choose the prior for β to be normally distributed with mean µβ = 0 and variance σβ = 1. The standard

deviation of the measurement error, σν , is crucial because it determines the tightness of the relationship

between the proxy and the SVAR model. For this reason we consider two types of priors for σν . Our base-

line prior is an inverse Gamma with degrees of freedom s1 and centering coefficient s2. We set s1 = 2 and

s2 = 0.02 so that the prior is not very informative and, combined with our prior for β, implies that the

posterior distribution of the relevance indicator overwhelmingly reflects the likelihood. The second prior for

σν—which we refer to as the high relevance prior—places the dogmatic view that σν = 0.5× std(M1:T ) with

probability 1; that is, only half of the variation in our proxy can be attributed to measurement error. In

our applications, this high relevance prior induces a substantially tighter relationship between the proxy and

eMP,t than under the baseline prior for σν at the cost of overall statistical fit, as the estimation becomes less

6In case of weak identification, the prior plays an important role in inference. But in our framework comparing prior to posterior
distributions, a standard diagnostic to detect identification issues, is trivial. The reason is that, as already shown by Equation (12),
when it comes to identification, the relevant prior distributions are those implied by the model before observing M1:T but after
observing Y1:T . Finally, lack of identification or weak identification, which manifests itself in flat or nearly flat likelihood profiles,
could pose practical issues when sampling the posterior.
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reliant on the measurement error.

Posterior Sampler. Our prior formulation does not admit a closed-form solution, so we rely on sim-

ulation methods to sample from the posterior. We offer two related algorithms to sample the posterior

distribution of the BP-SVAR: a sequential Monte Carlo (SMC) algorithm and a Markov Chain Monte Carlo

(MCMC) algorithm. The SMC algorithm has the advantage of being more robust when the posterior is

irregular, such as with weakly informative proxies, and under the high relevance prior; the MCMC algorithm

works well with our baseline prior on σν , and is faster and closer to existing algorithms in the literature. We

discuss both algorithms in the Appendix A.

2.6 Advantages over Traditional Proxy SVARs

The BP-SVAR offers four advantages over the traditional implementation. Traditional proxy SVARs are

typically estimated following a three-step procedure: First, estimate the reduced-form VAR by least squares;

second, regress the reduced-form residuals on the proxy; third, impose the restrictions derived in the second

stage to identify the SVAR model. First, a BP-SVAR makes efficient use of the information contained in the

proxy. The joint likelihood described in Equation (12) offers a coherent modeling of all sources of uncertainty

and hence, allows the proxy to inform the estimation of both reduced-form and structural parameters. By

contrast, the three-stage procedure makes only limited use of the information contained in the proxy—for

instance, the estimation of the reduced-form VAR is not informed by the proxy mt.

Second, in a Bayesian setting, weak identification does not pose a problem per se—as long as the prior

distribution is proper, inference is possible (Poirier, 1998). By contrast, the frequentist approach requires an

explicit theory to work with weakly informative instruments, either to derive the asymptotic distributions of

the estimators (Montiel Olea, Stock, and Watson, 2012) or to ensure a good coverage in bootstrap algorithms.7

Third, we can adjust the informativeness of the proxy for the estimation of the parameters of the BP-

SVAR model through prior distributions. Researchers construct proxies to be relevant—that is, to contain

a lot of information about the structural shock of interest—which is consistent with a prior view of a high

degree of relevance ρ.8 In our application, the benefit of using the high relevance prior is that the identified

systematic component of monetary policy is associated with monetary shocks that more closely resemble the

proxy than under the baseline prior at the cost of overall fit. This reflects the classic trade-off in econometrics

between structural inference and statistical fit discussed, for instance, in Del Negro, Schorfheide, Smets, and

Wouters (2007).

7To the best of our knowledge, bootstrap algorithms developed to construct confidence intervals in proxy SVARs only apply to
strong instruments. Moreover, Lunsford and Jentsch (2016) show that the choice of bootstrap algorithms can yield very different
confidence intervals for impulse responses.

8This feature is one major differentiation of our analysis from other Bayesian approaches—for example, Bahaj (2014) and
Drautzburg (2016).
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Fourht, the Bayesian framework is well suited for the estimation of large and richly parameterized models,

particularly over the relatively short samples for which many proxies are available. Hence, BP-SVARs obviate

the need to estimate the VAR part of the model over a longer sample, which implicitly requires additional

assumptions about parameter stability. In Section 6, we take advantage of this feature to explore multiple

transmission channels of monetary policy.

3 A Proxy for Monetary Policy Shocks

In this section, we discuss the construction of our baseline proxy using high frequency monetary policy

surprises. We then provide evidence that the monetary policy surprises are exogenous by showing that they

cannot be predicted by the Federal Reserve’s Greenbook forecasts.

3.1 Construction of the Proxy

To construct our baseline proxy for monetary policy shocks, we apply the event study methodology developed

in Kuttner (2001), which uses high frequency financial data to construct monetary policy surprises associated

with FOMC announcements. This methodology uses the price of federal funds futures contracts traded at

the Chicago Board of Trade to measure market expectations about the Federal Reserve’s policy actions. In

our analysis we use spot month contracts based on the current month funds rate.9

Our sample begins in January 1994, the year in which the FOMC started issuing statements immediately

after each meeting. Prior to 1994, the FOMC did not issue a statement and changes to the target rate had

to be inferred by the size and type of open market operations. Coibion and Gorodnichenko (2012) find an

increase in the ability of financial markets and professional forecasters to predict subsequent interest rate

changes after 1994, suggesting that improved transparency could have altered the transmission of policy

surprises.10 The sample ends in June 2007, three months before the FOMC started to rapidly cut interest

rates at the onset of the global financial crisis. This conservative cutoff ensures that we do not capture the

effects of unconventional monetary policy or the presence of the zero lower bound in our estimates.

At date τ , the spot contract for the federal funds future in the current month pays out based on the

average funds rate prevailing in that month. We measure the surprise component of the change in the target

federal funds rate around FOMC announcements as follows:

∆rτ = (Eτ [r]− Eτ−∆[r])× SF(τ), (15)

9Gertler and Karadi (2015) use the three-month ahead contracts as their sample also includes the global financial crisis and the
zero lower bound period.

10In any event, our qualitative results are robust to the inclusion in the sample of the early 1990s.
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where Eτ [r] is the federal funds rate expected by markets to prevail over the remainder of the month of

the FOMC meeting after the announcement; Eτ−∆[r] is the federal funds rate expected to prevail over the

remainder of the month of the FOMC meeting before the announcement; and SF(τ) is a scaling factor that

accounts for the fact that these contracts trade on the average federal funds rate over the month, but FOMC

meetings take place on different days within months.11 The surprise changes described by Equation (15)

are calculated only at FOMC-meeting frequency. We construct the monthly proxy mHF,t by assigning each

surprise change to the month in which the corresponding FOMC meeting occurred. If there are no meetings

in a month, we record the shock as zero for that month.12

Equation (15) also shows why we use mHF,t only as a proxy and not as a direct measure of the monetary

policy shock. Expectations about future policy actions derived from financial markets may not align with

the SVAR-based expectations. The former are model-free expectations of market participants formed by

combining information from a variety of sources with their judgment. The latter are deviations from the

systematic component of monetary policy embedded in the SVAR. Nonetheless, the measurement Equation (7)

does not rule out an estimated BP-SVAR with eMP,t closely resembling mHF,t.

3.2 Predictability of the Proxy

In our sample there were 108 scheduled FOMC meetings, with four FOMC statements released after unsched-

uled FOMC meetings and phone calls. We exclude these unscheduled FOMC decisions from our analysis

because, as discussed for instance in van Dijk, Lumsdaine, and van der Wel (2016), markets are caught by

surprise by these announcements, and hence asset prices prior to the announcements do not reflect mar-

ket expectations about that particular policy action. That is, asset prices do not reflect financial market

expectations about the endogenous response of the Federal Reserve to the state of the economy.

The choice of ∆—the window around the FOMC announcement—is crucial. Kuttner (2001) uses a daily

window, but subsequent studies have shown that even the use of a daily window might not be enough to

purge this policy measure from expected—and hence endogenous—movements. For this reason we follow

Gürkaynak, Sack, and Swanson (2005) and Gilchrist, López-Salido, and Zakraǰsek (2015) and use intraday

data. In particular, we set ∆ to be a 30-minute window around the release of the FOMC statement (10

minutes before and 20 minutes after).

