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Abstract We develop a methodology with which to assess the effects of policy

instruments on the long-term abatement and costs of carbon capture and seques-

tration (CCS) technologies for coal power plants. Using an expert elicitation, his-

torical data on the determinants of technological change in energy, and values from

the engineering literature, and demand estimates from an integrated assessment

model, we simulate ranges of outcomes between 2025 and 2095. We introduce prob-

ability distributions of all important parameters and propagate them through the

model to generate probability distributions of electricity costs, abatement costs,

and CO2 avoided over time. Carbon pricing has larger effects than R&D and

subsidies. But much of the range of outcomes is driven by uncertainty in other

parameters, such as capital costs and returns to scale. Availability of other low
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carbon technologies, particularly bioenergy with CCS affects outcomes. Subsidies

have the biggest impacts when they coincide with expanding manufacturing scale

of CCS components. Our results point to 4 parameters for which much better infor-

mation is needed for future work informing technology policy to address climate

change: capital costs, demonstration plants, growth constraints, and knowledge

spillovers among technologies.

Keywords Carbon capture · technological change · climate policy
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1 Introduction

Carbon capture and storage (CCS) is potentially one of the most important tech-

nologies to address climate change (Kriegler et al 2014). CCS typically accounts

for more substantial portions of future emissions reductions in integrated assess-

ment modeling exercises (Koelbl et al 2014). Meeting emissions reductions targets

without the availability of CCS would raise mitigation costs considerably, by some

estimates on the order of trillions of dollars by mid-century (IEA 2012). However,

CCS is only likely to contribute substantially to climate change mitigation if its

costs are near or below the marginal cost of emissions abatement. Despite decades

of research and maturity in the underlying components, no full scale power plant

with CCS has yet been built, which is one reason why the future costs of CCS are

open to a wide range of possibilities. Our approach is to combine expert elicitation

with a bottom-up cost model to generate distributions of CCS costs under varying

policy combinations.

1.1 The challenge for policymakers

Governments play a central role in the prospects for CCS due to the presence of

multiple market failures. In addition to negative pollution externalities, knowledge

spillovers associated with the development of new technologies create positive ex-

ternalities; firms can free ride on the technology investments of others, e.g. by

reverse engineering (Nemet 2013). As a result, governments perform their own

R&D and subsidize others’ R&D as well. Knowledge spillovers are also particu-

larly problematic later in the process, when the scale of the investments required

is large but when technical uncertainty is still high (Weyant 2011). Consider the
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decision about building a first of its kind nuclear power plant or carbon capture

plant. Billions are at stake, no one knows how well it will work, and the whole

world can watch whether it does. Providing incentives for these types of invest-

ments requires additional policies—such as subsidies for early demand—since even

a perfectly priced carbon tax will not avoid the problem of knowledge spillovers.

This paper thus looks at the effect of these 3 types of policy instruments: carbon

pricing, R&D, and subsidies for early demand on CCS.

Multiple market failures, multiple policy instruments, and multiple technical

pathways within CCS present policymakers with a complicated set of decisions.

The effects of any of these specific policies on future technology performance are

highly uncertain. The perspective here is that developing policies that are robust

to broad set of possible future conditions requires explicit characterization of the

anticipated performance of individual energy technologies. While technological

change is inherently uncertain, we see recurring patterns when surveying cases

together (Grubler and Wilson 2013): technologies improve via learning by doing

and also by economies of scale (Nemet 2006, 2012b); flows of knowledge from

one area of technology to another have been important (Nemet 2012a); and the

outcomes of investments in innovation are typically highly skewed (Scherer and

Harhoff 2000), with a small number of winners, a larger number of losers, and often

very little basis with which to distinguish between the two before investments are

made. Our approach is to make use of what we know about the historical dynamics

in energy technologies to develop a model that adds some insight on the wide array

of policy choices that policymakers may have at their disposal.
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1.2 Technological change in CCS

Previous studies of CCS account for anticipated improvements in production using

learning or experience curves (Rao et al 2006; Rubin et al 2007; van den Broek

et al 2009; Magne et al 2010). Other notable papers in this domain include assess-

ments of future CCS costs by: Hamilton (2009); Herzog (2011); Li et al (2012) and

a review by Baker et al (2012). We incorporate important methodological develop-

ments from this work, including the observation that costs typically increase before

declining and the disaggregation of costs so that different system components can

improve at different rates (Rubin et al 2007). To more closely match the model

with the empirical and theoretical bases for learning (Wright 1936; Arrow 1962)

we introduce additional specificity on the mechanism by which learning occurs for

each cost component.

Despite historical analogs and other models, the effect of research spending on

technology outcomes remains particularly difficult to assess. For the outcomes of

R&D, we use expert elicitation, a formal method with which to formulate probabil-

ity distributions of outcome using the responses of experts to a series of questions.

The National Research Council has specifically recommended using expert elici-

tation to inform government decisions about energy technologies (NRC 2007) and

several elicitations have since been completed on on CCS (Baker et al 2009; Chung

et al 2011; Chan et al 2011). In 2011 we conducted our own expert elicitation (Jenni

et al 2013) with the specific intention of using the responses to populate the model

described in the next section.
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Fig. 1 Schematic of calculations of technological change for coal CCS.

2 Modeling approach

We model the cost and diffusion of CCS technology applied to coal power plants.

The model is global and proceeds in 5-year increments from 2015 until 2095. It

estimates the future cost and adoption of 7 types of coal-based CCS technologies.

We make assumptions about demonstration plants from 2015-2020. Costs in 2025

are based on a combination of an expert elicitation of energy penalties (Jenni

et al 2013) and a CCS cost model (Nemet et al 2013) that includes capital costs,

operations and maintenance (O&M), and transportation and storage. Public R&D

investment can reduce energy penalty of all CCS technologies and can improve the

feasibility of advanced CCS technologies. After 2025, the technologies are available

to be commercialized. They then improve due to learning by doing and economies

of scale. Figure 1 provides a general overview of this sequence of calculations and

how policy instruments affect them. Additional detail is provided in an Electronic

Supplementary Material (ESM) document.
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2.1 Costs and demand 2026-2095

After 2025, CCS costs change due to learning by doing and economies of scale in

manufacturing. Changes in the demand for CCS affect manufacturing scale, which

can bring down costs if scale increases. Accumulated experience in capturing CO2

reduces energy penalty and O&M costs. Transportation and storage costs decrease

due to technological improvement but increase due to depletion of reservoir ca-

pacity (Middleton and Bielicki 2009), thus we model them as constant through

time.

