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Abstract 

The risk return relationship is analysed in bivariate models for return and realised variance 

(RV) series. Based on daily time series from 21 international market indices for more than 13 

years (January 2000 to February 2013), the empirical findings support the arguments of risk 

return tradeoff, volatility feedback and statistical balance. It is argued that the empirical risk 

return relationship is primarily shaped by two important data features: the negative 

contemporaneous correlation between the return and RV, and the difference in the 

autocorrelation structures of the return and RV. 
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1. Introduction 

1.1 Arguments and Findings 
We argue that the empirical risk return relationship in portfolio return and realised variance 

(RV) series is largely conveyed by two salient data features: (a) the contemporaneous 

correlation (CC) between the return and RV is negative; and (b) the RV has much stronger 

autocorrelations than the return. Feature (a) implies that high volatilities are associated with 

price falls or negative returns, which leads to a negative term in the expected return (i.e., the 

conditional mean return). Hence, a positive risk premium is required to compensate the 

expected loss from holding the portfolio for a high-volatility period. Feature (b) implies that 

the conditional volatility of the return also has strong autocorrelations and cannot have 

predictive power for the weakly-autocorrelated return (see Christensen and Nielsen (2007)). 

Consequently, in the expected return, the positive risk premium must precisely offset the 

negative effect induced by the CC. The above argument is tested in our empirical analysis, 

where econometric models explicitly accommodate data features (a) and (b).  

 We examine the risk return relationship in daily and weekly index return and RV 

series by using bivariate normal variance-mean mixture models. The excess returns (referred 

to as returns hereafter) and RVs of 21 international market indices, from 2000-01-03 to 2013-

02-05, in the Realised Library of Heber, Lunde, Shephard and Sheppard (2009) are analysed. 

The data features (a) and (b) are prominent for all indices considered, see Tables 1 and 4. Our 

estimation results support the argument outlined in the previous paragraph. Specifically, for 

almost all of 21 markets in the data set, we find that in the expected return: (i) there is a 

significantly positive risk premium effect; (ii) there is a significantly negative effect induced 

by the CC between the returns and RVs; (iii) the conditional volatility does not have 

predictive power; and (iv) the short-memory component of the volatility does not have 

predictive power. Finding (i) supports the risk return tradeoff implied by the intertemporal 

capital asset pricing model of Merton (1973) in that the risk premium effect is formulated in 

terms of the conditional volatility (variance or standard deviation) itself. Finding (ii) is a 

reflection of data feature (a) and can be interpreted as the volatility feedback effect, see Yang 

(2011). Finding (iii) conforms to the statistical balance argument that a strongly-

autocorrelated variable (e.g., volatility) does not predict a weakly-autocorrelated variable 

(e.g., return), see Christensen and Nielsen (2007). Finding (iv) is in contrast to the positive 

relationship found in the expected S&P 500 return and the lagged short-memory component 

of the VIX (implied volatility), see Christensen and Nielsen (2007) and Bollerslev, 
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Osterrieder, Sizova and Tauchen (2013). Our findings are qualitatively insensitive to 

variations in econometric models (two bivariate models are considered), in functional forms 

of the short-memory component of volatility in the expected mean (two functional forms are 

considered), and in sampling frequencies (daily and weekly frequencies are considered).  

1.2 Literature Review 
In the literature, while the importance of this risk return relationship has attracted many 

empirical investigations, the evidence from time series data is still mixed. In the earlier 

studies with univariate return series, the relationship between the expected return and the 

conditional volatility is found to be positive by some authors but insignificant or negative by 

others, depending on data and model specifications, see the references in Ghysels, Santa-

Clara and Valkanov (2005) and Lundblad (2007) among others.  

 More recently, Ghysels et al (2005) argue that conflicting empirical results from 

earlier studies are attributable to the difficulties in quantifying the conditional volatility and 

propose that the monthly conditional variance is estimated as a weighted average of squared 

daily returns in the previous month. Using this approach, they find that the expected return is 

positively related to the conditional variance for the monthly CRSP value-weighted market 

return series. Lundblad (2007) reasons that the empirical findings are mixed because the 

samples used are too small to allow for reliable inference. He demonstrates by simulation that 

the GARCH-type models cannot lead to reliable conclusions unless a long series (with at 

least 2000 monthly observations) is used. He finds a positive effect of the conditional 

variance on the expected return by using GARCH-type models with a long monthly U.S. 

market return series.  

 Christensen and Nielsen (2007) point out that the conditional-volatility-in-mean type 

models are not statistically balanced because returns are of short memory while volatilities 

are typically of long memory. They suggest that the risk return relationship be specified in 

terms of the short-memory component of the volatility (i.e., the shock to the volatility) and 

find that the expected S&P 500 return is positively related to the lagged short-memory 

component of the VIX index. The same positive relationship is reported by Bollerslev et al 

(2013), who also find a positive relationship between the expected S&P 500 return and the 

lagged difference between the VIX and RVs. However, they detect a negative relationship 

between the expected S&P 500 return and the lagged short-memory component of the RV. 

The approaches of Christensen and Nielsen (2007) and Bollerslev et al (2013) have the merit 
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of statistical balance. On the other hand, the risk-return-tradeoff specifications of Ghysels et 

al (2005) and Lundblad (2007), which are expressed in terms of the conditional variance 

itself, are consistent with the theoretical form suggested by Merton (1973).  

 With univariate GARCH-type models that have normal variance-mean mixture 

distributions, Yang (2011) shows that when the return is contemporaneously correlated with 

its volatility, the expected return is subject to the CC effect1 in addition to the conventional 

risk premium effect. He finds that the two effects, which are significant with opposite signs, 

are nullified in the expected return for the CRSP value-weighted portfolio return series at 

daily frequency. Wang and Yang (2013) substantiate the results of Yang (2011) with the G7 

market return series. Additionally, they document that there is little evidence in the G7 data 

for non-monotone relationships between the expected return and the conditional volatility 

(see Backus and Gregory (1993) and Rossi and Timmermann (2010)).  

1.3 Modelling Strategy 
Building on the above literature, the current study also borrows from the recent development 

in the joint models of the return and RV (Hansen, Huang and Shek (2012) and Corsi, Fusary 

and Vecchia (2013)) and takes advantage of the availability of RV data (Heber et al (2009)). 

The bivariate models we consider utilise the intraday information (via RV) to improve the 

accuracy in quantifying the conditional variance because the RV is much more informative 

about the volatility than the realised return itself (see Andersen, Bollerslev, Diebold and 

Labys (2003) among others). The important data features, as described in the first paragraph 

of this section, are accounted for in our models. Specifically, the normal variance-mean 

mixtures (see Yang (2011) for univariate models and Corsi et al (2013) for a bivariate model) 

are used to acknowledge the CC between the return and RV. The HAR model of Corsi (2009) 

is adopted to deal with the strong autocorrelations in the RV. As a result, the idea that the risk 

premium is associated with the short-memory component of the volatility (Christensen and 

Nielsen (2007)) is readily incorporated in our models.  

 As the volatility is tangible via the RV, our bivariate models provide an ideal 

framework to accommodate Yang’s (2011) argument that the expected return is influenced by 

both the risk premium and the CC between the return and the volatility. Indeed, in an efficient 

market, the joint effect of the risk premium and the CC on the expected return should be zero 

1Yang (2011) interprets the effect of the CC between the return and volatility as the volatility feedback of 
French, Schwert and Stambaugh (1987), which describes the phenomenon that bad news (price fall or negative 
return) is contemporaneously associated with high volatility. 
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from the viewpoint of either market efficiency or statistical balance. Both require that the 

weakly-autocorrelated return be unpredictable by the strongly-autocorrelated volatility that is 

based on public information. Empirically, we find that the hypothesis of the joint effect of the 

risk premium and the CC on the expected return being zero cannot be rejected for almost all 

21 market indices considered in this study. Part of the appeal of our approach is that the risk 

premium effect is defined in terms of the conditional volatility level (compatible with 

Merton’s (1973) theoretical form) on the one hand, and the expected return is allowed to be 

unaffected by the conditional volatility (compatible with statistical balance) on the other. Our 

approach, which has not been used in the literature for studying the risk return relationship in 

the bivariate context of return and RV series, provides fresh insight to explain and interpret 

the puzzling findings on the risk return relationship in the time series context. 

 Limited by sample sizes, our empirical findings are based on daily and weekly series 

and are short-term in nature. Our findings, born out of the two data features discussed in the 

first paragraph of Section 1.1, may shed light on the risk return relationships at lower 

frequencies. For instance, if both data features (a) and (b) are present at monthly frequency, 

similar conclusions are expected to hold. The key point of this paper is that both features (a) 

and (b), if present, need to be accounted for in modelling the risk return relationship. We note 

that our short-term analysis at daily and weekly frequencies has an advantage in mitigating 

the impact of variations in the investment opportunity set2. 

1.4 Paper Organisation 
The rest of the paper is organised as follows. Section 2 details the two models used in this 

study. Section 3 describes data. Estimation results and inferences are reported in Section 4. 

Concluding remarks are contained in Section 5. References, tables and figures are at the end 

of this paper. 

2. Models 

Let 𝑥𝑥𝑡𝑡  be the daily close-to-close return of a portfolio of assets in excess of the risk-free 

interest rate (simply return hereafter). Let 𝑦𝑦𝑡𝑡 be the daily open-to-close realised variance (RV) 

of the return at the end of day 𝑡𝑡 . The observable information set generated by 

2 Merton (1973) derives a theoretical relationship that links the conditional mean return to the conditional 
variance and the conditional covariance with variation in the investment opportunity set. Most studies in this 
literature implicitly assume that the investment opportunity set does not change (hence the covariance term 
drops from the conditional mean). Arguably, the covariance term can no longer be ignored for long horizons. 
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{𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡; 𝑥𝑥𝑡𝑡−1, 𝑦𝑦𝑡𝑡−1; … } is denoted as ℐ𝑡𝑡. The RV 𝑦𝑦𝑡𝑡 is regarded as an estimate of the integrated 

variance. Because no trading is recorded overnight, 𝑦𝑦𝑡𝑡  generally under-estimates the daily 

close-to-close integrated variance if it is an unbiased estimate of the open-to-close integrated 

variance. In what follows, 𝑦𝑦𝑤𝑤,𝑡𝑡 = 1
4
∑ 𝑦𝑦𝑡𝑡−𝑖𝑖4
𝑖𝑖=1  and 𝑦𝑦𝑚𝑚,𝑡𝑡 = 1

17
∑ 𝑦𝑦𝑡𝑡−𝑖𝑖21
𝑖𝑖=5  are called weekly and 

monthly RVs. Two well-known empirical characteristics are of interest for jointly modelling 

(𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡) , see Andersen, Bollerslev, Diebold and Labys (2003) and Andersen, Bollerslev, 

Frederiksen and Nielsen (2010) among others. First, 𝑦𝑦𝑡𝑡 has long memory in the sense that its 

autocorrelation decays to zero slowly. Second, the distribution of 𝑥𝑥𝑡𝑡/𝑦𝑦𝑡𝑡
1/2 is much closer to a 

normal distribution than that of 𝑥𝑥𝑡𝑡. In what follows, we consider two normal variance-mean 

mixture models for the pair (𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡) . These models are capable of capturing the 

contemporaneous correlation between 𝑥𝑥𝑡𝑡 and 𝑦𝑦𝑡𝑡 and the strong autocorrelations in 𝑦𝑦𝑡𝑡. As the 

purpose of this paper is to examine the risk return relationship in the bivariate models of 

(𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡), the RV is treated as an observable that is intimately connected to the conditional 

variance of 𝑥𝑥𝑡𝑡. However, no effort is made to separate the continuous and jump components 

of the RV. 