The use of a narrow window and the exclusion of policy changes associated with unscheduled FOMC

meetings does not necessarily ensure that the series of monetary surprises is exogenous. For instance, if—as

11The rate of the spot contract can potentially reflect risk premia required by investors to hold the contract. The assumption
underlying the identification strategy is that, by looking at the change in the futures rates over a narrow window, we are able to
purge the risk premium and isolate the surprise change in the federal funds rate.

12The conversion from FOMC frequency to monthly frequency follows Romer and Romer (2004). Moreover, and also in accordance
with Romer and Romer (2004) and Nakamura and Steinsson (2013), because our series incorporates only policy changes associated
with scheduled FOMC meetings, there are never two shocks in the same month.
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Table 1: Predictability of High Frequency Monetary Surprises

(1) (2)

Unemployment 0.02 0.02
(0.02) (0.02)

Output Gap 0.01 0.00
(0.01) (0.01)

Output Growth 0.01 0.00
(0.01) (0.01)

Inflation −0.01 −0.02
(0.02) (0.02)

Output Growth (Revision) −0.02 0.00
(0.02) (0.02)

Inflation (Revision) −0.03 0.02
(0.04) (0.04)

Prob > F 0.04 0.27
Adj. R2 0.24 0.16

Note: The dependent variable is ∆rτ , the series of surprise changes in monetary policy computed
using high frequency data. Column (1) reports the estimates of the OLS coefficients for the regression
described in Equation (16), while column (2) reports the estimated coefficients for a regression that
excludes (∆ỹτ,−1−∆ỹτ−1,−1) and (π̃τ,0− π̃τ−1,0). Each regression includes a constant and fτ . Standard
errors reported in brackets are based on the heteroskedasticity- and autocorrelation-consistent asymptotic
covariance matrix computed according to Newey and West (1987) with the automatic lag selection method
of Newey and West (1994).

shown by Romer and Romer (2000)—the Federal Reserve has superior information compared with the private

sector about the current and future state of the economy, then the high frequency monetary surprises would

partly capture the endogenous actions that the Federal Reserve takes in response to this private information.

A simple test of this hypothesis can be implemented by regressing the high frequency surprise changes on the

forecasts for output and inflation produced by the Federal Reserve:

∆rτ = α+ β0fτ + β1ũτ,0 + β2x̃τ,0 +

2∑
i=−1

γi∆ỹτ,i +

2∑
i=−1

φiπ̃τ,i +

2∑
i=−1

λi(∆ỹτ,i −∆ỹτ−1,i) +

2∑
i=−1

θi(π̃τ,i − π̃τ−1,i) + εt. (16)

In this regression, which follows Romer and Romer (2004), fτ is the level of the intended funds rate

before any policy decision associated with meeting τ ; ũ, x̃, ỹ, and π̃ are the Greenbook forecasts of the

unemployment rate, the output gap, the real output growth, and inflation, respectively (prior to the choice

of the interest rate); and the i index in the summations refers to the horizon of the forecasts. The regression

includes both the level of the output and inflation forecasts and the revision from the previous meeting.

The results are tabulated in the first column of Table 1, which reports the sum of coefficients for the level
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of, and the revision to, forecasted output and inflation. The sum of coefficients on most regressors is not

economically meaningful: If the regression is interpreted as a policy rule that describes the response of the

Federal Reserve to its private information, the coefficients have the wrong sign. Nonetheless, we can reject

that these coefficients are jointly significant in a statistical sense at a “conventional” level. We find that

even the this significance is fragile. As reported in column 2 of Table 1, a more parsimonious specification

of the regression that excludes only two variables, the revision to the ”backcast” of output growth and the

revision to the ”nowcast” of inflation—whose coefficients have a sign at odds with traditional interpretations

of Federal Reserve behavior—no longer yields any statistical indication that Greenbook forecasts are reliable

predictors of the high frequency surprises.13 In any event, the results we present in the rest of the paper are

unaffected by replacing the proxy with the residuals associated with the regression presented in column 1 of

Table 1.

4 Monetary Policy, Real Activity, and Credit Spreads

To show how monetary policy, real activity, and credit spreads interact in BP-SVARs, in this section we

present results from two models. We first estimate a 4-equation BP-SVAR that consists of the federal funds

rate; the log of industrial production (IP); the unemployment rate; and a measure of prices, the log of the

producer price index for finished goods. The selection of endogenous variables is similar to Coibion (2012)

and Ramey (2016). The second model is a 5-equation BP-SVAR that includes the Moody’s seasoned Baa

corporate bond yield relative to the yield on 10-year treasury constant maturity, which we refer to as the

Baa spread. We select the tightness and decay parameters that govern the distribution of the Minnesota

prior, as well as the VAR lag length p, using the marginal data density. The resulting specifications, which

include a constant, are estimated using data from January 1994 to June 2007 using 12 lags of the endogenous

variables.14

4.1 The Effect of Monetary Policy Shocks

The left column of Figure 1 displays the impulse responses of the endogenous variables to a one standard

deviation monetary shock identified using the 4-equation BP-SVAR. The solid lines show the pointwise median

responses, while the shaded areas represent the corresponding 90-percent pointwise credible bands. Unless

otherwise noted, the estimates discussed in the text refer to posterior medians. The near-term effect of a

positive monetary policy shock causes the federal funds rate to increase about 25 basis points, a number within

conventional estimates. Thereafter, the federal funds rate slowly falls, returning to zero after approximately

13We also do not find evidence of predictability of our proxy even when we expand the set of predictors to include the Greenbook
forecast for the Baa spread or the measure of realized corporate credit spreads—discussed in Section 5—prior to the FOMC meeting.

14We use data from January 1990 to December 1993 as a training sample for the Minnesota prior.
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Figure 1: Impulse Responses to a Monetary Policy Shock
(4-Equation vs 5-Equation BP-SVARs)
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Note: The solid line depicts the median impulse response of the specified variable to a one standard deviation
monetary policy shock identified in the 4-equation (left column) and in the 5-equation (right column) BP-SVARs.
Shaded bands denote the 90 percent pointwise credible sets.

two years. There is no evidence that the shock has any effect on IP or on the unemployment rate. Similarly,

prices are not affected over the first year, although there is some evidence that they fall over a longer

horizon. Overall, the results from the 4-equation BP-SVAR echo Ramey (2016), who finds no evidence of

contractionary effects of monetary policy during the Great Moderation period.

The right column of Figure 1 displays the impulse responses to a one standard deviation monetary policy

shock identified using the BP-SVAR that includes the Baa spread. The impact responses of the federal
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Figure 2: Contribution of Monetary Policy Shocks to the Forecast Error Variance
(4-Equation vs 5-Equation BP-SVARs)
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Note: The solid line depicts the median estimate of the portion of the forecast error variance of a specified variable
attributable to a one standard deviation monetary policy shock identified in the 4-equation (left column) and in the
5-equation (right column) BP-SVARs. Shaded bands denote the 90 percent pointwise credible sets.

funds rate, IP, the unemployment rate, and prices, are nearly identical to those in the 4-equation model.

By contrast, the two models display strikingly different dynamics. The federal funds rate falls quickly after

the shock and turns negative—monetary policy becomes more accommodative, relative to its initial level—

after about one year. This change in monetary policy stance can be explained by inspecting the real and

financial consequences of the shock. The effect of the shock on real activity is large. Two years after the

shock, IP has fallen about 0.4 percent and the unemployment rate has increased 5 basis points. The decline
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in prices is persistent and exhibits a modest hump-shape. Overall, there is a clear shift in the posterior

distributions of these impulse responses relative to the 4-equation model. The reason for this shift is that

monetary policy causes a long-lasting rise in the Baa spread, which jumps about 5 basis points on impact

and remains elevated for more than two years. Hence, the tightening in financial conditions appears to be a

key transmission channel of monetary policy to the real economy.