2.1.1 Demand curves

We use the GCAM model to estimate the demand for electricity from coal CCS

plants between 2025 and 2095 under a variety of assumptions on CCS costs, carbon

prices (Cpricet), and spillover among CCS technologies (JGCRI 2013). The total

estimated demand Dt depends on the price of the lowest-price CCS technology,

CCScostt−5, as well as subsidies.

Dt = f (CCScostt−5, Subsidyt, Cpricet, spillover, t) (1)

To model the competition among the CCS technologies, and acknowledging that

they are imperfect substitutes, we use a logistic curve approach (McFadden 1974).

The demand Dt,s for technology s at time t is a fraction of the total demand for

CCS:

Dt,s = Dt
ws · CCScostrs,t∑
s ws · CCScostrs,t

(2)

where ws is the base share weight for each technology, CCScosts,t is the levelized

cost of each technology, and r is an exponent that determines how sensitive demand

is to price.
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The ESM includes GCAM assumptions about the price and deployment of

other energy technologies. The availability of bioenergy with CCS (BECCS) is

other particular importance. Our base results assume that it is unavailable; we

discuss the impact of this assumption at the end of the paper and include results

in the ESM.

Decisions to build CCS plants are made five years before they come on-line in

response to expected future demand at start-up. As in Nemet and Baker (2009),

we assume that decision-makers are myopic about technological change and thus,

demand (Dt) in eq. 1 is determined by CCScostt−5. Dt, in turn, determines the

number of CCS plants needed in period t. If the number of plants is greater

than the existing stock of plants, then new plants (nplants) are constructed to

make up the difference. The experience and scale effects based on nplantst reduce

CCScostt.

2.1.2 Experience effects

We assume that for each technology, s, Levelized O&M costs (LACOM(t)) and

Energy Penalty (EPt) will reduce with experience. Following work that shows it

takes time to assimilate knowledge gained through experience into production pro-

cesses, we introduce a 1-year lag (Argote and Epple 1990). Thus these calculations

require more precision than our general approach of 5-year time steps.

LACOMt,s
= LACOM(t−5),s

(
CumCO2t−1,s

CumCO2t−6,s

)bOM

(3)

EPt,s = EPt−5,s

(
CumCO2t−1,s

CumCO2t−6,s

)bEP

(4)

CumCO2t,s,0 = CumCO2t−5,s,0 + 5 · aCO2stkt−5,s (plantst−5,s + nplantst,s)

(5)
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CumCO2t,s = CumCO2t,s,0 + spillover ∗
∑
j 6=s

CumCO2t,j,0 (6)

nplantst,s = (plantst,s − plantst−5,s)−motht−5,s + rett,s (7)

bi =
ln (1− LRi)

ln(2)
(8)

We proxy experience through the cumulative stock of CO2 captured (CumCO2t).

This is equal to the cumulative stock in the previous period plus the average CO2

produced per plant over 5 years (5 ·aCO2stkt−5) multiplied by the sum of existing

and new plants. New plants (nplants) is equal to the change in plants needed (first

term in eq 7) minus mothballed plants plus plants built to replace retired plants.

Since CCS plants last on average 40 years (life=40), a number of plants may need

to be retired each year starting in 2055 (2015+40). Retirements in the previous 5

years (rett) equal the number of plants constructed in the 5 years prior to year,

t− life. If, after accounting for retirements, the total number of plants needed to

meet demand for CCS (D) declines between t−5 and t, a number of plants (motht)

are taken out of operation and ‘mothballed.’ Mothballed plants are available to

come back on line in future periods. Because their capital costs are sunk, they

are restarted before new plants are built. The presence of knowledge spillovers

indicates that technologies can benefit from the experience of other technologies

(Nemet 2012a). In our construction of experience stocks for each CCS technology,

we assume that each technology receives 50% (spillover = 0.5) of the experience

generated by other technologies (j 6= s) in each period. We include the range 0–

100% spillovers in our sensitivity analysis. Each part of the process (i = OM,EP )

is assigned a learning rate LRi, using evidence from analogous processes (Baker

et al 2012), and an experience factor bi is calculated for each using eq. 8.
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2.1.3 Returns to Scale

Increases in demand for CCS lead to increases in manufacturing capacity for

the individual components—gasifiers, air separation units, etc. Manufactures of

these components take advantage of the resulting opportunities for cost reductions

through, for example, spreading fixed costs, investing in automated processes, and

developing specialized equipment. We use empirical estimates from other indus-

tries about the effects on unit cost (Cap) of increases from manufacturing scale

(Remer and Chai 1990; Sinclair et al 2000), and model it as follows:

Capt,s = Capt−5,s ·max

[(
nplantst,s

nplantst−5,s

)a

, 1

]
(9)

where a measures returns to scale rather than learning by doing. Note that demand

for CCS is not monotonically increasing over 2025–95 (Figure 2), so we add assume

no change in costs (value of 1) when demand for new plants contracts.

2.2 Policy Instruments

We assess how three policy instruments affect coal CCS technology. First, a carbon

tax (cprice) measured in $/tCO2 is an exogenous feature that affects the amount

of demand for CCS in a given year. GCAM and our model assume that the rate of

increase for the carbon tax is fixed at 5% per year. Second, public R&D funding

affects the energy penalty in 2025. For early stage CCS technologies, R&D also

affects the likelihood that the technology will become feasible and available to

deploy at scale. We populate these outcomes using probability distributions from

Jenni et al (2013). Third, a subsidy can be given for every unit of electricity

produced using CCS technology. The subsidy begins at time t and extends for 5
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years for each qualifying plant. The subsidy also includes a floor CCS cost, below

which the subsidy does not apply.

2.3 Calibration and Parameter Values

In the ESM we show the baseline values and ranges or probability distributions

for each parameter, many of which are detailed in Nemet et al (2013). We use the

results of a survey of learning rates for technologies relevant to carbon capture and

sequestration by Baker et al (2012). The median value from these studies, 0.11, is

slightly below the value from a survey of a broad set of learning rates in the energy

sector (Nemet 2009), suggesting that CCS may improve at a slower rate than

smaller scale technologies, which involve many more units and the opportunities

for iterative design. In our model, three of the four components of CCS costs

(O&M, EP, and CO2 transportation costs) improve through the accumulation of

experience. We assign a ‘learning rate’ (LR) to each using evidence from analogous

processes (Baker et al 2012) and calculate an experience factor b for each using

eq. 8. For transportation costs we assume that the factors increasing costs (reservoir

depletion and transport distance) are offset by the factors decreasing costs (scale

and technological change) and assume zero learning (b3 = 1) and thus constant

costs.

3 Results

Our results focus on the way in which policies impact two main outcomes: abate-

ment cost in mid-century ($/tCO2) and cumulative abatement through 2095 (gi-

gatons).
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3.1 Base case outcomes post-2025.