2.1 Non-central Gamma Model 
This is an extended version of the model of Corsi et al (2013), where the conditional 

distribution of the realised variance is assumed to be the autoregressive (AR) Gamma model 

of Gourieroux and Jasiak (2006). Specifically, 

(1) 𝑥𝑥𝑡𝑡|ℐ𝑡𝑡−1, 𝑦𝑦𝑡𝑡 ∼ N(𝜇𝜇𝑡𝑡 + 𝛽𝛽𝑦𝑦𝑡𝑡, 𝜓𝜓𝑦𝑦𝑡𝑡) ,        𝜓𝜓 > 0 , 

 𝑦𝑦𝑡𝑡|ℐ𝑡𝑡−1 ∼ NG(𝛿𝛿, 𝜆𝜆𝑡𝑡, 𝑐𝑐) ,        𝛿𝛿 > 0 ,        𝑐𝑐 > 0 , 

 𝜆𝜆𝑡𝑡 = 𝑎𝑎1𝑦𝑦𝑡𝑡−1 + 𝑎𝑎2𝑦𝑦𝑤𝑤,𝑡𝑡−1 + 𝑎𝑎3𝑦𝑦𝑚𝑚,𝑡𝑡−1 + 𝑎𝑎4𝑙𝑙𝑡𝑡−1 ,        𝑎𝑎𝑖𝑖 ≥ 0 , 

where 𝜇𝜇𝑡𝑡  and 𝜆𝜆𝑡𝑡  are functions of the information set ℐ𝑡𝑡−1 ; 𝑙𝑙𝑡𝑡−1 = 𝑦𝑦𝑡𝑡−1  if 𝑥𝑥𝑡𝑡−1 < 0  and 0 

otherwise; NG(𝛿𝛿, 𝜆𝜆𝑡𝑡, 𝑐𝑐) is the non-central gamma distribution with 𝛿𝛿, 𝜆𝜆𝑡𝑡 and 𝑐𝑐 being the shape, 

non-centrality and scale parameters respectively; (𝛽𝛽, 𝜓𝜓, 𝛿𝛿, 𝑐𝑐, 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4)  are constant 

parameters. The non-central gamma distribution in (1) implies  

(2) E(𝑦𝑦𝑡𝑡|ℐ𝑡𝑡−1) = 𝑐𝑐𝑐𝑐 + 𝑐𝑐𝜆𝜆𝑡𝑡        and        var(𝑦𝑦𝑡𝑡|ℐ𝑡𝑡−1) = 𝑐𝑐2𝛿𝛿 + 2𝑐𝑐2𝜆𝜆𝑡𝑡  

(see Gourieroux and Jasiak (2006)). The inclusion of 𝑦𝑦𝑤𝑤,𝑡𝑡−1 and 𝑦𝑦𝑚𝑚,𝑡𝑡−1 in 𝜆𝜆𝑡𝑡 is a pragmatic 

way to explain the strong autocorrelations of 𝑦𝑦𝑡𝑡 (see the HAR model of Corsi (2009) and 

Andersen, Bollerslev, and Diebold (2007) among others). The presence of 𝑙𝑙𝑡𝑡−1 in 𝜆𝜆𝑡𝑡 captures 
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the leverage effect (i.e., negative 𝑥𝑥𝑡𝑡−1  leads to greater conditional volatility than positive 

𝑥𝑥𝑡𝑡−1). While 𝜇𝜇𝑡𝑡 is a constant in Corsi et al (2013), it is extended here as a function of ℐ𝑡𝑡−1 to 

account for the risk return tradeoff effect 

(3) 𝜇𝜇𝑡𝑡 = 𝑚𝑚0 + 𝑚𝑚1𝜆𝜆𝑡𝑡 + 𝑚𝑚2𝜂𝜂𝑡𝑡−1 + 𝜑𝜑𝑥𝑥𝑡𝑡−1 ,        𝜂𝜂𝑡𝑡−1 = 𝑦𝑦𝑡𝑡−1 − (𝑐𝑐𝑐𝑐 + 𝑐𝑐𝜆𝜆𝑡𝑡−1) , 

where (𝑚𝑚0,𝑚𝑚1,𝑚𝑚2, 𝜑𝜑)  are constant parameters. Specifically, 𝑚𝑚1  is the effect of the 

traditional risk premium and 𝑚𝑚2  the effect of the short-memory component of 𝑦𝑦𝑡𝑡−1 . The 

lagged return 𝑥𝑥𝑡𝑡−1 is included in 𝜇𝜇𝑡𝑡  to account for the return’s autocorrelation that is not 

caused by the volatility-related measurements 𝜆𝜆𝑡𝑡 or 𝜂𝜂𝑡𝑡−1. As 𝑥𝑥𝑡𝑡  is the close-to-close return 

and 𝑦𝑦𝑡𝑡 is the open-to-close realised variance, the specification var(𝑥𝑥𝑡𝑡|ℐ𝑡𝑡−1, 𝑦𝑦𝑡𝑡) = 𝜓𝜓𝑦𝑦𝑡𝑡 allows 

the instantaneous variance var(𝑥𝑥𝑡𝑡|ℐ𝑡𝑡−1, 𝑦𝑦𝑡𝑡)  to differ from 𝑦𝑦𝑡𝑡 . Clearly, when 𝜓𝜓 = 1 , 

var(𝑥𝑥𝑡𝑡|ℐ𝑡𝑡−1, 𝑦𝑦𝑡𝑡) reduces to that of Corsi et al (2013). 

 The return in (1) may be alternatively written as  

(4) 𝑥𝑥𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝛽𝛽𝑦𝑦𝑡𝑡 + 𝜓𝜓1/2𝑦𝑦𝑡𝑡
1/2𝜉𝜉𝑡𝑡 ,  

where 𝜉𝜉𝑡𝑡 ∼ 𝑖𝑖𝑖𝑖𝑖𝑖 N(0,1) is independent of 𝑦𝑦𝑡𝑡 . Given ℐ𝑡𝑡−1, the quantity (𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑡𝑡) carries new 

information. The contemporaneous correlation (CC) between the return and RV is captured 

by the parameter 𝛽𝛽 that determines the sign of the CC. In the presence of the risk premium 

effect, Yang (2011) interprets the CC as the volatility feedback effect of French et al (1987). 

It can be verified that  

(5) E(𝑥𝑥𝑡𝑡|ℐ𝑡𝑡−1) = 𝜇𝜇𝑡𝑡 + 𝛽𝛽𝛽𝛽𝛽𝛽 + 𝛽𝛽𝛽𝛽𝜆𝜆𝑡𝑡 = 𝜑𝜑𝑥𝑥𝑡𝑡−1 + (𝑚𝑚0 + 𝛽𝛽𝛽𝛽𝛽𝛽) + (𝑚𝑚1 + 𝛽𝛽𝛽𝛽)𝜆𝜆𝑡𝑡 + 𝑚𝑚2𝜂𝜂𝑡𝑡−1 , 

 var(𝑥𝑥𝑡𝑡|ℐ𝑡𝑡−1) = (𝛽𝛽2𝑐𝑐 + 𝜓𝜓)𝑐𝑐𝑐𝑐 + (2𝛽𝛽2𝑐𝑐 + 𝜓𝜓)𝑐𝑐𝜆𝜆𝑡𝑡 , 

i.e., the conditional mean is linearly related to the conditional variance, consistent with 

Merton (1973). The impact of 𝜆𝜆𝑡𝑡 (or var(𝑥𝑥𝑡𝑡|ℐ𝑡𝑡−1)) on the conditional mean, 𝑚𝑚1 + 𝛽𝛽𝛽𝛽, is the 

sum of the risk premium effect 𝑚𝑚1 and the volatility feedback effect 𝛽𝛽𝛽𝛽. Notably, the CC has 

the same sign as 𝛽𝛽 : corr(𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡|ℐ𝑡𝑡−1) = 𝛽𝛽[var(𝑦𝑦𝑡𝑡|ℐ𝑡𝑡−1)/var(𝑥𝑥𝑡𝑡|ℐ𝑡𝑡−1)]1/2 . Here the joint 

effect 𝑚𝑚1 + 𝛽𝛽𝛽𝛽  is identified (or signalled) by variations in the conditional mean of 𝑥𝑥𝑡𝑡 , 

whereas 𝛽𝛽𝛽𝛽 by contemporaneous co-variations between 𝑥𝑥𝑡𝑡 and 𝑦𝑦𝑡𝑡. To be consistent with data 

features, neither 𝑚𝑚1  nor 𝛽𝛽𝛽𝛽  can be dropped because the latter captures the CC while the 

former is required risk premium to establish the statistical balance. To examine the risk return 

relationship, the main parameters of interest are 𝛽𝛽𝛽𝛽, 𝑚𝑚1, 𝑚𝑚2 and 𝑚𝑚1 + 𝛽𝛽𝛽𝛽. 
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 The non-central gamma distribution NG(𝛿𝛿, 𝜆𝜆, 𝑐𝑐)  is in fact a mixture of (centred) 

Gamma distributions, Gamma(𝛿𝛿 + 𝑘𝑘, 1), with Poisson probability weights 𝑝𝑝𝑘𝑘 = 𝑒𝑒−𝜆𝜆𝜆𝜆𝑘𝑘/𝑘𝑘! 

for 𝑘𝑘 = 0,1,2, …. The probability density function (PDF) of 𝑦𝑦 being NG(𝛿𝛿, 𝜆𝜆, 𝑐𝑐) is given by 

(6) pdfNG(𝑦𝑦|𝛿𝛿, 𝜆𝜆, 𝑐𝑐) = 1
𝑐𝑐
�𝑦𝑦
𝑐𝑐
�
𝛿𝛿−1

exp(− 𝑦𝑦
𝑐𝑐
− 𝜆𝜆)∑ 1

𝑘𝑘!Γ(𝛿𝛿+𝑘𝑘) �
𝑦𝑦
𝑐𝑐
𝜆𝜆�

𝑘𝑘
∞
𝑘𝑘=0  , 

where Γ(⋅)  is the gamma function. Let pdfN(⋅)  be the PDF of N(0,1) . Then the joint 

conditional PDF of (𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡) given ℐ𝑡𝑡−1 can be expressed as  

(7)  pdf(𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡|ℐ𝑡𝑡−1) = pdf(𝑥𝑥𝑡𝑡|𝑦𝑦𝑡𝑡, ℐ𝑡𝑡−1)pdf(𝑦𝑦𝑡𝑡|ℐ𝑡𝑡−1) 

       = pdfN�𝜉𝜉𝑡𝑡(𝜃𝜃)�pdfNG(𝑦𝑦𝑡𝑡|𝛿𝛿, 𝜆𝜆𝑡𝑡, 𝑐𝑐)|𝐽𝐽𝑡𝑡| 

       = pdfN�𝜉𝜉𝑡𝑡(𝜃𝜃)�pdfNG(𝑦𝑦𝑡𝑡|𝛿𝛿, 𝜆𝜆𝑡𝑡, 𝑐𝑐)�𝜓𝜓1/2𝑦𝑦𝑡𝑡
1/2�

−1
 , 

where 𝜃𝜃 is the vector of parameters to be estimated, 𝜉𝜉𝑡𝑡(𝜃𝜃) = (𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑡𝑡 − 𝛽𝛽𝑦𝑦𝑡𝑡)/(𝜓𝜓1/2𝑦𝑦𝑡𝑡
1/2), 

and 𝐽𝐽𝑡𝑡 = �𝜓𝜓1/2𝑦𝑦𝑡𝑡
1/2�

−1
 is the Jacobian of the transformation from 𝑥𝑥𝑡𝑡  to 𝜉𝜉𝑡𝑡(𝜃𝜃) . As the 

functional form of (7) is known, the maximum likelihood (ML) can readily be carried out to 

estimate 𝜃𝜃. The infinite sum in (6) needs to be truncated in computing the log likelihood. 

Corsi et al (2013) suggest truncating terms with 𝑘𝑘 > 90. The empirical results reported in 

Section 4.1 of this paper are based on truncating terms with 𝑘𝑘 > 299. 

2.2 Log Normal Model 
This model may be viewed as a further extension of Corsi et al (2013) to the cases where the 

RV is conditionally log normal. The model can be expressed as 

(8) 𝑥𝑥𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝐵𝐵𝑡𝑡𝜎𝜎𝑡𝑡2 + 𝜎𝜎𝑡𝑡𝜉𝜉𝑡𝑡 ,        𝜉𝜉𝑡𝑡 ∼ 𝑖𝑖𝑖𝑖𝑖𝑖 N(0,1) ,  

 ln(𝑦𝑦𝑡𝑡) = 𝜓𝜓0 + 𝜓𝜓1 ln(ℎ𝑡𝑡2) + 𝜂𝜂𝑡𝑡 ,        𝜂𝜂𝑡𝑡 ∼ 𝑖𝑖𝑖𝑖𝑖𝑖 N(0, 𝛾𝛾) ,      𝛾𝛾 > 0 , 

 ln(𝜎𝜎𝑡𝑡2) = 𝜌𝜌0 + 𝜌𝜌1 ln(ℎ𝑡𝑡2) + 𝜌𝜌2𝜂𝜂𝑡𝑡 , 

where ℎ𝑡𝑡2 = var(𝑥𝑥𝑡𝑡|ℐ𝑡𝑡−1), 𝜇𝜇𝑡𝑡 and 𝐵𝐵𝑡𝑡 are functions of ℐ𝑡𝑡−1, 𝜎𝜎𝑡𝑡2 is the instantaneous variance of 

the return, 𝜉𝜉𝑡𝑡 is independent of (ℐ𝑡𝑡−1, 𝑦𝑦𝑡𝑡), and 𝜂𝜂𝑡𝑡 is independent of ℐ𝑡𝑡−1. Similar to Corsi et al 

(2013), the returns is the normal variance-mean mixture 𝑥𝑥𝑡𝑡|(ℐ𝑡𝑡−1, 𝑦𝑦𝑡𝑡) ∼ N(𝜇𝜇𝑡𝑡 + 𝐵𝐵𝑡𝑡𝜎𝜎𝑡𝑡2, 𝜎𝜎𝑡𝑡2). 