Using the VAR structure, we can decompose the forecast error of the VAR along different horizons,

attributing portions of the error variance to monetary shocks. The left column of Figure 2 displays these

quantities for the monetary shock identified in the 4-equation model, while the right column displays these

quantities for the monetary shock identified in the 5-equation model. Concentrating on the horizons associated

with business cycle frequencies—that is, 12 to 36 months—we see that in the 4-equation model, the monetary

policy shock explains a negligible fraction of short-run movements in IP and unemployment, in line with the

conventional wisdom that monetary policy does not contribute to business cycle fluctuations. In the 5-

equation BP-SVAR, monetary policy accounts for about 20 percent of the fluctuations in IP and in the

unemployment rate and for about 25 percent of the fluctuations in corporate credit spreads.

4.2 The Systematic Component of Monetary Policy

In the previous section, we showed that corporate credit spreads are an important variable to characterize

the transmission of monetary policy. In this section we study how monetary policy responds to changes

in corporate spreads by inspecting the estimated elasticities associated with the systematic component of

monetary policy. For ease of exposition, we refer to the elasticity of the federal funds rate to variable j at

lag l, ψl,j , defined in Equation (6), using the following subscripts: cs (Baa spread), π (prices), ∆y (IP), u

(unemployment rate), and r (federal funds rate). Panel (A) of Table 2 reports the contemporaneous elasticities

of the federal funds rate to the non-policy variables included in the system. Panel (B) of Table 2 reports the

cumulative elasticities of the federal funds rate to all variables in the system. These coefficients represent the

response of the federal funds rate to a unit change in the variable in question, if all other variables remained

constant.15 The cumulative elasticities are defined as follows:

ψcs =

p∑
l=0

ψl,cs, ψπ =

p∑
l=0

l∑
i=0

ψi,π, ψ∆ip =

p∑
l=0

l∑
i=0

ψi,∆ip, ψu =

p∑
l=0

ψl,u, and ψr =

p∑
l=1

ψl,r,

where, as in Sims and Zha (2006), the cumulative elasticities ψ∆y and ψπ describe the response of the federal

funds rate to the change in output and prices, respectively.

15Sims and Zha (2006) call these coefficients artificial, as they are not equilibrium outcomes, but are calculated from the monetary
policy equation alone. Our definition of cumulative elasticities closely follows Sims and Zha (2006), who compute long-run instead
of cumulative coefficients. Their calculations involve dividing the sum of coefficients for the non-policy variables by the sum of
coefficients for the policy variables. As we see next, some of our draws imply a unit root in the federal funds rate, and for these
draws the long-run coefficients are not well defined.
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Table 2: Coefficients in the Monetary Policy Equation
(4-Equation vs 5-Equation BP-SVARs)

(1) (2)

(A.) Contemporaneous Elasticities

ψ0,cs -1.18
[-3.11 -0.35]

ψ0,π 0.10 0.13
[-0.08 0.33] [-0.11 0.37]

ψ0,∆y 0.06 0.03
[-0.11 0.27] [-0.15 0.25]

ψ0,u 0.22 0.23
[-0.64 1.19] [-0.67 1.38]

(B.) Cumulative Elasticities

ψcs -0.22
[-0.35 -0.09]

ψπ 0.15 0.13
[-0.15 0.52] [-0.12 0.39]

ψ∆y 0.35 0.06
[ 0.06 0.67] [-0.14 0.32]

ψu -0.01 -0.06
[-0.09 0.06] [-0.16 0.04]

ψr 0.97 0.96
[ 0.94 1.01] [ 0.92 1.01]

Note: The entries in the table denote the posterior median estimates of the contemporaneous
elasticities (panel A) and the cumulative elasticities (panel B) in the monetary equation identified
in the 4-equation (column 1) and in the 5-equation (column 2) BP-SVARs. The 90 percent credible
sets from the posterior distributions are reported in brackets. See the main text for details.

Column 1 of Table 2 tabulates the elasticities identified in the BP-SVAR that excludes the Baa spread.

In accordance to conventional wisdom, the median estimates of both the contemporaneous and cumulative

elasticities of the federal funds rate to changes in output and prices are positive. The cumulative elasticity

to unemployment is negative but economically insignificant. Overall, there is a high amount of uncertainty

surrounding these estimates; with the exception of ψ∆ip, zero is contained in the 90 percent credible set. The

degree of policy inertia implied by this rule is high, with a posterior median estimate for ψr of 0.97.

Column 2 tabulates the elasticities identified in the BP-SVAR that includes the Baa spread.16 The median

estimate of the contemporaneous response to corporate spreads is about −1, while the cumulative elasticity

is −0.2. In other words, a one standard deviation surprise increase in corporate credit spreads—approximately

10 basis points—all else being equal, elicits an immediate monetary policy accommodation of about 10 basis

points and a cumulative response of about 4 basis points. The 90 percent bands for ψ0,cs and ψcs do not

16Density plots of these elasticities are available in Figure A-2 of the Online Appendix.
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contain zero, indicating that the countercyclical response of monetary policy to corporate spreads is clearly

identified.

The elasticities of the federal funds rate to prices, output, and the unemployment rate evaluated at the

posterior median are also consistent with countercyclical monetary policy. Nonetheless, the considerable

uncertainty about these elasticities means that in a non-trivial region of the parameter space, monetary

policy does not stabilize real activity and prices, which could cast doubt about the overall reliability of our

identification strategy. In Section 4.4 we show that, under the high relevance prior, the posterior probability

associated with ‘counterfactual’ elasticities vanishes, corroborating the finding that—in addition to stabilizing

movements in output and prices—monetary policy also stabilizes changes in financial conditions by directly

responding to changes in corporate spreads.17

4.3 Understanding Identification

The BP-SVAR identifies that monetary policy shocks transmit through changes in corporate spreads and that,

at the same time, monetary policy systematically responds to these spreads. In this subsection we argue that

these results are driven by the BP-SVAR’s identification of the contemporaneous response of monetary policy

to corporate spreads, ψ0,cs, and not by other features related to the inclusion of corporate spreads, such as

the presence of lagged spreads in the VAR equations.

Specifically, we compare the BP-SVAR that includes the Baa spread with an otherwise identical model

identified using a traditional Cholesky ordering of the endogenous variables that imposes ψ0,cs = 0.18 As

shown in Table A-1 in the Online Appendix, imposing ψ0,cs = 0 does not affect the estimate of the cumulative

elasticity to corporate spreads, which is similar to the estimate reported in Table 2 for the BP-SVAR. Hence,

the key difference in the systematic response of monetary policy to corporate spreads between models is not

in the overall response, but in its timing.

The red solid lines depicted in Figure 3 display the impulse responses of the endogenous variables to a one

standard deviation monetary shock identified using the Cholesky ordering. The green dashed lines represent

the median responses estimated using the BP-SVAR. Under the Cholesky identification, a monetary policy

shock induces a decline in real activity, but the effects are modest: The median estimates of the drop in IP

and the rise in the unemployment rate are one-half of those implied by the BP-SVAR, and zero is always well

within the 90 percent credible sets. The impact response of the Baa spread—despite being unrestricted—is

17Figure A-2 in Appendix C compares the prior (before observing the proxy) and the posterior distribution of the elasticities
associated with the monetary policy equation for BP-VAR that includes the Baa spreads. This figure shows that the addition of
the proxy to the SVAR clearly updates the posterior distribution for these parameters.

18In particular, we identify a monetary policy shock by ordering the federal funds rate after IP, unemployment, and prices but
before corporate spreads. This identification strategy imposes that monetary policy cannot respond contemporaneously to changes
in spreads—that is, ψ0,cs = 0. At the same time, this ordering is consistent with some key features documented in the BP-SVAR:
(i) on impact, a monetary shock does not affect IP, unemployment and prices althoug it can affect corporate spreads; and (ii)
monetary policy can react contemporaneously to changes in IP, unemployment, and prices.
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Figure 3: Impulse Responses to a Monetary Policy Shock
(BP-SVAR vs. Cholesky Identifications)
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Note: Each panel depicts the impulse responses of the specified variable to a one standard deviation monetary policy
shock identified in the 5-equation Cholesky SVAR (red solid line) and in the BP-SVAR (green dashed line). Shaded
bands denote the 90 percent pointwise credible sets calculated from the Cholesky SVAR.

close to zero, and its dynamic response is also not meaningfully different from zero.