Under our base case assumptions ($25/tCO2 in 2025, low subsidies, and high

R&D), we find that the abatement cost for coal CCS falls by nearly half between

its initial commercialization in the 2020s and 2095. This central estimate produces

a long-term abatement cost for coal CCS of just under $40/tCO2, an installed

capacity of 1600 GW, and cumulative abatement of close to 300 GT CO2. Almost

all of the technology improvement occurs before 2060. Note that because we are

simulating 7 competing CCS technologies, each technology improves at a slightly

different rate, due to differences in deployment of each and the shares of capital

and operating costs for each. One can see the different rates of change in the ESM

figure showing time series of the cost for each of the 7 technologies.

Deployment and cost reductions are closely coupled, as explained by equations

3, 4, and 9. Essentially deployment in period t affects technological change in

period t + 5. Figure 2 shows deployment over time. Demand for electricity from

coal CCS grows until 2085 and falls thereafter. Construction of new plants increases

until 2050; manufacturing scale increases over that same period, which provides

opportunities for cost reductions from economies of scale. Those cost reductions

end after 2050, since manufacturing scale remains relatively constant from 2050–

85. Much of the new construction after 2070 is to replace retiring plants. Near the

end of the century hundreds of operating plants are then shutdown as demand for

CCS electricity declines in late century. While these dynamics associated with the

late-century decline are relatively inconsequential in the base case, they can have

large effects under alternative assumptions that lead to a much earlier decline in

demand.
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Fig. 2 Deployment of CCS for all technologies, base case assumptions, high R&D.

3.2 Benchmarking

We compare these base case results under high R&D to those of other studies

that incorporate technological change into estimates of the future costs of CCS

(Hamilton 2009; Rubin et al 2007; Herzog 2011; van den Broek et al 2009; Li et al

2012; Lohwasser and Madlener 2013; Knoope et al 2013). A table In the ESM

shows that our initial 2025 costs are toward the lower end of the range of these

studies, which seems appropriate given our high R&D scenario and somewhat later

commercialization than other studies. Our cost reduction in abatement, 47% is

near the high end of the range of previous studies, 9–49%, perhaps because we have

been more explicit about technological change and because we include emerging

technologies that are not considered available in other studies. Consequently, our

long term abatement costs are below those of other studies.
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3.3 Sensitivity to alternative assumptions

The above results are merely point estimates based on a single set of assumptions.

Next, we incorporate uncertainty in each of the important parameters in the model.

We separate these uncertain parameters into 2 types: those that effect costs at the

beginning of commercialization, 2025, and those that affect technological change

thereafter. For 2025, we include uncertainty in the same parameters assessed in

(Nemet et al 2013), energy penalty, capital costs, feasibility, etc. Post-2025, we

include distributions of possible values for: learning by doing, returns to scale,

knowledge spillovers, and technological heterogeneity.

We assume that both learning by doing (LBD) and returns to scale (RTS) come

from a distribution of values found in previous studies of analogous technologies,

such as flue-gas desulfurization and selective catalytic reduction of NOx (Baker

et al 2012). We assume that RTS and LBD do not change over time, but that they

can differ across technologies. Knowledge spillovers, i.e. experience from one type of

CCS can improve another type, range from 0 to 100%. Technological heterogeneity

and niche markets also exist and affect the three parameters included in eq. 2. We

vary all parameters simultaneously and produce probability distributions over time

of costs and abatement.

3.3.1 Sensitivity by technology

First looking at individual technologies, one can see the range of outcomes in box

plots for cumulative abatement (Fig. 3) and costs in 2050 (Fig. 4). In each dia-

gram, the box captures the 25th to 75th percentile range for 10,000 iterations.

The horizontal line in the box is the median. The dashed lines extend to the 0
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Fig. 3 Distributions of gigatons of CO2 avoided 2015–2095 by coal CCS.

and 99th percentile. Values above that range are shown as blue dots. In Fig. 4,

instances when the technology turns out to be infeasible are also shown as blue

dots. In each iteration, aggregate abatement (Agg) is the sum of abatement levels

for all technologies; aggregate abatement cost is based on the cost of the lowest

cost technology in each iteration. The highly skewed distributions for each tech-

nology produce a sum of technology medians that is substantially lower than the

aggregate median. The figures show which technologies contribute to the aggre-

gate distribution. For example, one can see in Fig. 3 that abatement is primarily

attributable to absorption, pre-combustion, and oxyfuel, even though Fig. 4 shows

that chemical looping has the lowest costs when it turns out to be feasible, which

is in the minority of iterations.

3.3.2 Sensitivity in aggregate

We assess the same monte carlo analysis over time, focusing on outcomes aggre-

gating all seven technologies. In Fig. 5 the range of outcomes is indicated by the

shades of blue (extremes) to white (median), with the solid black line as the median
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Fig. 4 Distributions of cost of avoided CO2 from coal CCS in 2050.

value in each time period over 10,000 iterations. Dotted lines indicate the 10th and

90th percentiles. As can be seen in Fig. 3 cumulative CO2 avoided spans a wide

range. The dashed line shows median under the low R&D scenario; it shows the

small difference between R&D scenarios relative to the dispersion from all sources

of variation. Generally, most abatement occurs after 2060. Much of the dispersion

is due to the onset of deployment, which ranges (10–90th) from 2025 to 2065. The

ESM provides similar figures for abatement cost and numbers of operating plants.

Note that we assume no spillover of technical change from coal CCS to BECCS;

we discuss the implications below.

In addition, we check the sensitivity of the results to assumptions about the

availability of other low-carbon technologies. We do this by running GCAM using

other assumptions and using the resulting alternative demand curves as inputs

for our model. In the long-term, which we assess here, the availability of BECCS

is a crucial assumption (Edmonds et al 2013; Luderer et al 2013). Our base case

assumes that BECCS is unavailable, e.g. due to stringent land use constraints.

Indeed, our results show that the availability of BECCS reduces coal CCS deploy-

ment considerably: demand for coal CCS peaks 20 years earlier; new construction
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Fig. 5 Time series distributions of gigatons of CO2 avoided 2015–2095 by coal CCS.

declines after 2050; and cumulative abatement is only half the amount without

BECCS. Cost reductions are much less affected since they predominantly occur

before 2050 in any case. The ESM provides detail on comparisons of our results

with and without BECCS.

4 Effects of policy on abatement and abatement cost

Using the full range of assumptions above, we assess the effects of the three gov-

ernment interventions described in section 2.2: R&D, subsidies and carbon prices.