Differing from Corsi et al (2013), the conditional distribution of the RV 𝑦𝑦𝑡𝑡 is log-normal. 

Similar to Hansen et al (2013), the RV 𝑦𝑦𝑡𝑡  is specified to be a linear function of the log 

conditional variance of 𝑥𝑥𝑡𝑡  and the volatility shock 𝜂𝜂𝑡𝑡  that represents news arrivals. The 

parameters (𝜓𝜓0, 𝜓𝜓1) remedies the discrepancy that 𝑦𝑦𝑡𝑡 is the open-to-close RV whereas ℎ𝑡𝑡2 is 
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the conditional variance of the close-to-close return 𝑥𝑥𝑡𝑡. The instantaneous variance 𝜎𝜎𝑡𝑡2 is the 

counterpart of “𝜓𝜓𝑦𝑦𝑡𝑡 ” in Section 2.1. Being a simple combination of ln(ℎ𝑡𝑡2)  and 𝜂𝜂𝑡𝑡  (or 

equivalently 𝑦𝑦𝑡𝑡 ), 𝜎𝜎𝑡𝑡2  is also conditionally log-normal. Obviously, 𝜎𝜎𝑡𝑡2  reduces to 𝑦𝑦𝑡𝑡  when 

(𝜌𝜌0, 𝜌𝜌1, 𝜌𝜌2) = (𝜓𝜓0, 𝜓𝜓1, 1). In general, as both 𝑦𝑦𝑡𝑡 and 𝜎𝜎𝑡𝑡2 are subject to the same news about 

the volatility, 𝜌𝜌2 > 0   holds. That 𝜎𝜎𝑡𝑡2  is different from 𝑦𝑦𝑡𝑡  affords certain flexibility in 

standardising the return 𝑥𝑥𝑡𝑡. Andersen et al (2010) document that majority of the standardised 

returns of 30 DJIA stocks do not reject the normality when the effects of jumps and return-

volatility correlations are accounted for. In our setting, where jumps are not separately treated, 

the flexibility in 𝜎𝜎𝑡𝑡2 is expected, and seen in Section 4.2, to improve the empirical fit of the 

normality assumption for the standardised shock 𝜉𝜉𝑡𝑡. 

 The fact that ℎ𝑡𝑡2  is the conditional variance of 𝑥𝑥𝑡𝑡  places some restrictions on the 

parameters (𝐵𝐵𝑡𝑡, 𝜌𝜌0, 𝜌𝜌1). To see these, the conditional variance of 𝑥𝑥𝑡𝑡 is expressed as 

(9) ℎ𝑡𝑡2 = var(𝑥𝑥𝑡𝑡|ℐ𝑡𝑡−1) = 𝑒𝑒𝛾𝛾�(𝑒𝑒𝛾𝛾� − 1)𝑒𝑒2𝜌𝜌0𝐵𝐵𝑡𝑡2ℎ𝑡𝑡
4𝜌𝜌1 + 𝑒𝑒0.5𝛾𝛾�𝑒𝑒𝜌𝜌0ℎ𝑡𝑡

2𝜌𝜌1, 

where 𝛾̅𝛾 = 𝜌𝜌22𝛾𝛾. Clearly, the following restrictions must hold: 

(10) 𝐵𝐵𝑡𝑡 = 𝛽𝛽/ℎ𝑡𝑡
𝜌𝜌1,        𝜌𝜌1 = 1,        𝑒𝑒𝛾𝛾�(𝑒𝑒𝛾𝛾� − 1)𝛽𝛽2𝑒𝑒2𝜌𝜌0 + 𝑒𝑒0.5𝛾𝛾�𝑒𝑒𝜌𝜌0 = 1, 

where 𝛽𝛽 is a constant. Let (𝛽𝛽, 𝛾𝛾, 𝜌𝜌2) be free parameters. Then, 𝑒𝑒𝜌𝜌0 must be the positive root 

of the last equation, i.e., 

(11) 𝑒𝑒𝜌𝜌0 = �−𝑒𝑒0.5𝛾𝛾� + �𝑒𝑒𝛾𝛾� + 4𝛽𝛽2𝑒𝑒𝛾𝛾�(𝑒𝑒𝛾𝛾� − 1)�/[2𝛽𝛽2𝑒𝑒𝛾𝛾�(𝑒𝑒𝛾𝛾� − 1)], 

if both 𝛾̅𝛾 > 0 and 𝛽𝛽 ≠ 0; and 𝑒𝑒𝜌𝜌0 = 𝑒𝑒−0.5𝛾𝛾� if either 𝛾̅𝛾 = 0 or 𝛽𝛽 = 0. Given these restrictions, 

the model can be expressed as  

(12) 𝑥𝑥𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝛽𝛽𝜎𝜎𝑡𝑡2/ℎ𝑡𝑡 + 𝜎𝜎𝑡𝑡𝜉𝜉𝑡𝑡 ,        𝜉𝜉𝑡𝑡 ∼ N(0,1) ,  

 ln(𝑦𝑦𝑡𝑡) = 𝜓𝜓0 + 𝜓𝜓1 ln(ℎ𝑡𝑡2) + 𝜂𝜂𝑡𝑡 ,        𝜂𝜂𝑡𝑡 ∼ 𝑖𝑖𝑖𝑖𝑖𝑖 N(0, 𝛾𝛾) ,      𝛾𝛾 > 0 , 

 𝜎𝜎𝑡𝑡2 = 𝑒𝑒𝜌𝜌0ℎ𝑡𝑡2𝑒𝑒𝜌𝜌2𝜂𝜂𝑡𝑡 , 

where 𝑒𝑒𝜌𝜌0 is a function of (𝛽𝛽, 𝛾𝛾, 𝜌𝜌2) as defined by (11). To close the model, the functional 

forms for 𝜇𝜇𝑡𝑡 and ℎ𝑡𝑡2 are specified as 

(13) 𝜇𝜇𝑡𝑡 = 𝑚𝑚0 + 𝑚𝑚1ℎ𝑡𝑡 + 𝑚𝑚2𝑒𝑒𝜂𝜂𝑡𝑡−1 + 𝜑𝜑𝑥𝑥𝑡𝑡−1 ,  

 ln ℎ𝑡𝑡2 = 𝑏𝑏0 + 𝑏𝑏1 ln ℎ𝑡𝑡−12 + 

   𝑎𝑎1 ln 𝑦𝑦𝑡𝑡−1 + 𝑎𝑎2 ln 𝑦𝑦𝑤𝑤,𝑡𝑡−1 + 𝑎𝑎3 ln 𝑦𝑦𝑚𝑚,𝑡𝑡−1 + 𝑎𝑎4𝑥𝑥𝑡𝑡−1 + 𝑎𝑎5|𝑥𝑥𝑡𝑡−1| , 
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where 𝑚𝑚1 is the effect of the conventional risk return tradeoff effect, 𝑚𝑚2 is the effect of the 

short-memory part of the RV, 𝜑𝜑𝑥𝑥𝑡𝑡−1 captures the return’s autocorrelation caused by factors 

other than ℎ𝑡𝑡 and 𝜂𝜂𝑡𝑡−1, (𝑎𝑎4, 𝑎𝑎5) provide a measure for the leverage effect, and (𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3) are 

the HAR parameters (see Corsi (2009)) that account for the RV’s strong autocorrelations. It 

follows that the conditional mean of the return is 

(14) 𝐸𝐸(𝑥𝑥𝑡𝑡|ℐ𝑡𝑡−1) = 𝑚𝑚0 + (𝑚𝑚1 + 𝛽𝛽𝑐𝑐1)ℎ𝑡𝑡 + 𝑚𝑚2𝑒𝑒𝜂𝜂𝑡𝑡−1 + 𝜑𝜑𝑥𝑥𝑡𝑡−1 , 

where 𝑐𝑐1 = 𝑒𝑒𝜌𝜌0+0.5𝛾𝛾� . Similar to the non-central gamma model, the effect of ℎ𝑡𝑡  on the 

expected return is the sum of the effects of the risk premium (𝑚𝑚1) and the CC between the 

return and the RV (𝛽𝛽𝑐𝑐1). Again, 𝑚𝑚1 + 𝛽𝛽𝑐𝑐1 is identified by variations in the conditional mean 

of 𝑥𝑥𝑡𝑡 whilst 𝛽𝛽𝑐𝑐1 is identified by contemporaneous co-variations between 𝑥𝑥𝑡𝑡 and 𝑦𝑦𝑡𝑡. When 𝑥𝑥𝑡𝑡 

and 𝑦𝑦𝑡𝑡  are of short and long memory respectively, 𝑚𝑚1 + 𝛽𝛽𝑐𝑐1 = 0 is required to maintain 

statistical balance. It can be shown that  

(15) cov(𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡|ℐ𝑡𝑡−1) = 𝛽𝛽�𝑒𝑒0.5(𝜌𝜌2+1)2𝛾𝛾 − 𝑒𝑒0.5�𝜌𝜌22+1�𝛾𝛾�𝑒𝑒𝜌𝜌0+𝜓𝜓0ℎ𝑡𝑡
1+2𝜓𝜓1 , 

i.e., the sign of the contemporaneous covariance between the return and realised variance is 

determined by the sign of 𝛽𝛽 when 𝜌𝜌2 > 0 (which is true for the empirical results in Section 4). 

To examine the risk return relationship, the main parameters of interest are 𝛽𝛽𝑐𝑐1, 𝑚𝑚1, 𝑚𝑚2 and 

𝑚𝑚1 + 𝛽𝛽𝑐𝑐1.  

 As the distribution of ln 𝑦𝑦𝑡𝑡 |ℐ𝑡𝑡−1  is N(𝜓𝜓0 + 𝜓𝜓1 ln ℎ𝑡𝑡2 , 𝛾𝛾) , the conditional PDF of 

(𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡) for given ℐ𝑡𝑡−1 can be written as 

(16) pdf(𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡|ℐ𝑡𝑡−1) = pdf(𝑦𝑦𝑡𝑡|ℐ𝑡𝑡−1)pdf(𝑥𝑥𝑡𝑡|𝑦𝑦𝑡𝑡, ℐ𝑡𝑡−1) 

      = pdfNγ�𝜂𝜂𝑡𝑡(𝜃𝜃)�pdfN�𝜉𝜉𝑡𝑡(𝜃𝜃)�|𝐽𝐽𝑡𝑡(𝜃𝜃)| 

      = pdfNγ�𝜂𝜂𝑡𝑡(𝜃𝜃)�pdfN�𝜉𝜉𝑡𝑡(𝜃𝜃)� � 1
𝜎𝜎𝑡𝑡(𝜃𝜃)𝑦𝑦𝑡𝑡

� , 

where  pdfNγ and pdfN are the densities of N(0, 𝛾𝛾) and N(0, 1) respectively, 𝜃𝜃 is the vector 

of all parameters to be estimated, 

 𝜉𝜉𝑡𝑡(𝜃𝜃) = (𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑡𝑡 − 𝛽𝛽𝜎𝜎𝑡𝑡2(𝜃𝜃)/ℎ𝑡𝑡)/𝜎𝜎𝑡𝑡(𝜃𝜃) , 

 𝜂𝜂𝑡𝑡(𝜃𝜃) = ln(𝑦𝑦𝑡𝑡) − 𝜓𝜓0 − 𝜓𝜓1 ln(ℎ𝑡𝑡2) , 

 𝜎𝜎𝑡𝑡2(𝜃𝜃) = 𝑒𝑒𝜌𝜌0ℎ𝑡𝑡2𝑒𝑒𝜌𝜌2𝜂𝜂𝑡𝑡(𝜃𝜃) , 
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𝐽𝐽𝑡𝑡(𝜃𝜃) is the Jacobian of the transformation from (𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡) to (𝜉𝜉𝑡𝑡(𝜃𝜃), 𝜂𝜂𝑡𝑡(𝜃𝜃)). Based on (16), the 

parameters can readily be estimated by the maximum likelihood method. 