The identification of ψ0,cs also has important implications for the propagation of other shocks in the

economy, in particular those affecting corporate spreads. To examine the role of ψ0,cs, Figure 4 displays the

impulse responses of the endogenous variables to a financial shock in both the BP-SVAR and the Cholesky

models.19 We normalize the shock to induce an exogenous increase in the Baa spread of 10 basis points in

both models. In response to a financial shock in the Cholesky model, the Baa spread goes up exactly 10 basis

points on impact, fully absorbing the exogenous shock, and remains above zero for about two years. The

real consequences of this shock are large; IP falls about 0.5 percent and the unemployment rate rises 8 basis

points. The federal funds rate cannot respond contemporaneously to the shock but drops about 25 basis

points after two years. By contrast, the real effects of a financial shock in the BP-SVAR are modest. The

19In the Cholesky ordering, we identify the financial shock by assuming that the Baa spread is ordered last. In the BP-SVAR, we
identify it by assuming that the Baa spread is ordered last within the set of non-policy variables. Note that the BP-SVAR allows
the financial shock to have a contemporaneous effect on the federal funds rate, as ψ0,cs 6= 0. Consequently, the financial shock
cannot directly affect the remaining non-policy variables on impact, but it can affect them indirectly through the federal funds rate.
The idea is to compare the identification of a financial shock using a “full” Cholesky to a block Cholesky, where the only difference
is in the identification of the monetary shock via the proxy.
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Figure 4: Macroeconomic Implications of Financial Shocks
(Model Comparison)
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Note: Each panel depicts the impulse responses of the specified variable to a 1 standard deviation financial shock
identified in the 5-equation Cholesky SVAR (red solid line) and in the BP-SVAR (green dashed line). Shaded bands
denote the 90 percent pointwise credible sets calculated from the Cholesky SVAR.

federal funds rate drops about 8 basis points on impact. The immediately accommodative policy stance

partially offsets the effects of the financial shock on the Baa spread—which increases on impact only 8 basis

points—and on real activity: The fall in IP is 50 percent smaller and the rise in the unemployment rate is

25 percent smaller than in the Cholesky model. The smaller real and financial effects of the shocks induce a

faster reversal of the policy stance.

The most important implication of the analysis presented in this subsection is that models that ignore

(such as the 4-equation BP-SVAR) or restrict to zero (such as the Cholesky SVAR shown here) the systematic

response of monetary policy to corporate spreads identify a monetary policy shock that is contaminated by

the endogenous response of monetary policy to spreads. Figure 4 explains why this contamination induces an

attenuation of the estimated effects of monetary policy shocks. Because increases in spreads are associated

with future low economic activity, monetary policy shocks identified by a rule that does not acknowledge that

ψ0,cs < 0 are a mix of truly exogenous changes in monetary policy and negative (endogenous) movements in

corporate spreads.
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Table 3: Coefficients in the Monetary Policy Equation
(Baseline vs High Relevance Prior)

(1) (2)

(A.) Contemporaneous Elasticities

ψ0,cs -1.18 -1.17
[-3.11 -0.35] [-2.21 -0.78]

ψ0,π 0.13 0.09
[-0.11 0.37] [ 0.01 0.16]

ψ0,∆y 0.03 0.08
[-0.15 0.25] [-0.03 0.15]

ψ0,u 0.23 0.28
[-0.67 1.38] [-0.02 0.62]

(B.) Cumulative Elasticities

ψcs -0.22 -0.21
[-0.35 -0.09] [-0.30 -0.13]

ψπ 0.13 0.09
[-0.12 0.39] [-0.00 0.18]

ψ∆y 0.06 0.10
[-0.14 0.32] [-0.02 0.18]

ψu -0.06 -0.07
[-0.16 0.04] [-0.14 -0.01]

ψr 0.96 0.96
[ 0.92 1.01] [ 0.93 0.99]

Note: The entries in the table denote the posterior median estimates of the contemporaneous
elasticities (panel A) and the cumulative elasticities (panel B) in the monetary equation identified
in 5-equation BP-SVAR under the baseline (column 1) and high relevance (column 2) priors on σν .
The 90 percent credible sets from the posterior distributions are reported in brackets.

4.4 Inference under the High Relevance Prior

In this subsection we study the effect of using the high relevance prior, focusing on the estimation of the

BP-SVAR that includes the Baa spread. Recall that the benefit of using this prior is that the identified

systematic component of monetary policy is associated with monetary shocks that more closely resemble the

proxy than under the baseline prior.

Under the baseline estimation, the relevance indicator ρ, which measures the strength of the relationship

between the proxy and the identified monetary policy shock, is 0.1 at the posterior median. Under the high

relevance prior, the posterior relevance is substantially higher, with a median value of 0.4, which translates

into a correlation between the proxy and the monetary policy shock of 0.63.

Table 3 lists the impact and cumulative elasticities previously described for the baseline (left column) and

the high relevance (right column) priors. Although the point estimates are similar, under the high relevance

prior the uncertainty surrounding the elasticities is substantially reduced. In particular, monetary policy
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Figure 5: Impulse Responses to a Monetary Policy Shock
(High relevance prior)
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Note: The solid line in each panel depicts the median impulse response of the specified variable to a one standard
deviation monetary policy shock identified using the 5-equation BP-VAR estimated under the high relevance prior
on σν . Shaded bands denote the 90 percent pointwise credible sets.

stabilizes movements in all the endogenous variables with high posterior probability. Hence, the information

contained in the proxy is consistent with a monetary policy rule that responds to corporate spreads beyond

the conventional response to output and prices.

Figure 5 plots the impulse responses to a one standard deviation monetary policy shock under the high

relevance prior. Consistent with the results reported in Table 3, the use of the high relevance prior induces

smaller credible sets, confirming the large real and financial effects of monetary policy shocks.

4.5 Summary of Findings and Policy Implications

The results presented in this section show that the dynamic effects of monetary shocks on the real economy

are substantially larger and more precisely estimated with the inclusion of corporate credit spreads in the

VAR. The reason is that corporate credit spreads are both a conduit of changes in monetary policy to the real

economy and important to quantifying the systematic response of monetary policy to economic and financial

conditions. Models missing this interaction are likely to underestimate the importance of the systematic and

non-systematic components of monetary policy for business cycle analysis.

Our findings have two policy implications. The first is that, during the Great Moderation period, the
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systematic component of monetary policy provided more stabilization than suggested by conventional iden-

tifications. The second is that the monetary authority could have induced a large reduction in business cycle

fluctuations by not deviating from the rule.

5 Romer and Romer (2004) Revisited

In the previous section, we established the presence of a crucial interdependence between monetary policy

and corporate credit spreads. In this section, we build on this result to reexamine the narrative identification

of monetary policy shocks of Romer and Romer (2004)—RR henceforth. We first document that the RR

shocks contain the systematic response of monetary policy to corporate credit spreads. We then show the

implications of this finding by estimating hybrid VARs and local projections—models that are typically used

to track the effects of narrative shocks. In Appendix B, we also estimate a BP-SVAR that includes the RR

shocks alongside our baseline proxy.

5.1 Revisiting the Romer and Romer (2004) Identification

RR propose to identify monetary policy shocks by regressing ∆ffτ—the intended funds rate change decided

at meeting τ—on the level of, and the revisions to, the Federal Reserve’s forecasts of output and inflation.

We use the series of intended federal funds changes updated through 2007 from Wieland and Yang (2016).

The right-hand side of the regression mirrors that in Equation (16), except for the exclusion of the output

gap for consistency with RR. We reconstruct the RR shocks with two changes: first, we make the sample

period consistent with the one used in BP-SVAR analysis; second, we include in the regression an indicator

of credit spreads. Because Greenbook forecasts for credit spreads are available only starting in 1998, our

instrument is instead cs5d
τ , the average Baa spread for the five days prior to the FOMC meeting.20 We denote

the associated regression coefficient by βcs.

The first column of Table 4 tabulates the results for the specification estimated with the restriction

βcs = 0. In line with the results reported in RR, the estimates show that monetary policy tends to behave

countercyclically and stabilizes movements in output and inflation. The R2 of the regression is 0.66, suggesting

that although most of the changes in U.S. monetary policy were taken in response to the evolution of forecasted

output and inflation, it does not guarantee that the unexplained variation is exogenous to the state of the

economy.