We first look at the effects of the 3 policies—carbon prices, R&D, and subsidies—

individually. As in the previous section we iteratively allow each parameter to

bay over its entire range and develop probability distributions of outcome metrics

over policy values. Carbon pricing varies based on an initial value for 2020 of $0–

75/tCO2. Thereafter it increases at 5%/year to be consistent with GCAM. R&D

policy takes one of two values: business as usual and a high R&D scenario, which

is about 5 times current levels. In addition, in cases in which the carbon prices
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reaches $100/tCO2 by 2040, the induced private R&D scenario is triggered (S2 in

the ESM). Subsidies are calculated based on four parameters: an initial value for

2025 ($0–100/MWh), the rate at which the subsidy declines (1–30%), a CCS cost

floor below which the subsidy no longer applies ($10–50/MWh), and the year the

subsidy begins (2025–2080).

The ESM provides figures that compare these policy assumptions to the out-

come metrics of interest: cumulative abatement and abatement costs. Deployment

is increasing in carbon prices, but with diminishing returns. Median cumulative

abatement over the century nearly triples as carbon prices rise from the low single

digits to about $70/tCO2 (using prices in 2040 as an indicator). However, there is

no additional abatement as prices rise above that level; other low-carbon technolo-

gies become competitive and the 10% of CO2 not captured with CCS becomes a

substantial part of the costs of CCS. Cost reductions show a similar pattern, but

with an even lower threshold for diminishing returns to carbon prices, < $50 in

2040. The ESM figures shows that differences in outcomes across policies are small

relative to those created by input values.

Subsidies have a more nuanced set of effects. Only post-2040 subsidies increase

deployment. Early subsidies (2025-40) shift deployment earlier but have no long-

term effect on abatement. This latter result is in contrast to other studies that show

that early subsidies can increase long term demand and abatement by accelerating

the process of technological change (Nemet and Baker 2009; Nemet and Brandt

2012). The ESM provides detail on the reasons we do not see the same result in

this study. Essentially, post-2040 subsidies expand scale at opportune times so that

economies of scale are enhanced. As can be seen in Fig. 6, early subsidies merely

shift some production earlier so that economies of scale are increased in 2030, but
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Fig. 6 Effects of subsidy timing on technological change, 2025–95.

are reduced in 2040 and 2045. Because construction of new plants is much higher

in the 2040s than it is in the 2030s, the overall effect is an adverse one. Moreover,

the elasticity of demand for CCS appears to be lower than that of the technologies

assessed in those other studies. At least for capital cost, there is a social benefit to

concentrating production in short periods to maximize economies of scale. Because

their technological change is based on an accumulating knowledge stock, the other

cost components—energy penalty and O&M—improve monotonically. But since

they account for a smaller part of costs, the capital cost effect dominates.

Public R&D has only a small effect on deployment and cost reductions. A

similarly minor effect is found in earlier work using the same elicitations (Jenni
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et al 2013; Nemet et al 2013) and is primarily attributable to experts’ judgements

that R&D would facilitate only incremental improvements in energy penalty and

feasibility. We even note some instances in which R&D is associated with slightly

worse long-term outcomes. This outcome only occurs under special conditions, and

is due to the timing of scale economies described above; this effect is small relative

to that of subsidies.

5 Discussion

We found a wide range of future abatement and abatement costs for coal CCS

when the full range of uncertainty on input parameters is taken into account.

Our central estimates are within the range of those in other studies of coal CCS.

They are at the low end for abatement costs, the high end for cost reductions,

and the high end for deployment. Our range encompasses the range of estimates

in other studies. The research design here is more explicit about the process of

technological change and generally more bottom-up about the components of cost

than comparable existing studies. Our results are sensitive to the shape of the

demand curves, especially how demand for CCS electricity changes with carbon

prices. They are also sensitive to what other technologies compete with CCS to

provide low-carbon electricity. The availability of BECCS has a particularly large

(negative) effect on demand for coal CCS.

From a policy perspective, we found that the results are more sensitive to input

assumptions, such as capital costs and returns to scale, than they are to various

combinations of policies—even when varying policy parameters over a wider range

than is likely politically feasible. Among policies, carbon prices have the strongest
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effects; they affect deployment of coal CCS, and consequently abatement costs via

technological change. However, above a certain level, carbon prices do not increase

demand for coal CCS, as the non-captured emissions become expensive and other

low-carbon technologies become competitive. The effects of R&D, which we elicited

from experts, were quite modest. R&D reduces energy penalty and increases the

feasibility of early stage capture technologies like chemical looping. But those

effects are essentially lost in the noise of possible outcomes for parameters such

as feasibility, capital costs, and scale. The multiple elements of subsidy design

and their interaction with CCS manufacturing scale complicate optimal design of

subsidies. Subsidies seem most effective when timed to coincide with expansion of

the manufacturing capability, such that subsidies enhance economies of scale. But

that timing also makes them expensive, as they are subsidizing more than just

early-stage demand. In our model subsidies in the early years shift deployment

earlier but have little effect on long-term abatement or cost reductions. They do

seem helpful in avoiding the worst outcomes (low deployment and high costs).

The large uncertainties in input parameters allow only general guidance about

the magnitudes of policy effects. The primary normative implications of this study

are to point to areas of missing information. These results, in combination with

our dozens of hours of interviews with CCS experts, highlight 4 parameters for

which poor information seriously impedes the decisions policymakers face.

Capital costs: Our extensive review of the literature revealed a factor of 4 range

in near-term estimates for the cost of building CCS plants. While the experts

we spoke with were reluctant to provide judgements about capital costs, their

responses generated a consensus that public R&D investment was unlikely to have
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much effect on them. Bottom-up modeling of returns to scale helps characterize

cost dynamics, but future costs are sensitive costs at early adoption.

Demonstration Plants: Experts were also generally in agreement that construc-

tion of a series of demonstration plants would be more important than public

R&D. They consider demonstrations essential for reducing uncertainty in capital

costs and improving reliability, such that the risk of operating full scale plants in

real commercial environments would be low enough to stimulate early adoption.

We currently have little basis for understanding: how many demonstration plants

would need to be built; how much knowledge about them could be retained by the

firms that build them; and consequently, to what extent firms would be willing to

fund them on their own.