3. Data 
The index returns and realised variances are obtained from the Realised Library of Heber et 

al (2009). The data include 21 indices ranging from 2000-01-03 to 2013-02-05, with some 

indices having shorter ranges (S&P-CNX and S&P-TSX). The interest rates used to calculate 

excess returns are obtained from Datastream. The interest rates are mainly local 3-month 

rates from the countries where the indices are measured. The excess return 𝑥𝑥𝑡𝑡 is measured as 

the difference between the daily log return (close-to-close) and the daily interest in daily 

percentages. The realised variances (RV) are the kernel estimates (see Barndorff-Nielsen, 

Hansen, Lunde and Shephard (2008)), scaled as (squared) daily percentages. For the FT-

Straits-Times index, as the observations of the two months between 2007-12-28 and 2008-03-

03 are missing, the close-to-close return on 2008-03-03, being the difference between the log 

close prices of 2008-03-03 and 2007-12-28, is adjusted by a division of 44 (the number of 

days in the gap).  

The summary statistics of the excess returns and the associated log RVs are given in 

Table 1. For all indices, the contemporaneous correlation between the excess return and the 

log RV is negative and significant (judged by the Bartlett’s bands ±2𝑇𝑇−1/2 ). Further, 

consistent with previous findings (see Andersen et al (2003) and Corsi (2009) among others), 

all log RVs exhibit strong autocorrelation or long memory indicated by enormous Ljung-Box 

Q-statistics. While all return series also have sizeable autocorrelations indicated by Q-

statistics, they are much weaker than those of the log RVs. As argued in Section 1, the risk 

return relationship is primarily shaped by these important data features, which our models 

will accommodate. 

In Table 1, additional characteristics in the return series include: near-zero mean, 

large standard deviation, negative skewness, large kurtosis. These are consistent with the 

well-known features for asset return series (see Bollerslev, Engle and Nelson (1994) among 

others). Moreover, for each log RV (except IBEX35), while the kurtosis is typically not far 

from 3, the skewness is positive and large.  

4. Results  
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The estimation results for all 21 indices are presented in Tables 2 to 5. Each table is divided 

into three panels (a, b and c), roughly in accordance with the geographical location of each 

index. 

4.1 Results for Non-central Gamma Model 
The estimation results for the Non-central Gamma (NG) model are reported in Table 2. In (5), 

the effects of the conditional variance and the lagged short-memory part of the RV on the 

expected return are summarised by the key parameters 𝑚𝑚1 + 𝛽𝛽𝛽𝛽 and 𝑚𝑚2 respectively.  

 First, the estimates of 𝑚𝑚1 + 𝛽𝛽𝛽𝛽 are statistically zero at the 5% level for all indices 

except S&P-CNX, whilst the estimates of 𝑚𝑚1 and 𝛽𝛽𝛽𝛽 are all statistically significant. Here the 

risk premium effect (𝑚𝑚1 > 0) offsets the volatility feedback effect (𝛽𝛽𝛽𝛽 < 0). This confirms 

the requirement of statistical balance: 𝑚𝑚1 + 𝛽𝛽𝛽𝛽 = 0. The magnitudes of 𝑚𝑚1 + 𝛽𝛽𝛽𝛽 are much 

smaller than those of either 𝑚𝑚1 or 𝛽𝛽𝛽𝛽 for all indices. 

 Second, the estimates of 𝑚𝑚2   are statistically zero at the 5% level for all indices 

(except Hang Seng), providing little support for the hypothesis that the lagged short-memory 

part of the RV, defined as 𝜂𝜂𝑡𝑡−1 = 𝑦𝑦𝑡𝑡−1 − 𝐸𝐸(𝑦𝑦𝑡𝑡−1|ℐ𝑡𝑡−2), has a positive effect on the expected 

return. However, the insignificance of the lagged 𝜂𝜂𝑡𝑡  could be a consequence of the 

autocorrelations that remains in 𝜂𝜂𝑡𝑡 (see next paragraph), as strongly autocorrelated 𝜂𝜂𝑡𝑡−1 does 

not have predictive power for weakly autocorrelated 𝑥𝑥𝑡𝑡. 

 Third, for all market indices, 𝜂𝜂𝑡𝑡 have substantial autocorrelations that are summarised 

by the Ljung-Box 𝑄𝑄30(𝜂𝜂) statistics, although they are much smaller than the 𝑄𝑄30 statistics of 

the RVs (the former range from 1.3% to 6.1% of the latter). Because 𝜂𝜂𝑡𝑡 by definition should 

be a martingale difference process, the remaining autocorrelations in 𝜂𝜂𝑡𝑡 is an indication of 

certain misspecifications in the RV equation in (1). For this reason, the results from the log 

normal model in Section 4.2 are preferable. As the autocorrelations in the standardised shock 

𝜉𝜉𝑡𝑡 , measured by the 𝑄𝑄30(𝜉𝜉) statistics, are small, the return equation in (1) appears to be 

reasonably adequate for this data set. 

 Additionally, the estimates of 𝜓𝜓  are statistically greater than one for all series, 

signalling that it is beneficial to adjust the open-to-close realised variance for the purpose of 

standardising the close-to-close return. The estimates of 𝑎𝑎4 in the HAR specification for 𝜆𝜆𝑡𝑡 

are all significantly positive, confirming the presence of the leverage effect. 

4.2 Results for Log Normal Model 
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The estimation results for the log normal model are presented in Table 3. The results are 

largely consistent with the findings in the previous section, whilst the log normal model fits 

data better than the non-central gamma model (judged by the remaining autocorrelations in 

standardised shocks). The parameters of interest are 𝑚𝑚1 + 𝛽𝛽𝑐𝑐1 and 𝑚𝑚2 in (14).  

 First, the estimates of 𝑚𝑚1 + 𝛽𝛽𝑐𝑐1 are statistically insignificant at the 5% level for all 

indices except FTSE-MIB and S&P-CNX. The magnitudes of 𝑚𝑚1 + 𝛽𝛽𝑐𝑐1  estimates are 

negligible in comparison with the estimates of 𝑚𝑚1  and 𝛽𝛽𝑐𝑐1 , which are both statistically 

significant, for all indices. These estimates are consistent with the arguments of risk return 

tradeoff (𝑚𝑚1 > 0), volatility feedback (𝛽𝛽𝑐𝑐1 < 0) and statistical balance (𝑚𝑚1 + 𝛽𝛽𝑐𝑐1 = 0).  

 Second, the estimates of 𝑚𝑚2  are statistically insignificant at the 5% level for all 

indices except FTSE100, Swiss and IBEX35. For these three exceptions, the 𝑚𝑚2 estimates are 

positive with magnitudes comparable to those of 𝑚𝑚1 + 𝛽𝛽𝑐𝑐1, but much smaller than those of 

𝑚𝑚1. Hence, there is little supporting evidence for the argument that the risk premium effect is 

rendered by the short-memory part of the volatility in this data set with the log normal model. 

 Third, if the model fits data perfectly, the shocks 𝜉𝜉𝑡𝑡  and 𝜂𝜂𝑡𝑡  will have no 

autocorrelations by definition. Indeed, the autocorrelations in 𝜉𝜉𝑡𝑡  and 𝜂𝜂𝑡𝑡  are small as their 

Ljung-Box 𝑄𝑄30 statistics are much smaller than those of 𝑥𝑥𝑡𝑡  and ln (𝑦𝑦𝑡𝑡) for all indices. For 

example, the 𝑄𝑄30(𝜂𝜂) statistics range from 0.074% to 0.229% of the 𝑄𝑄30statistics of ln (𝑦𝑦𝑡𝑡). In 

this sense, the log normal model generally fits the data well and captures the major dynamic 

features of the returns and the log RVs. 

 Additionally, the estimates of 𝜌𝜌2  are all positive and the estimates of (𝜓𝜓0, 𝜓𝜓1) are 

statistically different from (0, 1) at the 5% level for all indices, highlighting the difference 

between E(ln (𝑦𝑦𝑡𝑡)|ℐ𝑡𝑡−1)  and ln(var(𝑥𝑥𝑡𝑡|ℐ𝑡𝑡−1)) . The estimates of 𝑎𝑎4  in the specification of 

ln(var(𝑥𝑥𝑡𝑡|ℐ𝑡𝑡−1)) are all significantly negative at the 5% level, confirming the presence of the 

leverage effect in all indices. Further, Figure 1 presents the histograms for 𝜉𝜉𝑡𝑡 and 𝜂𝜂𝑡𝑡 of the 

S&P 500 index, where their distributions are visually close to normality. In fact, other 

histograms (not presented) suggest that the distribution of 𝜉𝜉𝑡𝑡 is closer to normality than that 

of 𝜂𝜂𝑡𝑡 for all indices considered. 

 Overall, the in-sample fit of the log normal model is superior to that of the non-central 

gamma model, in the sense of capturing the dynamic features of the data (judged by the 

autocorrelations remained in the standardised residuals 𝜉𝜉𝑡𝑡 and 𝜂𝜂𝑡𝑡). Given that both models 

lead to the same conclusion about the risk return relationship, our results appear to be robust 
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to choices between the two models considered. In what follows, we further consider a 

variation in the functional form of 𝜂𝜂𝑡𝑡−1 and a variation in sampling frequency respectively for 

the log normal model, which is our preferred model. 

4.3 Quadratic Short-Memory Volatility in Mean 
In addition to (13), an alternative version of 𝜇𝜇𝑡𝑡, which includes a quadratic function of the 

short memory volatility 𝜂𝜂𝑡𝑡−1 

 𝜇𝜇𝑡𝑡 = 𝑚𝑚0 + 𝑚𝑚1ℎ𝑡𝑡 + 𝑚𝑚2𝜂𝜂𝑡𝑡−1 + 𝑚𝑚3𝜂𝜂𝑡𝑡−12 + 𝜑𝜑𝑥𝑥𝑡𝑡−1,  

is also estimated as a robustness check. The estimation results lead to the same conclusions as 

in Section 4.2 (hence the details are not presented). Of interest are the estimates of (𝑚𝑚2,𝑚𝑚3), 

which are only jointly statistically significant at the 5% level for Nasdaq100, Swiss and FT-

Straits-Times with the Wald statistic p-values being 0.034, 0.0038 and 0.024 respectively. 

The estimates of (𝑚𝑚2,𝑚𝑚3) are both positive for Swiss and FT-Straits-Times, whereas they 

have opposite signs for Nasdaq100. For all three indices, the magnitudes of  (𝑚𝑚2,𝑚𝑚3) are 

much smaller than those of 𝑚𝑚1. Hence the conclusion in Section 4.2 that 𝜂𝜂𝑡𝑡−1 has little effect 

on the expected return appears to be insensitive to the variations in functional forms 

considered (exponential 𝜂𝜂𝑡𝑡−1 versus quadratic 𝜂𝜂𝑡𝑡−1). 

4.4 Weekly Data 
The log normal model is also estimated for the same data set at the weekly frequency (based on the 

end-of-Friday observations). While the model specifications in (11)-(13) are valid, the symbols 

(𝑦𝑦𝑡𝑡, 𝑦𝑦𝑤𝑤,𝑡𝑡, 𝑦𝑦𝑚𝑚,𝑡𝑡) now represent the (weekly, monthly, quarterly) RVs respectively. The weekly RV is 

defined as the sum of the daily RVs within the week. The monthly and quarterly RVs are defined 

respectively as the averages of the current and 3 and 15 previous weekly RVs. Also, 𝑥𝑥𝑡𝑡 represents the 

weekly (Friday-close to Friday-close) excess return. 

 The descriptive statistics of the weekly returns and log realised variances are given in Table 4. 

The data characteristics summarised in Section 3 are all present in Table 4. For all indices, the CC 

between the return and log(RV) is negative and the autocorrelation in the return is much weaker than 

that of the RV. The autocorrelations of the weekly returns appear to be weaker than those of the daily 

returns. According to the Q15 statistics in Table 4, thirteen of the 21 weekly returns reject the null of 

no autocorrelation at the 5% level of significance, whereas nineteen of the 21 daily returns reject 

according to the Q30 statistics in Table 1.  