The second column of Table 4 tabulates the results for the regression that estimates βcs. Consistent with

the evidence from the BP-SVAR, we find that the FOMC reacts to changes in the Baa spread beyond the

information contained in the Greenbook forecast of output and inflation. βcs has a point estimate of −0.12

20Results are robust to using the average Baa spread calculated from the first day of the month when the FOMC meeting takes
place to the day prior to the meeting.
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Table 4: Determinants of the Change in the Intended Federal Funds Rate

(1) (2)

Baa Spread (βcs) −0.12
(0.05)

Unemployment Rate −0.06 −0.09
(0.04) (0.03)

Output Growth 0.09 0.08
(0.02) (0.02)

Inflation 0.25 0.21
(0.05) (0.05)

Output Growth (Revision) 0.04 −0.02
(0.04) (0.04)

Inflation (Revision) −0.10 −0.08
(0.09) (0.09)

Prob > F
Adj. R2 0.66 0.68

Note: The dependent variable in each specification is ∆ffτ , the series of changes in the intended
funds rate around FOMC meetings constructed using the methodology in Romer and Romer (2004).
Column (1) reports the estimates of the OLS coefficients for the regression described in Equation (16),
while column (2) reports the estimated coefficients for a regression that includes corporate credit spreads.
Each regression includes a constant and fτ . Standard errors reported in brackets are based on the
heteroskedasticity- and autocorrelation-consistent asymptotic covariance matrix computed according to
Newey and West (1987) with the automatic lag selection method of Newey and West (1994).

with a small standard error; all else being equal, FOMC meetings occurring in periods with elevated levels

of corporate credit spreads are associated with cuts in the intended federal funds rate. This evidence shows

that, for the 1994-2007 period, the standard estimates of the RR shocks are contaminated by the endogenous

response of monetary policy to changes in credit spreads.

The residuals of the two regressions shown in Table 4 constitute narrative-based measures of shocks.

We label the shocks constructed using regression (1) the “RR shocks” and the shocks constructed using

regression (2) the “RR-CS shocks.” The RR and RR-CS shocks are highly correlated (0.87), but they lead to

dramatically different implications about monetary policy, as we show next.

5.2 Results from Hybrid VARs

RR embed their measure of monetary policy shocks into an otherwise standard VAR by replacing the federal

funds rate with the cumulated series of narrative shocks. This hybrid VAR specification has been used also

in Coibion (2012), Barakchian and Crowe (2013), and Ramey (2016). In this section we use hybrid VARs to

trace the effects of RR and RR-CS monetary shocks. As in Section 4, we estimate hybrid SVARs with and

without corporate spreads.21

21The hybrid VARs are estimated on IP, the unemployment rate, prices, and the Baa spreads. We also include a measure of
commodity prices to increase comparability with Coibion (2012) and Ramey (2016).
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Figure 6: Impulse Responses to a Monetary Policy Shock
(Hybrid VARs)
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Note: The solid line in each panel depicts the median impulse response of the specified variable to a one standard
deviation monetary policy shock identified in a hybrid VAR without the Baa spread (left column) and with the Baa
spread (right column) using the cumulated RR-CS shocks as the policy variable. Shaded bands denote the associated
90 percent pointwise credible sets. The dotted lines are the median responses for the hybrid VARs that use the
cumulated RR shocks.

The left column of Figure 6 shows the impulse responses to a one standard deviation monetary policy

shock identified in the hybrid VARs that omit the Baa spread, while the right column shows the impulse

responses for the hybrid VARs that include spreads. The red lines denote the posterior median response
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when using the RR-CS shocks, while the green dotted lines show the median response when using the RR

shocks.

In both models, when using the RR-CS shocks, monetary policy induces a decline in IP and an increase

in the unemployment rate comparable with those in the BP-SVAR that includes corporate spreads. Results

in the hybrid VARs using the RR-CS shocks do not depend on the inclusion of the Baa spread because we

control for the systematic response of monetary policy to the spread in the construction of the shock, which

is external to the VAR. Thus, in the RR regression, βcs plays a similar role as ψ0,cs in the BP-SVAR. RR

shocks do not have any effect on IP, the unemployment rate, and prices in the model that excludes spreads.

By contrast, when spreads are included as an observable in the VAR, the difference between the responses

of IP and the unemployment rate under the RR and the RR-CS shocks is smaller, even though the RR-CS

shock yields a large decline in real activity. This result is consistent with the importance of the identification

of the contemporaneous response of monetary policy to spreads discussed in Section 4.3.

Overall, the results from the narrative identification and the BP-SVAR share the same dependence on the

inclusion of spreads in the monetary policy equation, irrespective of whether it is external to the VAR.

5.3 Local Projections

To further corroborate the importance of controlling for corporate credit spreads when using the RR narrative

shocks, we construct impulse responses with local projections as described in Jordà (2005). The advantage of

this method is that impulse responses are not functions of the structural parameters of the VAR model, and

hence are less sensitive to model misspecification. Local projections estimate the direct effects of a shock, et,

on a variable yj,t, by running a set of regressions,

yj,t+h = βjhet + control variablest−1:t−p + εjt+h, h = 0, . . . h̄, (17)

where h is the forecast horizon. We run local projections on the level of the federal funds rate, unemployment,

and the Baa spread, and on the annualized change in IP and prices defined as ∆hyj,t+h ≡ 1200
h+1 ln

(
yj,t+h
yj,t−1

)
.

In line with the analysis presented so far, we estimate two sets of local projections. The first set does not

control for the endogenous response of monetary policy to corporate spreads. In these regressions, we set et

to be the RR shock and we include as control variables twelve lags of the federal funds rate, unemployment,

and the monthly change in IP and prices. The second set controls for corporate credit spreads by setting et

to be the RR-CS shock and by including 12 lags of the Baa spreads.22

The results for the impact horizon (h = 0) are tabulated in panel A of Table 5, while those for the 18-

month horizon are shown in panel B. According to the first column, local projections that do not control for

corporate spreads find that a 100 basis points RR shock induces an impact response of the federal funds rate

22Results are robust to selecting p by maximizing the Akaike information criterion (AIC) with an upper bound of 24 lags.
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Table 5: Local Projections

(1) (2)

(A.) Forecast Horizon: Impact (0 months)

Federal Funds Rate 0.90 0.76
( 0.18) ( 0.20)

Industrial Production 2.99 -0.75
( 2.91) ( 2.96)

Unemployment 0.02 0.05
( 0.13) ( 0.10)

Prices -3.31 -7.05
( 3.74) ( 3.14)

Baa Spread -0.02 0.41
( 0.30) ( 0.14)

(B.) Forecast Horizon: 18 months

Federal Funds Rate 1.70 -0.05
( 1.06) ( 0.60)

Industrial Production 0.19 -1.75
( 1.46) ( 0.84)

Unemployment -0.16 0.48
( 0.34) ( 0.18)

Prices 0.14 -0.56
( 0.97) ( 0.88)

Baa Spread -0.20 -0.03
( 0.28) ( 0.25)

Note: The table denotes estimates β̂j0 (Panel A) and β̂j18 (Panel B) associated with Equation (17),
estimated by least squares, with HAC standard errors in parentheses, where j refers to the depen-
dent variable considered. Each row corresponds to a different dependent variable, where industrial
production and prices have been expressed in annualized changes. Columns (1) and (2) report
the estimates associated with et =RRt and et =RR-CSt, respectively. Both regressions include as
controls 12 lags of the federal funds rate, the change in industrial production, the unemployment
rate, and the change in the price level. The regressions associated Column (2) additionally contain
12 lags of the Baa spread as controls.

of about 90 basis points and induces an immediate decline in prices. There is, however, no strong evidence

of meaningful effects on IP and the unemployment rate at the 18-month horizon.

According to the second column, impulse responses based on local projections that control for the Baa

spread estimate effects of monetary policy shocks that are broadly in line with the BP-SVAR and the hybrid

VAR. At the point estimates, an RR-CS shock of 100 basis points induces a 1.75 percent decline in IP, and a

48 basis points increase in the unemployment rate at the 18-month horizon; both of these effects are precisely

estimated. For comparison, in the BP-SVAR, a monetary shock of 100 basis points—about three times larger

than the one plotted in Figure 1—would induce a 1.3 percent decline in IP and a 20 basis point increase in

unemployment at the same horizon.