Growth constraints on scale: Our results make clear that subsidies have the

most favorable effects when they maximize returns to scale in the production of

CCS components. A logical conclusion based on the benefits of scale is that it

would be more efficient to construct CCS plants in a short period of time rather

than steadily at a low level over a longer period. We observed this effect previously

in modeling technological change in solar (Nemet and Baker 2009). Our approach

does not consider supply-side constraints on growth, e.g. through supply-chain

bottlenecks, although the demand curves reflect built-in growth constraints within

GCAM. It’s not clear however that our approach is biased. Using one of the few

data sets used to study growth constraints empirically, Wilson et al (2013) found

that IAMs overly constrain growth compared to the historical evidence. Because

the gains from scale are substantial, getting the policies right to make the most of

them depends on understanding how opportunities for scale economy are limited

by real-world constraints.
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Spillovers from coal to other CCS : Finally, spillovers among technologies are

likely to play an important role in whether polices designed to induce technologi-

cal change are efficient. Our study simulated spillovers among 7 types of coal CCS

technologies; experience in one type of CCS provided opportunities for improve-

ments in others. But we have very little basis for anticipating what the level of

spillover is likely to be. Even more importantly, given the strong negative rela-

tionship we see between the availability of BECCS and the adoption of coal CCS,

understanding whether R&D on coal CCS will ultimately prove useful for BECCS

is crucial. For that reason we likely underestimate the effects of R&D. The scale

of the potential abatement benefits we have found here suggests that the stakes

to society of designing effective technology policy for CCS are large.
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A Policy scenarios and technology definitions

This model assesses initial conditions (2025) under 3 policy scenarios. It assesses
7 types of capture technologies.

A.1 Elicitations under 3 policy scenarios

Our elicited values for energy penalty and feasibility were conditional on three
R&D scenarios (Nemet et al., 2013):

Scenario 1 (S1): No further US government funded research and development
(R&D) in CCS (i.e., zero public investments in future years), current
worldwide carbon price (∼$5/tCO2) is unchanged;

Scenario 2 (S2): No further US government funded R&D in CCS, worldwide
carbon price equivalent to $100/tCO2 starting in 2015 and continuing
indefinitely;

Scenario 3 (S3): “High” US government investment in R&D (an annual in-
vestment level about five times the 2005 investment was defined for each
technology) from 2015 through 2025; current worldwide carbon prices are
unchanged.

A.2 Technology categories

As in Jenni et al. (2013), we divided carbon capture into 7 areas of technology,
which were sufficiently distinct to elicit clear responses and aggregated enough
that multiple experts were available for each technology.

1. Absorption: post-combustion using absorption via solvents, including MEA,
ammonia, and novel solvents

2. Adsorption: post-combustion using adsorption, including solid sorbents
and metal organic frameworks

3. Membranes: post-combustion using membranes, including ionic liquids

4. Other PC: post-combustion using other approaches, including enzymes and
cryogenics

5. Pre-combustion capture: typically with integrated gasification combined
cycle (IGCC)

6. Oxyfuel: alternative combustion using pure oxygen rather than air

7. Chemical looping combustion: use of metals to transport oxygen

Figure S1 provides a general overview of this sequence of calculations and
how policy instruments affect them. These calculations are performed separately
for each of the 7 capture technologies.
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Figure S1: Schematic of calculations of technological change.

B Calculations for early deployment, 2015–25

B.1 Demonstration plants, 2015–20

We assume that 10 demonstration plants are built between 2015 and 2020.
Fitting with the notion that at first plants become worse before they get better
(Rubin et al., 2007), we assume these plants perform inferiorly to subsequent
plants on several metrics; they have lower CO2 removal efficiency (80%), higher
energy penalty (30%), and lower capacity factor (60%).

B.2 Costs in 2025

CCS technology becomes proven in 2020 and thereafter, CCS plants are built
and operated in response to demand for CCS electricity in each period. We
calculate additional levelized cost of electricity ($/MWh) and the cost of avoided
CO2 emissions ($/tCO2) of CCS plants in 2025 using the values and calculations
described in Nemet et al. (2013). We summarize those calculations as follows:

Levelized Cost of Electricity (LCOE): To calculate the additional LCOE in
$/MWh from CCS, we calculate levelized annual cost (LAC) of CCS ($/year)
and divide by the annual energy produced (AEP) by a reference plant (MWh/year)
with CCS. We assume that demand grows linearly between 5-year periods and
thus calculate the number of plants installed (plants), the electricity produced
(elec), and the amount of CO2 avoided (co2a) for each year 2021-2025.

For more detail on the costs calculations see Nemet et al. (2013), which
we use for all calculations through 2025, as well as for the general approach
thereafter. As described in that paper, the energy penalty (EP) of plants in
2025 is determined by expert elicitations conducted by Jenni et al. (2013). These
elicited EPs are conditional on the 3 above policy scenarios involving carbon
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Figure S2: Impact of carbon pricing (S2) or increased research funding (S3) on
the aggregated EP distribution of post-combustion with membranes.

pricing and public R&D investment. These policy instruments determine 2025
energy penalty, which in turn affects the cost of CCS in 2025.

Summarizing the main results from Jenni et al. (2013): R&D increased en-
ergy penalty by 6–14% vs. reference case and Carbon prices increased energy
penalty by 1–10% vs. reference case. Fig. S2 shows an example of the output
aggregated across experts for one technology, post-combustion CCS using mem-
branes. Summarizing the main results from Nemet et al. (2013), Fig. S3 shows
the full distribution of abatement cost outcomes in 2025 including variation in
all parameters.

B.3 Demand in 2025

Construction and operation of CCS plants is based on demand for electricity
from CCS plants. As described below, we construct demand curves for CCS
electricity using the Global Change Assessment Model (GCAM) (JGCRI, 2013).
We apply the calculated costs of CCS (LECCCS) to these demand curves to
determine a level of demand in exajoules for CCS electricity in 2025. Demand
for CCS in our model depends on its cost and other factors, as described below.
We calculate total demand for CCS (in EJ) and then use capacity factors to
convert annual EJ to MW of needed capacity to produce that energy. Taking
the total MW needed and the average plant capacity of the stock of CCS plants
in that year, we find the number of installed plants required to meet demand
in 2025. We assume that demand grows linearly between 5-year periods and
thus calculate the number of plants installed (plants), the electricity produced
(elec), and the amount of CO2 avoided (co2a) for each year 2021-2025.
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Figure S3: PDF of abatement costs in 2025.

C Calculations of technological change

Table S1 describes the variables referred to in the main text and in this ESM.

C.1 Production-related cost reductions

Learning by doing has most commonly been represented as a power function, for
its simplicity and good fit to observations. Measures of fit for energy technolo-
gies are often well above 0.90 (McDonald and Schrattenholzer, 2001). Studies of
learning rates for O&M costs have been calculated for an array of similar tech-
nologies (Taylor et al., 2005; Nemet, 2007). Estimates of O&M learning rates for
CCS in particular also exist (Rubin et al., 2007; Yeh and Rubin, 2007; van den
Broek et al., 2009; Li et al., 2012). Each component can improve from pro-
duction related improvements. Table S2 summarizes our approach. Separately,
we assumed that non-energy process cost improvements would occur (based on
lit review figures) between 2015–25, if demonstration plants were built. If no
demonstration plants built, then process costs in 2025 = process costs in 2015.
All of our calculations in the main text and in the ESM assume demonstration
plants are built.