 The conclusions based on Table 3 are all supported by the estimation results presented 

in Table 5. In particular, at the 5% level of significance, 𝑚𝑚1 is significantly positive for all 
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but Nikkei and 𝑚𝑚1 + 𝛽𝛽𝑐𝑐1 is insignificant for all but IBEX35, 𝛽𝛽𝑐𝑐1 is significantly negative for 

all indices, and 𝑚𝑚2 is insignificant for all indices. Further, the dynamic features of the data 

are well captured by the model in that there is little autocorrelation remaining in the 

standardised residuals (shocks) 𝜉𝜉𝑡𝑡  and 𝜂𝜂𝑡𝑡 . Hence the conclusions reached in Section 3.3 

appear to be robust to moderate variations in the sampling frequency. 

5. Conclusion 
Using bivariate models, we provide empirical evidence for the risk return relationship in the 

daily and weekly return and RV series from 21 international market indices. Our findings 

conform to the arguments of risk return tradeoff, volatility feedback, as well as statistical 

balance. These hold pervasively for almost all indices considered. We argue that the major 

data features (the negative CC between the return and RV, and the difference in the return 

and RV autocorrelation structures) contain crucial information about the risk return 

relationship. The price fall associated with high volatility (owing to negative CC) needs to be 

compensated by a positive risk premium in the expected return, whilst the different 

autocorrelation structures of the return and RV prevent the conditional volatility from having 

predictive power for the return. Future research will be directed to examining the risk 

premium of jumps in return and RV series, along the lines of Chrisoffersen, Jacobs and 

Ornthanalai (2012). 

 The computation of the empirical results is carried out in R version 2.15.3 of R Core 

Team (2013). The function “optim” with the BFGS algorithm is used for maximising the log 

likelihoods. 
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7. Tables and Figures 
 

Table 1. Summary Statistics of Returns and Log Realised Variances 
Here, Q30 is the Ljung-Box Q statistic at lag 30 and nObs is the number of observation used for estimating 
models. Corr is the contemporaneous correlation between the the excess return and the log realised variance. 

Table 1a 
S&P 
500 DJIA 

Nasdaq 
100 

Russel 
2000 

S&P 
TSX 

IPC 
Mexico Bovespa 

Return 
       Mean -0.004 0.002 -0.015 0.011 0.014 0.039 0.037 

Stdev 1.339 1.250 1.788 1.655 1.161 1.431 1.915 
Skewness -0.121 -0.033 0.119 -0.283 -0.660 0.039 -0.209 
Kurtosis 10.103 10.185 8.349 7.084 10.398 7.675 7.655 
Min -9.689 -8.615 -10.240 -12.461 -9.065 -8.303 -15.406 
Max 10.641 10.530 13.264 8.755 7.521 10.419 13.360 
Q30 101.9 101.7 94.8 77.2 109.0 87.7 64.8 
log RV 

       Mean -0.349 -0.390 -0.145 -0.296 -1.198 -0.847 0.584 
Stdev 1.022 0.989 1.059 0.945 1.065 0.911 0.783 
Skewness 0.537 0.639 0.469 0.578 0.834 0.556 0.634 
Kurtosis 3.480 3.741 2.964 3.957 4.000 3.474 4.702 
Min -3.029 -2.958 -3.211 -3.667 -3.930 -3.657 -2.579 
Max 4.534 4.514 4.200 4.163 3.568 3.225 4.427 
Q30 39666.2 39131.9 50056.4 29824.1 38245.9 33325.0 17556.1 
Corr -0.096 -0.089 -0.127 -0.103 -0.157 -0.074 -0.113 

nObs 3241 3243 3246 3244 2659 3247 3169 

 

  

18 
 



 

Table 1b. 
FTSE 
100 

Euro 
STOXX DAX CAC 40 AEX 

FTSE 
MIB Swiss IBEX 35 

Return 
        Mean -0.009 -0.026 -0.005 -0.021 -0.025 -0.037 -0.002 -0.018 

Stdev 1.241 1.564 1.594 1.533 1.531 1.559 1.260 1.539 
Skewness -0.156 -0.007 -0.042 -0.011 -0.116 -0.092 -0.065 0.065 
Kurtosis 9.225 7.407 8.596 7.424 8.694 8.051 9.814 7.697 
Min -8.936 -8.743 -11.065 -8.537 -9.133 -9.187 -8.709 -9.555 
Max 9.480 10.539 12.013 10.425 9.565 10.750 10.781 12.870 
Q30 101.3 105.1 100.5 105.0 125.4 79.2 74.9 68.3 
log RV 

        Mean -0.610 0.024 0.110 -0.062 -0.255 -0.277 -0.614 -0.094 
Stdev 1.055 1.028 1.029 1.010 1.047 1.084 0.943 1.053 
Skewness 0.324 0.305 0.378 0.220 0.429 0.165 0.805 -0.050 
Kurtosis 2.944 3.287 3.106 3.035 3.070 2.695 3.405 2.669 
Min -3.232 -4.262 -3.097 -3.217 -3.471 -3.447 -2.519 -3.182 
Max 3.483 4.693 4.164 3.818 3.679 3.762 3.202 3.581 
Q30 49697.9 41608.2 48056.3 46857.8 46874.2 47382.5 52360.6 52737.3 
Corr -0.134 -0.126 -0.141 -0.133 -0.149 -0.155 -0.127 -0.125 

nObs 3261 3285 3293 3310 3309 3276 3255 3275 

 

 

Table 1c. 
Nikkei 

225 KOSPI 
Hang 
Seng 

S&P 
CNX 

FT 
Straits 
Times 

All 
Ordinaries 

Return 
      Mean -0.019 0.011 0.007 0.054 0.013 0.000 

Stdev 1.575 1.729 1.751 1.631 1.219 0.977 
Skewness -0.445 -0.569 -2.025 -0.241 -0.335 -0.709 
Kurtosis 9.624 8.319 51.828 12.777 9.867 9.333 
Min -12.113 -12.838 -32.407 -13.806 -9.635 -7.280 
Max 13.232 11.229 13.397 16.438 8.913 4.514 
Q30 54.5 32.1 118.0 72.5 74.3 39.3 
log RV 

      Mean -0.251 -0.008 -0.457 0.094 -0.812 -1.273 
Stdev 0.864 0.944 0.839 0.921 0.759 0.995 
Skewness 0.381 0.355 0.541 0.689 0.723 0.542 
Kurtosis 3.788 3.163 3.886 3.845 3.950 3.459 
Min -2.728 -2.511 -3.002 -2.371 -2.779 -4.446 
Max 3.647 4.171 3.798 4.616 3.322 2.745 
Q30 30685.6 41955.4 34493.5 24692.5 36716.9 34085.1 
Corr -0.120 -0.152 -0.144 -0.186 -0.093 -0.121 

nObs 3145 3204 2941 2583 3204 3257 
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Table 2. Estimation Results for the Non-central Gamma Model 
The model estimated is defined by the equations (1) and (3). The standard errors, obtained from the sandwich 
form of the variance matrix estimate, are given in parentheses. In the table, 𝑄𝑄30(𝜉𝜉) and 𝑄𝑄30(𝜂𝜂) are the Ljung-
Box Q-statistics at lag 30 computed from the 𝜉𝜉𝑡𝑡 and 𝜂𝜂𝑡𝑡 series based on the estimated parameters. The standard 
errors for the estimates of 𝛽𝛽𝛽𝛽  and 𝑚𝑚1 + 𝛽𝛽𝛽𝛽  are computed by the “delta” method. The estimates of 𝑚𝑚2  and 
𝑚𝑚1 + 𝛽𝛽𝛽𝛽 that are statistically significant at the 5% (or less) level are indicated with “**”. 

Table 2a S&P 500 DJIA 
Nasdaq 

100 
Russel 

2000 S&P TSX 
IPC 

Mexico Bovespa 
𝜓𝜓 1.201 1.133 1.973 2.237 2.265 2.879 1.369 

 
(0.028) (0.028) (0.051) (0.053) (0.063) (0.084) (0.037) 

𝛿𝛿 1.162 1.201 1.189 1.279 1.136 1.269 1.594 

 
(0.053) (0.059) (0.048) (0.052) (0.052) (0.045) (0.086) 

𝑐𝑐 0.254 0.238 0.260 0.235 0.102 0.168 0.436 

 
(0.034) (0.034) (0.031) (0.023) (0.010) (0.015) (0.031) 

𝛽𝛽 -0.331 -0.288 -0.536 -0.389 -0.931 -0.240 -0.229 

 
(0.035) (0.036) (0.048) (0.048) (0.089) (0.060) (0.026) 

𝑎𝑎1 1.233 1.230 1.219 1.071 3.196 1.117 0.611 

 
(0.290) (0.279) (0.224) (0.218) (0.626) (0.257) (0.089) 

𝑎𝑎2 1.103 1.288 0.933 1.234 2.661 1.485 0.698 

 
(0.221) (0.272) (0.186) (0.208) (0.591) (0.251) (0.100) 

𝑎𝑎3 0.302 0.309 0.448 0.326 0.785 0.994 0.147 

 
(0.148) (0.180) (0.141) (0.154) (0.381) (0.217) (0.080) 

𝑎𝑎4 0.776 0.783 0.942 1.223 2.592 1.057 0.445 

 
(0.197) (0.175) (0.151) (0.136) (0.353) (0.209) (0.075) 

𝜑𝜑 -0.059 -0.052 -0.028 0.000 0.007 0.068 0.004 

 
(0.015) (0.015) (0.016) (0.016) (0.019) (0.017) (0.016) 

𝑚𝑚0 0.076 0.066 0.189 0.118 0.134 0.080 0.114 

 
(0.021) (0.020) (0.027) (0.031) (0.021) (0.029) (0.046) 

𝑚𝑚1 0.088 0.073 0.132 0.094 0.093 0.043 0.119 
 (0.013) (0.012) (0.016) (0.015) (0.010) (0.015) (0.018) 

𝑚𝑚2 -0.061 -0.063 -0.011 -0.019 -0.099 -0.066 -0.022 

 
(0.040) (0.039) (0.038) (0.047) (0.077) (0.040) (0.026) 

𝛽𝛽𝛽𝛽 -0.084 -0.069 -0.139 -0.091 -0.095 -0.040 -0.100 

 
(0.010) (0.009) (0.013) (0.011) (0.008) (0.010) (0.012) 

𝑚𝑚1 + 𝛽𝛽𝛽𝛽 0.004 0.004 -0.007 0.002 -0.002 0.002 0.019 

 
(0.007) (0.007) (0.008) (0.010) (0.006) (0.012) (0.012) 

log (𝐿𝐿) -6863.2 -6542.8 -8425.1 -7968.9 -3032.1 -5958.5 -10809.9 
𝑄𝑄30(𝜉𝜉) 40.9 34.3 41.4 50.9 46.3 39.2 48.8 
𝑄𝑄30(𝜂𝜂) 577.9 646.8 451.7 602.8 462.8 486.9 843.6 
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Table 2b. 
FTSE 
100 

Euro 
STOXX DAX CAC 40 AEX 

FTSE 
MIB Swiss IBEX 35 

𝜓𝜓 1.543 1.209 1.159 1.363 1.449 1.654 1.488 1.443 

 
(0.043) (0.029) (0.028) (0.032) (0.036) (0.045) (0.040) (0.035) 

𝛿𝛿 1.124 1.173 1.188 1.208 1.181 1.088 1.405 1.150 

 
(0.040) (0.051) (0.047) (0.043) (0.040) (0.033) (0.060) (0.037) 

𝑐𝑐 0.171 0.331 0.312 0.239 0.209 0.226 0.107 0.219 

 
(0.016) (0.043) (0.033) (0.019) (0.017) (0.018) (0.009) (0.017) 

𝛽𝛽 -0.685 -0.369 -0.429 -0.517 -0.643 -0.687 -0.828 -0.550 

 
(0.069) (0.035) (0.033) (0.034) (0.040) (0.041) (0.057) (0.040) 

𝑎𝑎1 1.906 0.872 1.297 1.323 1.674 1.413 3.467 1.536 

 
(0.292) (0.215) (0.185) (0.208) (0.216) (0.203) (0.496) (0.219) 