Overall, local projections lead to the same conclusions about the effects of monetary policy shocks as the
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BP-SVAR analysis. However, we note that local projections, by not specifying structural relationships among

the endogenous variables, cannot be used to study the role of the systematic component of monetary policy

for macroeconomic stabilization nor the importance of monetary policy shocks for business cycle fluctuations.

6 Robustness

In this section, we first show that the importance of including corporate credit spreads in a monetary proxy

SVAR is robust to the choice of the estimation framework. We then estimate a larger BP-SVAR model to

provider a richer description of the transmission of monetary policy to the economy. Finally, we show that

the response of monetary policy to corporate credit spreads can also be found by directly estimating an

augmented Taylor rule.

6.1 Frequentist Inference

In the first exercise, we estimate the proxy SVARs using the three-step procedure described in Section 2.6

as used by Gertler and Karadi (2015). In particular, the red solid lines depicted in Figure 7 are the OLS

estimates of the impulse responses to a one standard deviation monetary policy shock, while the shaded areas

are confidence intervals generated by the wild bootstrap algorithm of Mertens and Ravn (2013).23

In line with the results from the Bayesian estimation, a contractionary monetary policy shock has no effect

on the economy in a model that excludes corporate credit spreads. By contrast, in a model that includes

corporate spreads, the same shock induces a persistent deterioration in financial conditions, which provokes

a decline in real activity.

Note that the confidence intervals of some variables are not centered at the OLS estimates of the impulse

responses. It is well-know that it is difficult to center such confidence intervals, lending support to the use

of the Bayesian implementation of the proxy SVAR. Moreover, the relevance of the proxy in the frequentist

estimation shown in Figure 7 is about 0.1, similar to the relevance in our BP-SVARs. Unlike in the Bayesian

setting, we cannot examine to the robustness of our conclusions to different levels of relevance. Finally, we

note that inference in large proxy SVARs, such as the one considered next, is challenging in the frequentist

setting, because of the large number of parameters to estimate relative to the size of the sample.

6.2 Large BP-SVAR

In the second robustness exercise, we provide additional evidence on the transmission of monetary policy

shocks by estimating a BP-SVAR model that consists of nine endogenous variables. To the five variables

23We obtain similar results by using the moving block bootstrap algorithm of Lunsford and Jentsch (2016). We include eight lags
of the endogenous variables based on likelihood ratio tests.
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Figure 7: Impulse Responses to a Monetary Policy Shock
(Frequentist Estimation)
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Note: The solid line in each panel depicts the median impulse response of the specified variable to a one standard
deviation monetary policy shock identified in the 4-equation (left column) and in the 5-equation (right column) proxy
SVAR estimated using the frequentist approach. Shaded bands denote the 90 percent wild bootstrap confidence
intervals.

that constistute our baseline specification, we add the following: the Aruoba, Diebold, and Scotti (2009)

business conditions index (BCI), which tracks business conditions in real time by combining quarterly real

GDP with high frequency indicators; personal consumption expenditures on nondurable goods; the log of

real outstanding core loans;24 and the cumulative value-weighted total stock market return.

24Core loans are the sum of loans to households and businesses. Business loans include commercial and industrial loans and
business loans secured by commercial real estate; household loans include residential mortgages, credit card loans, and other
consumer loans.
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Figure 8: Impulse Responses to a Monetary Policy Shock
(Large BP-SVAR)
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Note: The solid line in each panel depicts the median impulse response of the specified variable to a one standard
deviation monetary policy shock identified in the large BP-SVAR described in Section 6.2. Shaded bands denote the
90 percent pointwise credible sets.

Figure 8 shows that a tightening in monetary policy induces a broad-based decline in business conditions

and a sharp decline in stock prices. Moreover, the tightening in financial conditions captured by the increase

in corporate spreads leads to a decline in bank lending to businesses and households. Nonetheless, the

response of consumption is negative but not statistically significance. This last result is not surprising, given

that in our sample consumption has been remarkably stable and has partially cushioned the economy during

both the 1991 recession (which enters in our presample) and the 2001 recession. Finally, the responses of all

variables included in the baseline 5-equation BP-SVAR are identical to those reported in Figure 1.
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Table 6: Determinants of the Federal Funds Rate

(1) (2)

Corporate Spreads −0.15
(0.05)

Inflation 0.26 0.21
(0.05) (0.05)

Output Gap 0.07 0.07
(0.02) (0.02)

Output Growth 0.08 0.06
(0.02) (0.02)

Interest Rate Smoothing 0.89 0.88
(0.03) (0.03)

Adj. R2 0.99 0.99

Note: The dependent variable in each specification is the federal funds rate at the
FOMC meeting from Coibion (2012). Columns (1) and (2) report the estimates
of the OLS coefficients for the regression described in equation (18). Each regres-
sion also includes a constant. Standard errors reported in brackets are based on
the heteroskedasticity- and autocorrelation-consistent asymptotic covariance matrix
computed according to Newey and West (1987) with the automatic lag selection
method of Newey and West (1994).

6.3 Direct Estimation of Policy Rules

In the final robustness exercise, we estimate a Taylor rule using the Federal Reserve Greenbook forecasts as in

Coibion and Gorodnichenko (2012). In particular, we estimate the following regression using data at FOMC

meeting frequency:

rτ = α+ βcscs
5d
τ + βxx̃τ,0 + γ0∆ỹτ,0 + φ12π̃τ,12 + ρ1rτ−1 + ρ2rτ−2 + eτ , (18)

where x̃τ,0 is the nowcast for the output gap, x̃τ,0 is the nowcast for GDP growth, and π̃τ,12 is the average

of the one- and two-quarter ahead forecast of inflation. We augment the standard Taylor rule by including

cs5d
τ , the average credit spread prior to the FOMC meeting described in Section 5.

Table 6 tabulates the results for the regression estimated over the 1994–2007 sample. The first column

reports the results for the specification estimated with the restriction βcs = 0. In line with the results reported

in Coibion and Gorodnichenko (2012), the estimation shows that monetary policy tends stabilizes movements

in output and inflation. The long-run coefficient on inflation is 2.5, and the response to the output gap and

output growth is positive and precisely estimated. The second column of Table 6 tabulates the results for

the same regression augmented with cs5d
τ . Consistent with the evidence from the BP-SVAR and the RR

regressions, we find that the FOMC reacts to changes in corporate credit spreads beyond the information

contained in the Greenbook forecast of output and inflation. βcs has a point estimate of −0.16, similar to
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the cumulative elasticity on corporate spreads estimated in the BP-VAR. Hence, the estimation of a more

standard monetary rule confirms that monetary policy responds to corporate credit spreads.

Finally, we can use the residual of regression (2) as an alternative measure of monetary policy shocks,

which we label a “CG-CS shock”. Appendix B reports the impulse responses to a monetary policy shock

identified in a BP-SVAR that includes both mHF,t and the CG-CS shock as proxies. Results are nearly

identical to those from the baseline specification of the BP-SVAR.

7 Conclusion

In this paper, we developed a framework for Bayesian inference in proxy SVARs and used it to examine a

monetary SVAR in which identification of monetary shocks is achieved using proxies constructed from high

frequency financial data. We find that, at least for the Great Moderation period, monetary policy both

affects and endogenously reacts to asset prices. Compared with conventional estimates—which often ignore

the endogenous response of monetary policy to credit spreads—monetary policy shocks have a more prominent

role in business cycle fluctuations and explain about 20 percent of movements in industrial production, the

unemployment rate, and in corporate spreads.

There are several avenues for future research. First, the importance of monetary shocks documented in

this paper is larger than in typical New Keynesian dynamic stochastic general equilibrium (DSGE) models.

One possibility is to confront DSGE models with the evidence presented in this paper, which could be

informative about the specification and estimation of nominal, real, and financial rigidities, as well as about

the specification of the monetary policy rule.

Second, financial variables could potentially interact with other macroeconomic policies. For example,

using Ramey’s (2011) measure of government spending shocks, Barro and Redlick (2011) find that an increase

in government spending reduces corporate spreads. This suggests that typical fiscal SVARs which omit

financial variables might be subject to the same bias documented in this paper.