C.2 Returns to scale

We use estimates of cost reductions that result from up-scaling in the chemi-
cal and related industries, which probably includes the largest set of empirical
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Table S1: Variable definitions.

Name Description
D Demand for coal CCS (EJ)
EP Energy penalty (%)
CCScost Additional levelized cost of CCS ($/MWh)
plants Plants required to meet demand
nplants New plants built
elec Electricity produced
co2a CO2 avoided (tCO2)
life Lifetime of CCS plants (life)
ret Existing plants retired
moth Existing plants not operating
manf Manufacturing capacity (plants/year)
aepstk Annual energy produced (MWh/year) for existing plants
Epstk Energy penalty of existing plants
CumCO2 Cumulative CO2 avoided (tCO2)
LR Learning rate
b Learning exponent
a Scaling exponent
s CCS technologies 1–7
α Portion of D met by least cost technology
subsidy ($/MWh)
cprice carbon price ($/tCO2)
w base share weight for each technology
r exponent determining sensitivity of demand to price

Table S2: Components of Base Case Manufacturing Cost and Relationship Be-
tween Unit Cost and Output.

Cost component T1 % of
LEC2025

Mechanism
for 4 cost

System
boundary

b value

Energy use 0.2 LbD Firm -0.20
Process costs 0.10 LbD Firm -0.20
Transmission
and storage

0.15 LbD, deple-
tion

Industry 0.00

Capital cost 0.55 Manf. scale Facility -0.17
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estimates on scale (Sinclair et al., 2000). Moreover, the processes in the chem-
ical industry are rather similar to those in a CCS plant. We use estimates
of scaling parameters from 570 manufacturing processes surveyed by (Remer
and Chai, 1990). These include chemical processes, oil refineries, power plants,
pollution controls. For the 570 scaling factors, we calculated the following
descriptive statistics: mean= 0.68; median= 0.68; standard deviation= 0.13;
minimum= 0.23; maximum= 1.07. We use these statistics to propagate distri-
butions through our model.

C.3 Experience stocks

We construct stocks of cumulative MWh produced (ExpMWh) using:

ExpMWht = aepstkt−5

(
plantst−5 +

(
t−1∑
t−4

nplants

))
(1)

Similarly, we construct stocks for ExpCO2. We calculate tCO2 in year t− 1:

ExpCO2t = ExpMWht−1co2at−5 (2)

By averaging the total tCO2 in (t − 1) and (t − 6) and multiplying by 5, we
calculate the tCO2 avoided in that 5-year period (co2a). This allows us to track
cumulative CO2 avoided since the beginning of the industry (cumCO2). While
EP improves for new plants as shown below, the industry-wide EP (EPstkt)
takes into account the number of plants built in each time period and the EP
at the time each was built. Generally EPstkt is higher than that of new plants,
EPt. We use this EPstk to calculate the total MWh produced and tCO2

captured for our experience stocks, which are described in the main text.
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D Calculations of demand for CCS

This section expands on the explanation of CCS demand in section 2 of the
main text.

D.1 Using GCAM for demand

We use the Global Change Assessment Model (GCAM) model to calculate de-
mand for CCS electricity (JGCRI, 2013). GCAM models CCS as an add-on to
the base fossil fuel technology. The base plant, the CCS plant, and the storage
facilities are each characterized by their own independent parameters and vari-
ables. Parameters are specified exogenously and can be adjusted; variables are
endogenous and must be retrieved after the model runs. We define the cost of
CCS as the final price of electricity produced with CCS, net of all production
transport and storage costs. The cost of CCS in GCAM is given by:

pCCS,t =
1

ηb,t

(
Kb,t + Cf,tηc,t

(
τt
ηc,t
− τt + pf,t +Kc,t + Ec,tpe,t + ps,t

))
(3)

where: Cf = Carbon content of fuel, Ec = CCS energy requirement, Kb =
Capital cost of the base plant, Kc = Capital cost of the CCS plant, ηb =
Conversion (thermal) efficiency of base plant, ηc = Capture efficiency of CCS
plant (% carbon captured), pf = Market price of fuel, pe = Market price of
electricity, ps = Price of storage, τ = Carbon tax, and t indexes time.

Based on these costs, GCAM generates demand data (in EJ) for CCS tech-
nology. Iterating across CCS costs, carbon prices, etc., yields matrices of model
outputs, which we use to construct demand curves. Demand curves are down-
ward sloping and generally, although with exceptions, shifted higher at higher
carbon prices. Fig. S4 provides an example. Our demand data from GCAM
provide 4 different demand curves based on discrete levels of carbon tax ($15,
$30, $45, $60/tCO2) in 2025 (which rise thereafter at 5%/year), resulting in 4
different levels of demand for CCS (Fig. S5). As an additional example, Fig. S6
shows demand at the 4 carbon prices over time under 2 assumptions on CCS
prices (upper and lower panels).

As discussed in the main text, we use a logistic curve approach (McFadden,
1973) to model the competition among the CCS technologies, and acknowledging
that they are imperfect substitutes. The demand Dt,s for technology s at time
t is a fraction of the total demand for CCS:

Dt,s = Dt
bsp

r
s∑

s bsp
r
s

(4)

where bs is the base share weight for each technology, ps is the levelized cost of
each technology, and r is an exponent that determines how sensitive demand is
to price. As an example, Fig. S7 shows the allocation of market beginning with
the least cost technology, T1 ($22), T2 ($40), T3 ($60), and T4 ($70). Note
that T3 does not supply all of the demand it is allocated by α3 because its costs
exceed WTP at that point at which T2 demand is limited by the allocation
(∼ 1EJ).
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Figure S4: Example demand curve for coal CCS in 2045 at carbon price of
$80/tCO2.
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Figure S5: Example demand curve for coal CCS in 2045 at varying carbon prices
($/tCO2).
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is $65/MWh.
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Figure S8: GCAM assumed production (EJ) by each technology 2025–95.

Figure S9: GCAM assumed price (2010 $/MWh) for each technology 2025–95.

D.2 Base technology characteristics in GCAM

Our runs with GCAM include assumptions about the state and future of several
technologies that compete to meet demand. The following figures provide a
summary of these assumptions. Fig. S8 shows energy production (EJ) by each
technology over the century. Fig. S9 shows the prices (2010 $/MWh) for each
technology over the century. Fig. S10 focuses on demand for CCS technologies.
Note that these represent base technology assumptions in GCAM. The cost
of coal CCS deviates from these assumptions according to the calculations for
returns to scale and learning by doing described in this model.