𝑎𝑎2 1.673 0.872 0.694 1.182 1.363 1.321 2.837 1.288 

 
(0.286) (0.150) (0.167) (0.199) (0.226) (0.201) (0.473) (0.200) 

𝑎𝑎3 0.665 0.252 0.353 0.419 0.397 0.439 0.561 0.476 

 
(0.201) (0.125) (0.113) (0.132) (0.130) (0.136) (0.279) (0.140) 

𝑎𝑎4 0.880 0.690 0.506 0.926 0.960 0.851 1.873 0.985 

 
(0.193) (0.122) (0.120) (0.132) (0.143) (0.127) (0.254) (0.148) 

𝜑𝜑 -0.066 -0.049 -0.030 -0.051 -0.016 -0.058 -0.010 -0.014 

 
(0.020) (0.016) (0.016) (0.016) (0.017) (0.017) (0.017) (0.017) 

𝑚𝑚0 0.101 0.093 0.158 0.115 0.107 0.143 0.115 0.129 

 
(0.020) (0.024) (0.024) (0.024) (0.023) (0.022) (0.021) (0.023) 

𝑚𝑚1 0.121 0.128 0.133 0.126 0.139 0.152 0.089 0.119 
 (0.016) (0.016) (0.015) (0.012) (0.013) (0.013) (0.009) (0.011) 

𝑚𝑚2 -0.065 -0.029 -0.036 -0.026 -0.044 -0.010 0.006 -0.023 

 
(0.045) (0.030) (0.033) (0.037) (0.042) (0.041) (0.062) (0.039) 

𝛽𝛽𝛽𝛽 -0.117 -0.122 -0.134 -0.124 -0.134 -0.155 -0.089 -0.120 

 
(0.013) (0.013) (0.012) (0.010) (0.010) (0.011) (0.007) (0.009) 

𝑚𝑚1 + 𝛽𝛽𝛽𝛽 0.004 0.005 -0.001 0.002 0.005 -0.003 0.001 -0.002 

 
(0.006) (0.008) (0.007) (0.006) (0.007) (0.007) (0.004) (0.006) 

log (𝐿𝐿) -5870.4 -8667.4 -8848.6 -8181.3 -7401.9 -7577.5 -5128.1 -7946.1 
𝑄𝑄30(𝜉𝜉) 40.2 50.5 39.7 64.8 56.5 37.3 51.2 57.1 
𝑄𝑄30(𝜂̂𝜂) 300.3 712.1 299.7 368.7 350.1 207.5 342.8 251.3 
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Table 2c. 
Nikkei 

225 KOSPI 
Hang 
Seng 

S&P 
CNX 

FT 
Straits 
Times 

All 
Ordinaries 

𝜓𝜓 2.018 1.912 2.436 1.301 2.056 1.599 

 
(0.050) (0.054) (0.080) (0.039) (0.056) (0.033) 

𝛿𝛿 1.393 1.295 1.457 1.327 1.653 1.129 

 
(0.064) (0.051) (0.083) (0.068) (0.096) (0.037) 

𝑐𝑐 0.204 0.229 0.176 0.413 0.083 0.125 

 
(0.016) (0.020) (0.022) (0.056) (0.009) (0.011) 

𝛽𝛽 -0.440 -0.698 -0.641 -0.427 -0.561 -0.346 

 
(0.044) (0.049) (0.069) (0.038) (0.087) (0.060) 

𝑎𝑎1 1.541 1.848 1.620 0.898 4.510 0.597 

 
(0.205) (0.203) (0.368) (0.143) (0.548) (0.260) 

𝑎𝑎2 1.387 1.203 1.937 0.403 2.962 3.141 

 
(0.255) (0.194) (0.368) (0.113) (0.588) (0.378) 

𝑎𝑎3 0.396 0.310 0.485 0.161 1.642 1.011 

 
(0.191) (0.145) (0.256) (0.081) (0.453) (0.328) 

𝑎𝑎4 0.812 0.398 0.243 0.449 0.756 1.919 

 
(0.147) (0.137) (0.213) (0.089) (0.349) (0.286) 

𝜑𝜑 -0.029 -0.026 0.014 0.073 -0.004 -0.011 

 
(0.017) (0.018) (0.019) (0.021) (0.018) (0.014) 

𝑚𝑚0 0.138 0.212 0.199 0.161 0.098 0.075 

 
(0.034) (0.034) (0.038) (0.037) (0.028) (0.015) 

𝑚𝑚1 0.082 0.161 0.106 0.214 0.045 0.035 
 (0.014) (0.017) (0.019) (0.029) (0.010) (0.010) 

𝑚𝑚2 0.029 -0.017 **0.114 -0.055 0.039 0.023 

 
(0.045) (0.051) (0.055) (0.039) (0.083) (0.043) 

𝛽𝛽𝛽𝛽 -0.090 -0.160 -0.113 -0.176 -0.046 -0.043 

 
(0.012) (0.013) (0.016) (0.018) (0.007) (0.009) 

𝑚𝑚1 + 𝛽𝛽𝛽𝛽 -0.007 0.001 -0.007 **0.038 -0.001 -0.009 

 
(0.009) (0.008) (0.012) (0.016) (0.006) (0.007) 

log (𝐿𝐿) -7521.9 -8590.8 -6456.8 -7294.5 -4510.1 -3136.9 
𝑄𝑄30(𝜉𝜉) 38.7 26.2 42.7 35.5 32.8 22.3 
𝑄𝑄30(𝜂̂𝜂) 482.8 342.7 347.3 105.7 445.5 360.3 
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Table 3. Estimation Results for the Log-Normal Model 
The model estimated is defined by the equations (11), (12) and (13). In the table, 𝑄𝑄30(𝜉𝜉) and 𝑄𝑄30(𝜂̂𝜂) are the 
Ljung-Box Q-statistics at lag 30 estimated from the 𝜉𝜉𝑡𝑡 and 𝜂𝜂𝑡𝑡 series based on the estimated parameters. The 
standard errors for the estimates of 𝛽𝛽𝛽𝛽 and 𝑚𝑚1 + 𝛽𝛽𝛽𝛽 are computed by the “delta” method. The estimates of 𝑚𝑚2 
and 𝑚𝑚1 + 𝛽𝛽𝛽𝛽 that are statistically significant at the 5% (or less) level are indicated by “**”. 

Table 3a S&P 500 DJIA 
Nasdaq 

100 
Russel 

2000 S&P TSX 
IPC 

Mexico Bovespa 
𝜓𝜓0 -0.377 -0.316 -0.722 -0.928 -0.965 -1.264 -0.525 

 
(0.023) (0.024) (0.028) (0.031) (0.033) (0.034) (0.055) 

𝜓𝜓1 0.886 0.897 0.926 1.005 1.102 1.075 1.043 

 
(0.020) (0.022) (0.024) (0.027) (0.033) (0.046) (0.046) 

𝜌𝜌2 1.134 1.129 0.621 0.838 0.854 1.118 1.040 
 (0.048) (0.051) (0.055) (0.045) (0.053) (0.087) (0.057) 

𝛾𝛾 0.250 0.243 0.202 0.278 0.250 0.290 0.252 

 
(0.008) (0.009) (0.007) (0.009) (0.008) (0.011) (0.008) 

𝛽𝛽 -0.463 -0.406 -1.343 -0.492 -0.925 -0.123 -0.363 

 
(0.047) (0.045) (0.149) (0.056) (0.088) (0.031) (0.049) 

𝑏𝑏0 0.110 0.077 0.380 0.352 0.368 0.413 0.251 

 
(0.020) (0.019) (0.034) (0.038) (0.045) (0.074) (0.035) 

𝑏𝑏1 0.604 0.627 0.361 0.540 0.398 0.540 0.419 

 
(0.037) (0.038) (0.045) (0.045) (0.050) (0.082) (0.046) 

𝑎𝑎1 0.297 0.287 0.382 0.270 0.256 0.224 0.261 

 
(0.021) (0.021) (0.025) (0.018) (0.021) (0.020) (0.021) 

𝑎𝑎2 0.044 0.034 0.120 0.058 0.133 0.041 0.104 

 
(0.028) (0.029) (0.029) (0.029) (0.030) (0.037) (0.030) 

𝑎𝑎3 0.057 0.050 0.108 0.068 0.091 0.101 0.077 

 
(0.011) (0.011) (0.015) (0.012) (0.014) (0.025) (0.014) 

𝑎𝑎4 -0.132 -0.124 -0.076 -0.092 -0.097 -0.053 -0.056 

 
(0.008) (0.009) (0.005) (0.006) (0.008) (0.006) (0.005) 

𝑎𝑎5 0.032 0.032 0.068 0.033 0.076 0.058 0.066 
 (0.010) (0.010) (0.009) (0.008) (0.012) (0.014) (0.007) 

𝜑𝜑 -0.052 -0.045 -0.021 -0.007 0.004 0.065 0.007 

 
(0.014) (0.014) (0.016) (0.016) (0.019) (0.017) (0.016) 

𝑚𝑚0 0.022 0.020 0.040 0.014 0.059 0.073 -0.133 

 
(0.034) (0.034) (0.054) (0.068) (0.048) (0.058) (0.100) 

𝑚𝑚1 0.417 0.377 1.112 0.495 0.751 0.108 0.440 
 (0.050) (0.051) (0.131) (0.070) (0.083) (0.058) (0.080) 

𝑚𝑚2 -0.007 -0.005 0.054 -0.033 0.009 -0.006 0.014 

 
(0.022) (0.019) (0.038) (0.031) (0.027) (0.012) (0.041) 

𝛽𝛽𝑐𝑐1 -0.430 -0.384 -1.189 -0.469 -0.805 -0.122 -0.349 

 
(0.040) (0.039) (0.124) (0.050) (0.069) (0.030) (0.045) 

𝑚𝑚1 + 𝛽𝛽𝑐𝑐1  -0.013 -0.007 -0.077 0.026 -0.055 -0.014 0.091 

 
(0.038) (0.041) (0.042) (0.055) (0.057) (0.053) (0.067) 

log (𝐿𝐿) -5494.1 -5172.1 -6897.3 -6970.6 -1931.8 -4789.0 -10070.3 
𝑄𝑄30(𝜉𝜉) 32.7 26.9 31.7 45.4 39.8 39.1 48.1 
𝑄𝑄30(𝜂̂𝜂) 29.4 29.5 38.0 47.0 41.1 43.0 38.4 
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Table 3b. 
FTSE 
100 

Euro 
STOXX DAX CAC 40 AEX 

FTSE 
MIB Swiss IBEX 35 

𝜓𝜓0 -0.550 -0.355 -0.320 -0.468 -0.518 -0.642 -0.547 -0.533 

 
(0.027) (0.025) (0.026) (0.026) (0.025) (0.027) (0.026) (0.029) 

𝜓𝜓1 1.041 0.937 0.959 0.976 0.922 0.948 0.966 1.005 

 
(0.028) (0.023) (0.024) (0.025) (0.022) (0.024) (0.028) (0.025) 

𝜌𝜌2 0.682 0.982 0.971 0.865 0.793 0.646 0.906 0.908 

 
(0.070) (0.054) (0.056) (0.052) (0.053) (0.050) (0.068) (0.060) 

𝛾𝛾 0.215 0.256 0.215 0.219 0.222 0.246 0.146 0.200 

 
(0.009) (0.011) (0.007) (0.008) (0.008) (0.009) (0.005) (0.007) 

𝛽𝛽 -1.244 -0.633 -0.874 -0.892 -1.101 -1.458 -1.145 -0.888 

 
(0.167) (0.069) (0.086) (0.086) (0.107) (0.136) (0.117) (0.087) 

𝑏𝑏0 0.121 0.075 0.076 0.119 0.165 0.206 0.146 0.193 

 
(0.021) (0.018) (0.018) (0.022) (0.028) (0.028) (0.028) (0.031) 

𝑏𝑏1 0.619 0.591 0.600 0.565 0.475 0.486 0.586 0.445 

 
(0.051) (0.051) (0.053) (0.053) (0.053) (0.045) (0.062) (0.062) 

𝑎𝑎1 0.260 0.256 0.282 0.263 0.322 0.287 0.289 0.308 

 
(0.018) (0.022) (0.023) (0.021) (0.023) (0.020) (0.024) (0.022) 

𝑎𝑎2 0.010 0.055 0.025 0.055 0.092 0.090 0.044 0.103 

 
(0.027) (0.032) (0.030) (0.033) (0.037) (0.029) (0.038) (0.037) 