Finally, our Bayesian framework, by jointly modeling and estimating the SVAR and its relationship with

the proxy, opens up the possibility to integrate proxy identification with standard identification strategies.

Potential applications include the identification of structural shocks for which proxies are not available.
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Appendices

A Bayesian Estimation

A.1 The conditional Likelihood p(M |Y,Φ,Σ,Ω, β, σν)

Let Σtr be the lower Cholesky of Σ. For an tth observation, we have

 yt − Φxt

mt

 =

 ΣtrΩ O

b σν

 et

νt

 , (A-1)

where b = [β, 0, . . . , 0]. The normality of et and νt implies that the joint distribution of ut(= yt − Φxt)

and mt is also normally distributed, mean zero, with a variance matrix given by:

V =

 Σ ΣtrΩb′

bΩ′Σ′tr bb′ + σ2
ν


. This means that mt given ut is also normal,

Mt|Yt,Φ,Σ,Ω, β, σν ∼ N(µM |Y , VM |Y ). (A-2)

The conditional mean is given by,

µM |Y = bΩ′Σ′trΣ
−1ut

= bΩ′Σ−1
tr ut

= βΩ′·1Σ−1
tr ut. (A-3)

The second equality follows from ΣtrΣ
′
trΣ
−1 = I and the third equality follows from the definition of b. The

conditional variance is given by,

VM |Y = bb′ + σ2
ν − bΩ′Σ′trΣ

−1ΣtrΩb′

= σ2
ν . (A-4)

A.2 Priors for (A0, A+)

While we specify our model in terms of the structural parameters (A0, A+), it is useful to consider their

reduced-form counterparts (Φ,Σ) when setting the prior, as commonly done in the literature. We derive a
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prior for (A0, A+) by first combining a standard Minnesota Prior for (Φ,Σ)—see Del Negro and Schorfheide

(2011), for instance—with a prior over Ω, the orthogonal matrix which provides the mapping between the

reduced-form and structural parameters. As shown in Arias, Rubio-Ramirez, and Waggoner (2014), when

the prior over Ω is uniform (using the Haar measure), the prior density for (A0, A+) has the following density,

p(A0, A+) = 2
n(n+1)

2 |det(Σ)|
2n+np+2

2 p(Φ,Σ), (A-5)

where the mapping from (A0, A+) to (Φ,Σ) is given by Equation (4). This approach allows us to work in

terms of the structural objects we care about—in particular the parameters defining the monetary policy

rule–while specifying prior beliefs over Φ and Σ. It should be noted that, the uniform prior on Ω does

not translate into a uniform prior on the objects of interest—such as the rule coefficients (Baumeister and

Hamilton, 2015). Figure A-2 shows the prior-posterior comparisons for the elasticities that characterize the

systematic component of monetary policy. While our priors over these objects are not uninformative, they

have wide coverage over the reasonable values for the impulse responses and elasticities.

For the 5-equation model BP-SVAR (and Cholesky ordered SVAR), we use the version of the Minnesota

Prior described in Del Negro and Schorfheide (2011) with hyperparameters

λ = [0.5, 3, 1, 0.5, 0.5, 1].

For the 4-equation model, we set λ2 = 1. We use the marginal data density to guide the choices of hyperpa-

rameters. Results are robust to other configurations for the hyperparameters.

A.3 Two Posterior Samplers

Sequential Monte Carlo Algorithm. The first sampler used is the Sequential Monte Carlo (SMC) sampler

presented in Bognanni and Herbst (2014). Here we give a basic discussion of how the methodology works,

and the hyperparameters used in our implementation. Theoretical analysis of this kind of algorithm can be

found in Chopin (2002) and Herbst and Schorfheide (2015). SMC methods work by iteratively constructing

particle approximations to a sequence of distributions,

pn(A0, A+|Y1:T ,M1:T ) ∝ p(M1:T |Y1:T , A0, A+)φnp(A0, A+|Y1:T ), n = 1, . . . Nφ, (A-6)

where φ1 = 0 < . . . < φN = 1. Thus, the algorithm begins with a particle approximation of the “prior”,

p(A0, A+|Y1:T ), These particles are iteratively adjusted for Nφ stages until they approximate the posterior

distribution. The prior distribution can be exactly sampled using the form of Equation (A-5), since if p(Θ,Σ)

has an a multivariate normal inverse Wishart form—as the Minnesota Prior does—then the posterior under
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the VAR data, p(A0, A+|Y1:T ), also has the following multivariate normal inverse Wishart form:

p(A0, A+|Y1:T ) = 2
n(n+1)

2 |det(Σ)|
2n+np+2

2 p(Φ,Σ|Y1:T ). (A-7)

This prior can be sampled exactly and initializes the algorithm. After initialization, we construct the sequence

of distributions by slowly adding information via tempering of the likelihood, p(M1:T |Y1:T , A0, A+). The pace

at which this information is added is controlled by the parameter λ via:

φn =
n− 1

Nφ − 1
.

At each stage, to construct an approximation to the distribution associated with pn(A0, A+|Y1:T ), the previous

approximation is transformed in three steps. In the Correction step, the particles from the previous stage

are reweighted by p(A0, A+|Y1:T )φn−φn−1 , the increase in the tempered likelihood at stage n. Next, in the

Selection step, particles are resampled according to the weights constructed in the Correction step. This

ensures that particles with trivial weights “die” and those with substantial weight are replicated. Finally, in

the Mutation step, the particles independently move along the pn(A0, A+|Y1:T ) under a Markov chain Monte

Carlo (MCMC) algorithm. This step is critical, as it allows diversity across the replicated particles and allows

particles to move to higher density. We use the block Metropolis-Hastings (MH) algorithm in Bognanni and

Herbst (2014).

Metropolis-within-Gibbs Algorithm. We next describe an MCMC algorithm for deriving the posterior

of the parameters (Φ,Σ,Ω, β, σν), which can be used to obtain a posterior distribution for (A0, A+). The

posterior distribution of the BP-SVAR can also be written as

p(Φ,Σ,Ω, β, σν |Y1:T ,M1:T ) ∝ p(Y1:T ,M1:T |Φ,Σ,Ω, β, σν)p(Φ,Σ,Ω, β, σν)

∝ p(M1:T |Y1:T ,Φ,Σ,Ω, β, σν)p(Φ,Σ|Y1:T ), (A-8)

where the first term on the right hand side is the likelihood function discussed in Equation (A-2). We exploit a

similar prior-posterior decomposition as the one used in the SMC algorithm to inform the MCMC algorithm,

which we present in Algorithm 1.

Algorithm 1 (Metropolis-within-Gibbs Algorithm) For i = 1, . . . , N . At iteration i

1. Draw Σ,Φ|Y1:T ,M1:T ,Ω
i−1, βi−1, σi−1

ν .

For Σ We use a mixture proposal distribution (suppressing dependence on parameters for notational
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convenience),

q(Σ|Σi−1) = γp(Σ|Y1:T ) + (1− γ)IW(Σ; Σi−1, d),

where p(Σ|Y1:T ) is the known posterior distribution of Σ under Y1:T and IW(·; Σi−1, d) is an Inverse

Wishart distribution with scaling matrix Σi−1 and d degrees of freedom. For Φ we use the known

distribution p(Φ|Y1:T ,Σ) as a proposal in an independence MH step.

• Draw Σ∗ according to q(Σ|Σi−1).

• Draw Φ∗ according to p(Φ|Y1:T ,Σ
∗).

• With probability α, set Φi = Φ∗ and Σi = Σ∗, otherwise set Φi = Φi−1 and Σi = Σi−1. The

probability α is defined as

α = min

{
p(M1:T , Y1:T |Φ∗,Σ∗,Ωi−1, βi−1, σi−1

ν )p(Σ∗)

p(M1:T , Y1:T |Φi−1,Σi−1,Ωi−1, βi−1, σi−1
ν )p(Σi−1)

q(Σi−1|Σ∗)
q(Σ∗|Σi−1)

, 1

}
. (A-9)

2. Draw Ω|Y1:T ,Mt,Ω
i−1, βi−1, σi−1

ν .