D.3 Inter-fuel spillovers in GCAM

Similarly to the way that knowledge in one coal CCS technology spills over to
another, knowledge can spillover from one type of CCS power plant to another.
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Figure S10: GCAM assumed production (EJ) by each CCS technology 2025–95.

GCAM provides additional demand curves based on “spillover” into different
technologies: that is, as CCS improves for coal plants, it may also improve at
the same rate for other technologies, such as natural gas, oil, and biomass. The
amount of allowable spillover affects the demand for coal CCS. In the model,
spillover can be 100%, 50%, or 0%.

D.4 Retirements and mothballing

We assume that the mothballed plants in any given year were built in the
period of highest plant construction within one operational lifetime prior to
the current period. These plants are excluded from calculations of the EP of
the existing fleet and the average capacity of available plants, which affect the
number of plants needed in a given time period. New plants may also need to
be constructed, for one or both of the following reasons: to make up for the
CCS production lost to retirements, and to satisfy any increases in demand for
CCS over the previous time period.

t∑
t−4

nplants = (plantst − plantst−5)−motht−5 +

t∑
t−4

ret (5)

Construction of plants cannot be negative. If the equation returns a negative
number, that number of plants is mothballed. Additionally, if demand increases
and new plants are needed, having a stock of mothballed plants reduces the
number of plants that need to be built.
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Figure S11: Time series of abatement costs for each technology using median
values, with R&D, and conditional on all technologies being feasible.

Figure S12: Comparisons of key output measures to other studies of technolog-
ical change in CCS.

E Base case results and benchmarking

Figure S11 shows the base case results for the costs of each CCS technology
over time. In Figure S12, we compare our base case results to those of other
studies that incorporate technological change into estimates of the future costs
of CCS (Hamilton, 2009; Rubin et al., 2007; Herzog, 2011; van den Broek et al.,
2009; Li et al., 2012; Lohwasser and Madlener, 2013; Knoope et al., 2013). One
can see that our initial costs are within the existing range of studies, although
toward the lower end. Our cost reduction in abatement, 47% is near the high
end of the range of previous studies, 9–49%.
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F Additional results: sensitivity to input as-
sumptions

To supplement what is included in the main text, we provide additional results
to illustrate the effects if changes in input assumptions. We run 10,000 iterations
sampling in each instance from the distribution of input assumptions shown in
Fig. S13. In Fig. S14 we show the distributions of cumulative abatement over
the 21st century for each technology, as well as for aggregate abatement with
the 7 capture technologies competing with each other. Fig. S15 provides similar
results for CCS abatement costs in mid-century.

We show the same results, with more compact comparison across technolo-
gies in the following box plots. Fig. S16 shows cumulative abatement, S17 shows
abatement costs in mid-century, and S18 shows the peak number of installed
plants for each technology during the century. In each diagram, the box cap-
tures the 25th to 75th percentile range for 10,000 iterations. The horizontal line
in the box is the median. The dashed lines extend to the 0 and 99th percentile.
Values above that range are shown as blue dots.

Next we show these same monte carlo results over time. Figure S19 shows
time series for abatement costs including variation in all parameters over 10,000
iterations. Figure S20 shows operating plants across these iterations. Figure
S21 a similar analysis for cumulative abatement. This figure is also included in
the main text.
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Figure S13: Assumed distributions of parameters included in sensitivity analy-
sis.
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Figure S14: tCO2 avoided 2015-2095.
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Figure S15: $/tCO2 avoided 2050.
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Figure S18: Maximum installed plants 2015–2095.
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Figure S19: Cost of avoided CO2 ($/tCO2) 2015–2095 by coal CCS.
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Figure S20: Operating plants 2015–2095 by coal CCS.
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Figure S21: Time series distributions of gigatons of CO2 avoided 2015–2095 by
coal CCS.

G Availability of BECCS

Bioenergy with carbon capture (BECCS) is an important technology to climate
change mitigation (Kriegler et al., 2014). It is distinct from CCS for fossil
fuels in that it can provide negative emissions. It is one of the few technology
options, which can compensate for emissions that overshoot targets in early
years. Given that discounting is influential over multi-decadal decisions, being
able to postpone abatement until the distant future is attractive. However,
there are serious uncertainties involved. In addition to the uncertainties about
CCS for fossil fuels, BECCS must address concerns about competition for land
use, particularly because its deployment would have to be truly massive to offset
emissions from earlier in the century. The issues involved are quite similar to
those faced by biofuels for transportation. It is possible that BECCS will be
available as a negative emissions option for the second half of the 20th century.
It is also possible that its use will be quite minor if land use and other issues
prohibit its widespread deployment.

In the main text we assumed that bioenergy with CCS (BECCS) is not
available. Here we show results for the case in which BECCS is available. Table
3 compares outcomes whether assuming BECCS is available or not. It includes
our base case scenario (No BECCS), an alternative scenario in which BECCS is
available, and a second alternative in which neither BECCS nor any other type
of bioenergy is available. First, the results show that the biggest difference from
the base case is making BECCS available. Removing BECCS has a significant
impact on the results, But there is little if any difference between the base case
and excluding other types of bioenergy. Allowing BECCS reduces abatement
by coal CCS by more than half. Allowing BECCS also limits cost reductions,
but to a much lesser extent than it limits abatement. This is because most cost
reductions occur in the first half of the century and most BECCS deployment
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Table S3: Comparison of outcomes under assumptions about bio-energy: Base
case assuming BECCS is unavailable; assuming BECCS is available; and assum-
ing no bio-energy at all.

Base case BECCS No Bio
No BECCS available energy

Abatement (GT) 287 134 292
Cost ($/tCO2)

Post-C $38.8 $42.0 $38.6
Lowest $23.9 $25.3 $24.0

Cost reduction 2025–95 49% 45% 49%

occurs in the second half.
As an example of the effect of BECCS, Fig S22 shows deployment without

and with bioCSS. One can see that demand for electricity from coal CCS de-
clines steadily after mid-century. This is due to the deployment, and future
availability, of BECCS reducing the need for abatement from coal CCS. Note
that the figures use different scales on the vertical axis. So peak demand in
the top panel (no BECCS) is approximately double that of the with-BECCS
scenario.
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Figure S22: Deployment of coal CCS. Top assumes BECCS is not available
(base case scenario). Bottom assumes BECCS is available.
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H Additional results: effects of policies

The main text includes results and discussion of the effects of R&D, subsidies
and carbon prices on CCS abatement and costs. We include several supplemen-
tal analyses here. In Fig. S23 we show the effects of carbon prices and R&D on
cumulative abatement. In this case all parameters vary across their full ranges.
A linear function us fitted to the data for carbon prices.