𝑎𝑎3 0.055 0.062 0.060 0.067 0.074 0.088 0.045 0.081 

 
(0.011) (0.012) (0.012) (0.011) (0.012) (0.012) (0.011) (0.013) 

𝑎𝑎4 -0.080 -0.092 -0.072 -0.077 -0.071 -0.075 -0.079 -0.069 

 
(0.007) (0.006) (0.005) (0.006) (0.006) (0.006) (0.007) (0.006) 

𝑎𝑎5 0.055 0.061 0.048 0.067 0.089 0.092 0.059 0.074 

 
(0.011) (0.010) (0.008) (0.010) (0.010) (0.009) (0.011) (0.010) 

𝜑𝜑 -0.041 -0.050 -0.030 -0.049 -0.012 -0.051 -0.005 -0.008 

 
(0.017) (0.017) (0.015) (0.016) (0.016) (0.017) (0.017) (0.017) 

𝑚𝑚0 0.008 -0.019 0.060 -0.012 -0.009 0.042 -0.036 0.031 
 (0.036) (0.049) (0.046) (0.047) (0.043) (0.039) (0.046) (0.040) 

𝑚𝑚1 1.053 0.545 0.693 0.752 0.923 1.147 0.945 0.727 
 (0.145) (0.068) (0.076) (0.077) (0.092) (0.110) (0.101) (0.077) 

𝑚𝑚2 **0.020 0.025 0.025 0.039 0.021 0.013 **0.084 **0.033 

 
(0.006) (0.025) (0.025) (0.023) (0.021) (0.015) (0.026) (0.012) 

𝛽𝛽𝑐𝑐1 -1.089 -0.574 -0.760 -0.792 -0.952 -1.223 -0.999 -0.789 

 
(0.136) (0.056) (0.067) (0.070) (0.085) (0.106) (0.094) (0.071) 

𝑚𝑚1 + 𝛽𝛽𝑐𝑐1  -0.036 -0.029 -0.068 -0.040 -0.029 **-0.076 -0.055 -0.062 

 
(0.043) (0.043) (0.040) (0.041) (0.041) (0.038) (0.048) (0.038) 

log (𝐿𝐿) -4372.6 -7470.6 -7520.2 -7037.1 -6178.0 -6353.5 -3678.8 -6742.1 
𝑄𝑄30(𝜉𝜉) 31.7 38.9 36.1 56.8 55.4 36.0 45.8 47.9 
𝑄𝑄30(𝜂̂𝜂) 62.5 72.0 81.6 107.3 107.4 57.9 72.6 85.3 
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Table 3c. 
Nikkei 

225 KOSPI 
Hang 
Seng 

S&P 
CNX 

FT 
Straits 
Times 

All 
Ordinaries 

𝜓𝜓0 -0.882 -0.712 -0.908 -0.410 -0.895 -0.751 

 
(0.038) (0.036) (0.035) (0.038) (0.087) (0.024) 

𝜓𝜓1 1.110 0.986 0.859 0.993 0.832 0.924 

 
(0.040) (0.032) (0.034) (0.037) (0.042) (0.022) 

𝜌𝜌2 0.870 0.446 0.741 0.759 1.183 1.164 

 
(0.053) (0.055) (0.060) (0.081) (0.202) (0.040) 

𝛾𝛾 0.239 0.196 0.220 0.235 0.163 0.343 

 
(0.008) (0.007) (0.008) (0.009) (0.005) (0.010) 

𝛽𝛽 -0.493 -2.108 -0.723 -0.998 -0.356 -0.186 

 
(0.058) (0.278) (0.092) (0.175) (0.076) (0.032) 

𝑏𝑏0 0.304 0.335 0.435 0.177 0.437 0.159 

 
(0.037) (0.034) (0.064) (0.033) (0.071) (0.031) 

𝑏𝑏1 0.531 0.357 0.495 0.234 0.405 0.683 

 
(0.050) (0.047) (0.066) (0.056) (0.050) (0.053) 

𝑎𝑎1 0.272 0.388 0.301 0.371 0.349 0.164 

 
(0.018) (0.023) (0.023) (0.024) (0.025) (0.018) 

𝑎𝑎2 0.026 0.075 0.077 0.142 0.119 0.068 

 
(0.027) (0.029) (0.049) (0.038) (0.035) (0.042) 

𝑎𝑎3 0.068 0.100 0.145 0.116 0.138 0.067 

 
(0.013) (0.014) (0.027) (0.016) (0.025) (0.016) 

𝑎𝑎4 -0.053 -0.033 -0.027 -0.059 -0.037 -0.136 

 
(0.005) (0.005) (0.007) (0.007) (0.009) (0.012) 

𝑎𝑎5 0.039 0.092 0.043 0.114 0.112 0.033 

 
(0.008) (0.008) (0.009) (0.012) (0.016) (0.016) 

𝜑𝜑 -0.029 0.006 0.022 0.074 -0.008 -0.017 

 
(0.017) (0.018) (0.017) (0.020) (0.017) (0.014) 

𝑚𝑚0 0.065 0.032 0.062 -0.056 0.045 0.075 
 (0.070) (0.064) (0.067) (0.070) (0.051) (0.028) 

𝑚𝑚1 0.376 1.794 0.607 1.007 0.295 0.111 
 (0.072) (0.238) (0.094) (0.145) (0.084) (0.047) 

𝑚𝑚2 0.043 0.027 0.043 -0.031 0.018 -0.008 

 
(0.034) (0.034) (0.035) (0.036) (0.034) (0.009) 

𝛽𝛽𝑐𝑐1 -0.472 -1.828 -0.680 -0.885 -0.345 -0.183 

 
(0.052) (0.234) (0.082) (0.143) (0.072) (0.030) 

𝑚𝑚1 + 𝛽𝛽𝑐𝑐1  -0.096 -0.034 -0.073 **0.122 -0.051 -0.071 

 
(0.057) (0.048) (0.054) (0.062) (0.050) (0.042) 

log (𝐿𝐿) -6572.3 -7344.8 -5374.8 -6115.1 -3519.7 -2032.4 
𝑄𝑄30(𝜉𝜉) 38.2 26.1 42.3 48.7 33.3 27.1 
𝑄𝑄30(𝜂̂𝜂) 34.2 32.7 38.8 38.2 37.4 39.7 
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Table 4. Summary Statistics of Returns and Log Realised Variances, Weekly 
Here, Q15 is the Ljung-Box Q statistic at lag 15 and nObs is the number of observation used for estimating 
models. Corr is the contemporaneous correlation between the the excess return and the log realised variance. 

Table 4a 
S&P 
500 DJIA 

Nasdaq 
100 

Russel 
2000 

S&P 
TSX 

IPC 
Mexico Bovespa 

Return 
       Mean -0.039 -0.003 -0.092 0.042 0.094 0.145 0.193 

Stdev 2.755 2.602 3.876 3.531 2.461 3.359 4.278 
Skewness -0.682 -0.872 -0.578 -0.591 -1.096 -0.502 -0.716 
Kurtosis 8.810 9.958 11.254 6.519 9.635 8.575 6.795 
Min -19.533 -18.969 -29.335 -18.065 -15.910 -18.078 -24.956 
Max 11.332 11.092 22.822 15.171 11.290 18.430 16.246 
Q15 23.6 24.6 28.5 12.4 27.9 28.7 28.2 
log RV 

       Mean 1.320 1.279 1.502 1.383 0.477 0.840 2.267 
Stdev 0.956 0.924 0.997 0.860 1.013 0.831 0.706 
Skewness 0.699 0.805 0.563 0.819 0.935 0.632 0.845 
Kurtosis 3.485 3.871 2.810 4.167 4.127 3.332 5.111 
Min -0.556 -0.607 -0.921 -0.893 -1.537 -1.152 0.422 
Max 5.108 5.106 4.738 4.866 4.615 3.996 5.608 
Q15 39666.2 39131.9 50056.4 29824.1 38245.9 33325.0 17556.1 
Corr -0.199 -0.175 -0.219 -0.215 -0.248 -0.148 -0.176 
nObs 642 642 643 643 527 636 619 
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Table 4b. 
FTSE 
100 

Euro 
STOXX DAX CAC 40 AEX 

FTSE 
MIB Swiss IBEX 35 

Return 
        Mean -0.068 -0.151 -0.044 -0.128 -0.145 -0.201 -0.021 -0.098 

Stdev 2.648 3.387 3.563 3.252 3.409 3.521 2.853 3.402 
Skewness -1.139 -0.984 -0.822 -1.044 -1.165 -0.983 -1.067 -0.818 
Kurtosis 14.205 9.894 9.283 10.378 11.467 10.027 16.146 8.035 
Min -23.197 -26.612 -26.126 -26.331 -28.383 -24.511 -25.249 -24.272 
Max 12.550 13.655 16.200 11.925 13.513 19.228 15.655 12.357 
Q15 47.0 43.2 41.7 37.1 35.1 36.7 52.8 25.7 
log RV 

        Mean 1.040 1.715 1.781 1.612 1.415 1.402 1.030 1.577 
Stdev 1.020 0.961 0.973 0.952 0.991 1.020 0.925 1.006 
Skewness 0.331 0.488 0.494 0.319 0.561 0.196 0.833 -0.019 
Kurtosis 2.924 3.118 3.195 2.886 2.993 2.647 3.350 2.504 
Min -1.898 -0.713 -1.212 -0.654 -0.842 -1.295 -1.201 -0.859 
Max 4.441 5.277 5.066 4.783 4.607 4.777 4.184 4.449 
Q15 49697.9 41608.2 48056.3 46857.8 46874.2 47382.5 52360.6 52737.3 
Corr -0.187 -0.197 -0.213 -0.188 -0.201 -0.200 -0.175 -0.177 
nObs 643 639 642 648 649 639 640 639 

 

 

Table 4c. 
Nikkei 

225 KOSPI 
Hang 
Seng 

S&P 
CNX 

FT 
Straits 
Times 

All 
Ordinaries 

Return 
      Mean -0.106 0.052 0.016 0.253 0.045 -0.030 

Stdev 3.262 3.907 3.429 3.468 2.982 2.172 
Skewness -1.098 -0.617 -0.138 -0.656 -0.720 -1.064 
Kurtosis 11.817 7.212 6.773 6.032 11.248 9.636 
Min -27.901 -23.665 -17.898 -18.244 -18.512 -16.714 
Max 13.067 17.370 17.294 14.160 18.626 7.573 
Q15 15.9 20.1 15.9 34.8 14.4 18.8 
log RV 

      Mean 1.421 1.627 1.172 1.796 0.835 0.436 
Stdev 0.792 0.889 0.776 0.884 0.713 0.916 
Skewness 0.487 0.362 0.765 0.656 0.786 0.630 
Kurtosis 3.904 3.183 4.566 3.610 3.966 3.489 
Min -0.524 -0.859 -1.289 -0.323 -0.690 -2.584 
Max 4.820 5.260 5.175 5.140 4.080 3.736 
Q15 30685.6 41955.4 34493.5 24887.9 36716.9 34085.1 
Corr -0.215 -0.187 -0.194 -0.203 -0.117 -0.231 
nObs 625 638 569 501 627 638 
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Table 5. Estimation Results for the Log-Normal Model, Weekly 
The model estimated is defined by the equations (11), (12) and (13). In the table, 𝑄𝑄15(𝜉𝜉) and 𝑄𝑄15(𝜂̂𝜂) are the 
Ljung-Box Q-statistics at lag 15 estimated from the 𝜉𝜉𝑡𝑡 and 𝜂𝜂𝑡𝑡 series based on the estimated parameters. The 
standard errors for the estimates of 𝛽𝛽𝛽𝛽 and 𝑚𝑚1 + 𝛽𝛽𝛽𝛽 are computed by the “delta” method. The estimates of 𝑚𝑚2 
and 𝑚𝑚1 + 𝛽𝛽𝛽𝛽 that are statistically significant at the 5% (or less) level are indicated by “**”. 