Use an Independence Metropolis-Hastings sampler using the Haar measure on the space of orthogonal

matrices.

• Draw Ω∗ from the Haar measure by using Theorem 9 in Rubio-Ramı́rez, Waggoner, and Zha (2010).

• With probability α, set Ωi = Ω∗, otherwise Ωi = Ωi−1. The probability α is defined as

α = min

{
p(M1:T |Y1:T ,Φ

i,Σi,Ω∗, βi−1, σi−1
ν )

p(M1:T |Y1:T ,Φi,Σi,Ωi−1, βi−1, σi−1
ν )

, 1

}
. (A-10)

3. Draw β|Y1:T ,Mt,Ω
i−1, βi−1, σi−1

ν .

Sample βi from N (β̄, V̄β), the known conditional posterior distribution associated with β.

4. Draw σν |Y1:T ,Mt,Ω
i−1, βi, σi−1

ν .

Sample σν from IG(s̄1, s̄2), the known conditional posterior distribution associated with σν .

A few words on the design of the sampler. In Step 1, when γ = 1, the proposal density form (Φ,Σ) is

p(Φ,Σ|Y1:T ) = p(Σ|Y1:T )p(Φ|Y1:T ,Σ), the posterior distribution of the reduced form coefficients conditional

on the data Y1:T . When using the Minnesota prior, this posterior distribution is known in closed-form, making

the algorithm computationally efficient. But to the extent that the proxy is informative about the reduced

from residuals ut, the posterior of the reduced form parameters p(Φ,Σ|Y1:T ,M1:T ) might be very different

the posterior p(Φ,Σ|Y1:T ), in which case using p(Φ,Σ|Y1:T ) as a proposal is not a good idea. To deal with

this situation we use a mixture proposal for Σ that adds a the random walk-like component IW (·; Σi, d).

Obviously, some care must be taken in setting both γ and d. A good rule of thumb is to start with

γ = 1. If the acceptance rate is too low, lower γ and fine-tune the size of the random walk step through the
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hyperparameter d. Even though this algorithm worked well in most of the applications presented in this paper,

this sampler is not likely to be efficient when the posterior of p(Φ,Σ|Y1:T ,M1:T ) is very different from the

posterior under only the VAR data, p(Φ,Σ|Y1:T ). In this case, alternative samplers should be used, operating

directly on the structural parameters (A0, A+). Candidates simulators include the SMC algorithm described

above or the one found in Waggoner, Wu, and Zha (2014), who construct a striated Metropolis-Hastings

algorithm.

Implementation. For all of the applications in the paper, we use the SMC algorithm with the following

hyperparameters: (number of particles) Npart = 9600, (number of stages) Nφ = 500, (number of blocks)

Nblocks = 5, (tempering coefficient) λ = 2.7, and (number of MH steps) Nintmh = 1. In the applications in

the paper, we also use the Metropolis-within-Gibbs algorithm with γ = 1 for the inverse Gamma prior and

γ = 0.8, d = 5 for the high relevance prior. These algorithms produce the same posterior distributions as the

SMC sampler. For even higher relevance priors (e.g., fixing σν = 0.25× std(M1:T ), however, the Metropolis-

within-Gibbs algorithm is less reliable, as the discrepancy between some of the proposal distributions in

Algorithm 1 and the posterior is large in this case, and the acceptance rates drop to low values. The SMC

algorithm remained stable. The trade off is that the SMC sampler (written in Fortran) requires, in general,

substantial computational resources, while the Metropolis-within-Gibbs algorithm (written in Matlab) is

faster. In practice, we often estimated exploratory models with the Metropolis-within-Gibbs algorithm before

re-estimating using SMC.
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B Bayesian Proxy SVAR with Two Proxies

In this section we show the results of the estimation of BP-SVARs that include multiple proxies. We first

consider the 5-equation BP-SVAR from Section 4 augmented with the RR-CS shocks—which we denote by

mRR−CS,t—as an additional proxy. We then estimate a BP-SVAR that includes mHF,t and mCG,t, the

residual of the Taylor rule estimated in Section 6.3.

To introduce a second proxy, we write the measurement equation (7) as,

mHF,t = βHF eMP,t + σνHF νHF,t,

mRR−CS,t = βRR−CSeMP,t + σνRR−CSνRR−CS,t,

where we have added clarifying subscripts to the coefficients in Equation (7). We assume, as before, that the

measurement errors νHF,t and νRR−CS,t are independent over time, follow a standard normal distribution,

and are orthogonal to all of the structural shocks of interest. The other assumption we make is that the

measurement errors are independent of each other, even though this assumption can easily be relaxed. Using

this framework, we can deduce the conditional likelihood

p(MHF,1:T ,MRR−CS,1:T |Y1:T , A0,1, A+,1, βHF , σνHF , βRR−CS , σνRR−CS ),

which again follows the multivariate normal form. With this conditional likelihood we can proceed as before

to estimate the structural parameters of interest.

Panel (a) in Figure A-1 displays the impulse responses to a monetary policy shock identified in the BP-

SVAR that includes both the high frequency surprises and the RR-CS shocks as proxies. The inclusion of

mRR−CS,t as an additional proxy attenuates the responses of IP and unemployment: the median response

of IP bottoms at 0.25 percent, and the increase in the unemployment rate peaks at about 4 basis points.

Importantly, and in line with the results from the hybrid VAR, the response of the Baa spread is only 2 basis

points, suggesting that the inclusion of mRR−CS,t could attenuate the responses to a monetary policy shock

because the extended Romer and Romer (2004) does not fully purge the series of intended policy changes.

Finally, it should be noted that the conclusions of Section 4 are preserved even as mRR−CS,t has a much

higher relevance (0.4) than the mHF,t (0.1).25

Panel (b) displays the impulse responses to a monetary policy shock identified in the BP-SVAR that

includes both the high frequency surprises and the residual from the Taylor rule estimation described in

Equation (18) as proxies. Results are nearly identical to those from the BP-SVAR that only includes mHF,t.

25Results are closer to those reported in Section 4 if we impose a high relevance prior on both proxies to induce a equal reliability
of about 0.4.
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Figure A-1: Impulse Responses to a Monetary Policy Shock
(BP-SVARs with Two Proxies)
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(a) High Frequency Surprises + RR-CS Shock
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(b) High Frequency Surprises + Coibion and Gorodnichenko (2012) Shock

Note: The solid lines in panel (a) depict the median impulse responses of the specified variable to a one standard deviation
monetary policy shock identified in the BP-SVAR using jointly the high frequency surprises and the RR-CS shocks as proxies;
those in panel (b) depict the impulse responses identified in the BP-SVAR using jointly the high frequency surprises and the
residuals from the augmented Coibion and Gorodnichenko (2012) Taylor rule as proxies. Shaded bands denote the 90 percent
pointwise credible sets
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C Additional Figures and Tables

Figure A-2: Coefficients in the Monetary Policy Equation
(Prior-Posterior Comparison)
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(a) Contemporaneous Elasticities
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(b) Cumulative Elasticities

Note: The solid lines in panel (a) depict the posterior density of the contemporaneous elasticities from the monetary policy
equation identified in the BP-SVAR that includes the Baa spread, and those in panel (b) depict the cumulative elasticities. The
dashed lines denotes the density of impulse response under the prior distribution p(A0, A+|Y1:T ).
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Table A-1: Coefficients in the Monetary Policy Equation
(Cholesky Identification)

(1)

(A.) Contemporaneous Elasticities

ψ0,cs 0.00

ψ0,π 0.01
[-0.04 0.07]

ψ0,∆ip 0.00
[-0.05 0.04]

ψ0,u -0.02
[-0.23 0.20]

(B.) Cumulative Elasticities

ψcs -0.21
[-0.29 -0.13]

ψπ 0.03
[-0.05 0.11]

ψ∆y 0.03
[-0.04 0.09]

ψu -0.04
[-0.11 -0.03]

ψr 0.95
[ 0.91 0.98]

Note: The entries in the table denote the posterior median estimates of the contempo-
raneous elasticities (panel A) and the cumulative elasticities (panel B) in the monetary
equation identified using the Cholesky identification. The 90 percent credible sets from
the posterior distributions are reported in brackets. See the main text for details.
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