In Fig. S24 we fix the model parameters at their base values; the variation
in each panel is limited to that within the policy shown. The one additional
sources of variation is that feasibility of each technology is allowed to vary in
each instance; thus their are two clusters of y-axis values. The top row of panels
shows the effect of carbon prices, the middle row shows the effect of R&D, and
the bottom row shows the effect of subsidies. The left column of panels shows
the effect on cumulative abatement and the right column of panels shows the
effect on abatement costs. Fig. S25 presents a similar analysis to Fig. S24, but
it allows other parameters to vary across their full range. In Fig. S26 policies
vary simultaneously, rather than one at a time as in Fig. S24 and Fig. S25. As
in the previous 2 figures, all parameters vary. Linear functions are fitted to the
data for carbon prices and subsidies.
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Figure S23: Effects of policy instruments on CO2 avoided. Top: carbon price
in 2040 and bottom: R&D scenario.
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Figure S24: Effects of carbon prices (top), R&D (middle), and subsidies (bot-
tom) on cumulative abatement (left) and abatement costs in 2050 (right) with
other parameters fixed at base values.
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Figure S25: Effects of carbon prices (top), R&D (middle), and subsidies (bot-
tom) on cumulative abatement (left) and abatement costs in 2050 (right) with
other parameters varying.
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Figure S26: Effects of 2040 carbon prices (top), R&D (middle), and 2030 sub-
sidies (bottom) on cumulative abatement (left) and abatement costs in 2050
(right) with other parameters varying.
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Table S4: Optimal policy combinations under varying decision rules.

Initial Subsidy Subsidy Subsidy
R&D subsidy decline floor begin

Rule: Value scen. ($/MWh) rate ($/MWh) year
Abatement (Gt CO2) 2025–95

Maximax 433 low 20 0.05 20 2075
Max(median) 270 high 40 0.05 10 2050
Maximin 72 high 60 0.15 30 2075
max(p≥
300)

0.39 low 20 0.15 30 2050

Abatement cost ($/tCO2) in 2050
Minimin 14 high 20 0.05 10 2050
Min(median) 35 high 20 0.15 30 2050
Minimax 92 high 20 0.05 10 2025
max(p≤ 30) 0.30 high 20 0.15 10 2075

I Policy combinations under decision rules

As an exploration of the results, we search across combinations of policy de-
sign components that best satisfy several possible social goals. For each policy
combination, we run 1000 iterations of the assumptions shown in Fig. S13. We
consider both abatement and abatement cost. For abatement our four objec-
tives are to maximize: 1) abatement, 2) median abatement over 1000 iterations,
3) the minimum level of abatement over 1000 iterations, and 4) the probability
of achieving a policy target of 300 GT. The objectives for abatement costs are
similar but involve minimizing costs and the policy target is $30/tCO2.

Table S4 summarizes the results and the ESM provides graphical depictions.
Under most decision rules, the high R&D scenario is preferable, although two
exceptions exist. The exceptions are paired with late period subsidies, suggest-
ing that these cases may involve some very high economies of scale that may be
preferable to more steady growth. Some subsidies are always preferable to none;
but only low or moderate levels are needed. The subsidy floor is either at the
low or middle of the range. As discussed above, mid to late-century subsidies
are preferable. The one exception is in trying to avoid the worst abatement
cost outcomes (minimax), in which case early subsidies are needed. This result
is similar to that of Nemet and Baker (2009) on solar power, which concluded
subsidies are most effective as an insurance policy against the worst outcomes.

ESM30



Electronic supplementary material for: Policies and the Future Costs of CCS

J Timing and levels of subsidies

As discussed in the main text, we find that subsidies have only small effects
on abatement and abatement costs. Here, we add some additional perspectives
on the effects of subsidies. Subsidies are calculated based on 4 parameters: the
year at which they begin, an initial value at the year at which they begin ($0–
30/MWh), the rate at which the subsidy declines (1–30%), and a lower limit
below which the subsidy no longer applies ($20–50/MWh). First, fixing the
parameters shown in Fig. S13 at their base values we vary the 4 parameters
affecting subsidy levels (Fig. S27). Second, Fig. S28 shows similar results but
allowing the parameters in Fig. S13 to vary. Using the regression lines shown In
Fig. S13 one can see that abatement is: increasing in the start year; insensitive
to the start level; increasing in the decline rate; and decreasing in the floor level.

One result that is perhaps counter-intuitive is that some subsidies appear
to reduce long-term demand for CCS electricity and abatement. This has to
do with the timing of subsidies and the benefits from concentrating CCS plant
construction in a short period rather than spreading this out over decades. The
following figures attempt to show why this is the case. We set up 3 subsidy
regimes to demonstrate the effects of timing of subsidies. Fig. S29 shows CCS
costs, technological change, deployment, and abatement with $10/MWh sub-
sidies in place for 2025–2040. Fig. S30 shows CCS costs, technological change,
deployment, and abatement with $10/MWh subsidies in place for 2045–2060.
Fig. S31 shows CCS costs, technological change, deployment, and abatement
with $10/MWh subsidies in place for 2065–2080. Only mid and late subsidies
increase deployment and abatement. Early subsidies shift deployment earlier
but have no long-term effect on abatement. This latter result is in contrast
to other studies that show that early subsidies can increase long term demand
and abatement by accelerating the process of technological change (Nemet and
Baker, 2009; Nemet and Brandt, 2012). The reason this result does not appear
in this study can be seen in the top right panels of Figures S29–31, which show
the change in capital cost in each 5-year period due to economies of scale in
manufacturing CCS plants. The mid and later subsidies expand scale at op-
portune times so that economies of scale are enhanced in some periods and the
same in others. In contrast, early subsidies merely shift some production earlier
so that economies of scale are enhanced in 2030 and 2035, but are reduced in
2045. Because construction of new plants is much higher in 2045 than it is in the
2030s, the overall effect is actually an adverse one. This result may be in part
because we apply no penalty to CCS construction facilities incur no penalty if
operating below capacity. At least for capital cost, there is a social benefit to
concentrating production in short periods to maximize economies of scale. The
other factors changing, energy penalty and O&M, do not show this oscillation
in technological change. But since they account for a smaller part of costs, the
capital cost effect dominates.
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Figure S27: Effects of variation in subsidy characteristics on cumulative abate-
ment (left) and abatement costs in 2050 (right) with other parameters fixed at
base values. n=1000
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Figure S28: Effects of variation in subsidy characteristics on cumulative abate-
ment (left) and abatement costs in 2050 (right) with other parameters varying.
n=1000
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Figure S29: Early subsidies.

Figure S30: Mid-century subsidies.
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Figure S31: Late-century subsidies.
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