Table 5a S&P 500 DJIA 
Nasdaq 

100 
Russel 

2000 S&P TSX 
IPC 

Mexico Bovespa 
𝜓𝜓0 -0.180 -0.236 -0.647 -1.197 -1.091 -1.364 -0.860 

 
(0.092) (0.103) (0.130) (0.191) (0.149) (0.190) (0.337) 

𝜓𝜓1 0.972 1.026 0.990 1.154 1.239 1.072 1.150 

 
(0.049) (0.059) (0.054) (0.077) (0.089) (0.082) (0.121) 

𝜌𝜌2 0.773 0.801 0.643 0.900 0.986 1.121 1.027 
 (0.107) (0.124) (0.108) (0.109) (0.119) (0.102) (0.108) 
𝛾𝛾 0.221 0.205 0.198 0.226 0.199 0.217 0.240 

 
(0.018) (0.018) (0.016) (0.017) (0.016) (0.017) (0.019) 

𝛽𝛽 -1.407 -1.255 -1.824 -1.139 -1.171 -0.396 -0.615 

 
(0.286) (0.272) (0.412) (0.187) (0.225) (0.094) (0.131) 

𝑏𝑏0 0.184 0.224 0.488 0.788 0.650 1.043 0.989 

 
(0.064) (0.074) (0.106) (0.120) (0.104) (0.211) (0.235) 

𝑏𝑏1 0.367 0.304 0.342 0.301 0.227 0.204 0.103 

 
(0.098) (0.107) (0.098) (0.084) (0.086) (0.144) (0.100) 

𝑎𝑎1 0.419 0.443 0.390 0.350 0.364 0.349 0.357 

 
(0.051) (0.060) (0.046) (0.045) (0.051) (0.052) (0.051) 

𝑎𝑎2 0.064 0.085 0.066 0.068 0.070 0.204 0.149 

 
(0.066) (0.061) (0.063) (0.049) (0.044) (0.083) (0.060) 

𝑎𝑎3 0.068 0.055 0.120 0.087 0.123 0.084 0.092 

 
(0.021) (0.021) (0.026) (0.023) (0.026) (0.036) (0.040) 

𝑎𝑎4 -0.065 -0.059 -0.041 -0.038 -0.036 -0.033 -0.020 

 
(0.009) (0.009) (0.006) (0.006) (0.008) (0.006) (0.005) 

𝑎𝑎5 0.025 0.024 0.018 0.023 0.027 0.017 0.025 
 (0.013) (0.012) (0.007) (0.008) (0.011) (0.009) (0.007) 
𝜑𝜑 -0.113 -0.089 -0.043 -0.082 -0.103 -0.042 -0.090 

 
(0.039) (0.040) (0.041) (0.042) (0.042) (0.039) (0.037) 

𝑚𝑚0 0.119 0.018 0.345 0.079 0.588 0.913 -0.356 

 
(0.204) (0.220) (0.306) (0.422) (0.270) (0.360) (0.782) 

𝑚𝑚1 1.046 1.025 1.284 0.889 0.783 0.157 0.716 
 (0.224) (0.232) (0.317) (0.203) (0.193) (0.154) (0.265) 

𝑚𝑚2 0.083 0.065 0.197 0.129 -0.093 -0.091 -0.032 

 
(0.100) (0.096) (0.159) (0.171) (0.149) (0.151) (0.266) 

𝛽𝛽𝑐𝑐1 -1.147 -1.058 -1.483 -0.938 -0.948 -0.378 -0.560 

 
(0.204) (0.206) (0.301) (0.137) (0.156) (0.084) (0.107) 

𝑚𝑚1 + 𝛽𝛽𝑐𝑐1 -0.100 -0.033 -0.199 -0.050 -0.165 -0.221 0.156 

 
(0.107) (0.118) (0.108) (0.155) (0.152) (0.140) (0.236) 

log (𝐿𝐿) -2591.2 -2531.4 -2887.8 -2863.0 -1583.0 -2454.3 -3489.8 
𝑄𝑄15(𝜉𝜉) 6.2 11.5 8.5 7.5 9.2 7.0 16.9 
𝑄𝑄15(𝜂̂𝜂) 6.6 4.8 7.1 9.2 19.2 9.8 13.9 
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Table 5b. 
FTSE 
100 

Euro 
STOXX DAX CAC 40 AEX 

FTSE 
MIB Swiss IBEX 35 

𝜓𝜓0 -0.666 -0.223 -0.311 -0.362 -0.569 -0.570 -0.560 -0.664 

 
(0.126) (0.119) (0.120) (0.131) (0.121) (0.123) (0.147) (0.152) 

𝜓𝜓1 1.157 0.994 1.029 1.036 1.025 1.006 1.055 1.112 

 
(0.073) (0.055) (0.052) (0.061) (0.057) (0.056) (0.081) (0.067) 

𝜌𝜌2 0.722 0.774 0.736 0.784 0.865 0.776 0.711 0.778 

 
(0.099) (0.094) (0.089) (0.097) (0.102) (0.096) (0.118) (0.097) 

𝛾𝛾 0.207 0.220 0.207 0.175 0.187 0.223 0.160 0.186 

 
(0.017) (0.020) (0.019) (0.016) (0.015) (0.018) (0.015) (0.017) 

𝛽𝛽 -1.572 -1.592 -1.704 -1.630 -1.471 -1.554 -1.865 -1.426 

 
(0.322) (0.300) (0.326) (0.322) (0.273) (0.292) (0.438) (0.302) 

𝑏𝑏0 0.355 0.223 0.245 0.299 0.429 0.499 0.322 0.511 

 
(0.087) (0.085) (0.076) (0.095) (0.091) (0.099) (0.133) (0.113) 

𝑏𝑏1 0.387 0.393 0.457 0.314 0.304 0.182 0.440 0.209 

 
(0.123) (0.142) (0.113) (0.129) (0.098) (0.082) (0.200) (0.106) 

𝑎𝑎1 0.372 0.434 0.388 0.457 0.474 0.447 0.438 0.422 

 
(0.054) (0.066) (0.050) (0.069) (0.065) (0.050) (0.080) (0.050) 

𝑎𝑎2 0.023 0.045 0.008 0.042 0.032 0.146 -0.032 0.110 

 
(0.061) (0.075) (0.065) (0.057) (0.051) (0.059) (0.091) (0.065) 

𝑎𝑎3 0.068 0.050 0.056 0.081 0.076 0.106 0.051 0.097 

 
(0.020) (0.022) (0.018) (0.023) (0.020) (0.028) (0.021) (0.022) 

𝑎𝑎4 -0.045 -0.048 -0.041 -0.042 -0.038 -0.034 -0.048 -0.037 

 
(0.008) (0.007) (0.006) (0.007) (0.006) (0.006) (0.010) (0.006) 

𝑎𝑎5 0.028 0.014 0.017 0.023 0.031 0.039 0.023 0.028 

 
(0.011) (0.011) (0.008) (0.010) (0.011) (0.008) (0.011) (0.009) 

𝜑𝜑 -0.095 -0.088 -0.058 -0.125 -0.085 -0.074 -0.034 -0.059 

 
(0.039) (0.039) (0.040) (0.038) (0.038) (0.041) (0.051) (0.041) 

𝑚𝑚0 0.258 -0.014 0.295 0.292 0.052 0.364 0.219 0.383 
 (0.204) (0.249) (0.281) (0.254) (0.258) (0.232) (0.353) (0.254) 

𝑚𝑚1 1.179 1.110 1.148 1.124 1.060 1.037 1.264 0.966 
 (0.255) (0.209) (0.236) (0.237) (0.206) (0.212) (0.324) (0.231) 

𝑚𝑚2 -0.083 0.212 0.217 0.092 0.127 -0.046 0.271 0.137 

 
(0.071) (0.141) (0.145) (0.129) (0.140) (0.137) (0.262) (0.113) 

𝛽𝛽𝑐𝑐1 -1.279 -1.245 -1.341 -1.312 -1.169 -1.221 -1.508 -1.187 

 
(0.233) (0.199) (0.217) (0.223) (0.188) (0.197) (0.315) (0.218) 

𝑚𝑚1 + 𝛽𝛽𝑐𝑐1 -0.100 -0.134 -0.193 -0.188 -0.109 -0.184 -0.244 **-0.221 

 
(0.110) (0.104) (0.109) (0.103) (0.103) (0.099) (0.132) (0.101) 

log (𝐿𝐿) -2380.6 -2950.6 -3017.6 -2849.4 -2750.3 -2760.2 -2295.5 -2853.5 
𝑄𝑄15(𝜉𝜉) 14.3 18.2 13.2 22.8 12.8 14.7 18.6 10.5 
𝑄𝑄15(𝜂̂𝜂) 15.4 18.8 11.5 19.1 22.7 12.1 16.8 9.2 
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Table 5c. 
Nikkei 

225 KOSPI 
Hang 
Seng 

S&P 
CNX 

FT 
Straits 
Times 

All 
Ordinaries 

𝜓𝜓0 -1.313 -0.702 -0.595 -0.677 -0.756 -0.596 

 
(0.326) (0.190) (0.158) (0.255) (0.194) (0.076) 

𝜓𝜓1 1.315 0.993 0.837 1.123 0.886 0.954 

 
(0.143) (0.073) (0.077) (0.108) (0.074) (0.051) 

𝜌𝜌2 0.966 1.093 0.778 0.846 1.786 1.001 

 
(0.125) (0.106) (0.116) (0.114) (0.205) (0.091) 

𝛾𝛾 0.203 0.218 0.220 0.264 0.156 0.220 

 
(0.021) (0.018) (0.022) (0.023) (0.012) (0.017) 

𝛽𝛽 -0.721 -0.881 -0.808 -0.647 -0.351 -0.778 

 
(0.180) (0.149) (0.227) (0.176) (0.078) (0.143) 

𝑏𝑏0 1.024 0.635 0.743 0.866 0.676 0.434 

 
(0.600) (0.145) (0.309) (0.207) (0.209) (0.075) 

𝑏𝑏1 0.058 0.208 0.085 -0.099 0.230 0.283 

 
(0.459) (0.094) (0.326) (0.123) (0.129) (0.086) 

𝑎𝑎1 0.343 0.403 0.374 0.400 0.451 0.391 

 
(0.062) (0.052) (0.072) (0.054) (0.059) (0.054) 

𝑎𝑎2 0.211 0.141 0.372 0.281 0.176 0.150 

 
(0.241) (0.071) (0.282) (0.091) (0.106) (0.065) 

𝑎𝑎3 0.050 0.112 0.157 0.088 0.080 0.117 

 
(0.027) (0.031) (0.068) (0.043) (0.036) (0.031) 

𝑎𝑎4 -0.020 -0.021 -0.031 -0.027 -0.024 -0.076 

 
(0.007) (0.006) (0.010) (0.008) (0.007) (0.011) 

𝑎𝑎5 0.024 0.047 0.034 0.057 0.049 0.018 

 
(0.011) (0.009) (0.016) (0.013) (0.010) (0.015) 

𝜑𝜑 -0.022 -0.090 -0.022 0.027 -0.026 -0.023 

 
(0.038) (0.041) (0.043) (0.045) (0.037) (0.038) 

𝑚𝑚0 0.690 0.402 0.844 0.266 0.248 0.427 
 (0.404) (0.313) (0.420) (0.426) (0.286) (0.181) 

𝑚𝑚1 0.368 0.667 0.523 0.690 0.283 0.529 
 (0.204) (0.147) (0.250) (0.209) (0.123) (0.138) 

𝑚𝑚2 0.077 -0.047 -0.161 -0.212 -0.053 -0.125 

 
(0.063) (0.150) (0.291) (0.265) (0.232) (0.108) 

𝛽𝛽𝑐𝑐1 -0.656 -0.738 -0.744 -0.599 -0.327 -0.687 

 
(0.147) (0.106) (0.192) (0.150) (0.067) (0.110) 

𝑚𝑚1 + 𝛽𝛽𝑐𝑐1 -0.289 -0.072 -0.221 0.091 -0.044 -0.158 

 
(0.158) (0.107) (0.143) (0.182) (0.123) (0.112) 

log (𝐿𝐿) -2762.3 -3017.3 -2413.0 -2499.0 -2194.1 -1882.0 
𝑄𝑄15(𝜉𝜉) 21.5 15.7 7.9 20.7 14.7 7.8 
𝑄𝑄15(𝜂̂𝜂) 22.1 11.9 15.1 17.4 17.5 10.1 
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Figure 1. Histograms of 𝝃𝝃𝒕𝒕 and 𝜼𝜼𝒕𝒕 for S&P 500 Index 
The thick curve is the normal density function with the sample mean and variance of either 𝜉𝜉𝑡𝑡 or 𝜂𝜂𝑡𝑡. The thin curve is a kernel density estimate. 
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