The German Socio-Economic Panel (SOEP) study is a wide-ranging representative longitudinal study of private households, located at the German Institute for Economic Research, DIW Berlin. Every year, there were nearly 15,000 households, and more than 25,000 persons sampled by the fieldwork organization TNS Infratest Sozialforschung. The data provide information on all household members, consisting of Germans living in the Eastern and Western German States, foreigners, and immigrants to Germany. The Panel was started in 1984. Some of the many topics include household composition, occupational biographies, employment, earnings, health and satisfaction indicators. As early as June 1990—even before the Economic, Social and Monetary Union—SOEP expanded to include the states of the former German Democratic Republic (GDR), thus seizing the rare opportunity to observe the transformation of an entire society. Also immigrant samples were added in 1994/95 and 2013/2015 to account for the changes that took place in Germany society. Two samples of refugees were introduced in 2016. Further new samples were added in 1998, 2000, 2002, 2006, 2009, 2010, 2011, and 2012. The survey is constantly being adapted and developed in response to current social developments. The international version contains 95% of all cases surveyed (see 10.5684/soep.v34i).
Title: Socio-Economic Panel (SOEP), data from 1984-2017
DOI: 10.5684/soep.v34
Collection period: 1984-2017
Publication date: 2019-03-05
Principal investigators: Stefan Liebig, Jan Goebel, Carsten Schröder, Jürgen Schupp, Charlotte Bartels, Alexandra Fedorets, Andreas Franken, Marco Giesselmann, Markus Grabka, Jannes Jacobsen, Selin Kara, Peter Krause, Hannes Kröger, Martin Kroh, Maria Metzing, Janine Napieraj, Jana Nebelin, David Richter, Diana Schacht, Paul Schmelzer, Christian Schmitt, Daniel Schnitzlein, Rainer Siegers, Knut Wenzig, Stefan Zimmermann
Data collector: Kantar Public Germany
Population: Persons living in private households in Germany.
Selection method: All samples of SOEP are multi-stage random samples which are regionally clustered. The respondents (households) are selected by random-walk or register sample.
Collection mode: The interview methodology of the SOEP is based on a set of pre-tested questionnaires for households and individuals. Principally an interviewer tries to obtain face-to-face interviews with all members of a given survey household aged 16 years and over. Additionally one person (head of household) is asked to answer a household related questionnaire covering information on housing, housing costs, and different sources of income. This covers also some questions on children in the household up to 16 years of age, mainly concerning attendance at institutions (kindergarten, elementary school, etc.)
Citation of the data set: Socio-Economic Panel (SOEP), data for years 1984-2017, version 34, SOEP, 2019, doi:10.5684/soep.v34.
Publications using this file should refer to the above DOI Find an explanation on the usage of DOI here.and cite following references
If you do not exclude the cases of the migration samples in your analysis, then please also cite the following reference:
If you do not exclude the cases of the refugee samples in your analysis, please also cite: IAB-BAMF-SOEP survey of refugees (M3-M5), data for the years 2016-2021,
If you use data from the SOEP-LEE2 surveys, please also cite:
If you would like to refer more specifically, please also cite:
For the SOEP-Data 1984-2017 (v34) - Wave A to BH - we provide the following versions:
soep.v34i (International Scientific Use Version, 95%)
These datasets are included in SOEP-Core v34, but is also available as individual data sets upon reques:
soep.iab-soep-mig.2017 (Migration samples)
soep.iab-bamf-soep-mig.2018 (Refugee samples)
The new wave of the SOEP-Core study incorporates our “wide” and “long” data formats, which used to be provided to users separately. Our aim is to eliminate any confusion about what is available in which format and to make data use easier overall. After several years of testing SOEPlong as an additional service designed to facilitate analysis for both experienced and new users, we will now be providing all datasets in the “long” format as a standard part of our SOEP data release. This means that you will find the different SOEP data formats listed below in your data file, some of which will be contained in separate subdirectories.
Please make sure that you unpack the entire directory structure when unpacking your data.
1.1. SOEP in “long” format on the top level
In the top-level (or root) directory, you will find all of the datasets provided up to now with SOEPlong (pl, ppfadl, etc.) as well as all of the additional datasets formerly provided only in our classic “wide” format (biographical or spell data such as bioparen, artkalen, etc.). All of the data in the main SOEP-Core study are therefore contained in the datasets in the top-level directory.
Feedback from experienced and beginning users over the past several years shows that the “long” data offer significant advantages in ease of use, particularly for beginners. We have therefore decided to use this as our primary data format in future data releases.
All available individual year-specific datasets are pooled into a single dataset (e.g., all $P datasets are integrated into the PL dataset). In some cases, this means that we have to harmonize variables in order to be able to define them consistently over time. For instance, income information is given in euros up to 2001 and not in deutschmarks, and in cases where questionnaires have changed, the categories are modified over time. All changes are presented to users in a clear and understandable way, and if harmonization is necessary, all input variables are provided in their original form (see below _v*-variables). SOEPlong thus significantly reduces the number of datasets and the number of variables.
A more detailed description of the format of our SOEP-Core data release can be found in our new SOEPcompanion.
1.1.1. Most important changes to v33 in the long format
1.2. Classic format in the subdirectory raw
Since we know that many users have existing scripts that are based on the original data format, and to enable users to understand the process of generating the “long” data, we provide all of the datasets in their original SOEP format in the directory raw.
Users who want to continue using the old format simply need to switch into subdirectory rawand use the datasets there.
The only change is that there are now additional identifiers in all of the datasets in the raw directory with the name in the long format (PID and PERSNR or HID and $HHRNAKT) and a survey year variable (SYEAR) so that users can easily merge variables from the two data formats.
1.3. New EU-SILC clone in the subdirectory eu-silc-clone
Many users are undoubtedly aware that the SOEP supports cross-national analysis with CNEF through the dataset PEQUIV. We have now produced a data product that allows you to use the SOEP data in comparative analyses with the EU-SILC (European Union Statistics on Income and Living Conditions) data. EU-SILC, which is provided by Eurostat upon request, offers cross-sectional and longitudinal information for many European countries. Up to now, only cross-sectional information has been available for Germany. The EU-SILC clone offers longitudinal information on private households in Germany based on the SOEP data. All of the information contained in it can be directly compared with the EU-SILC longitudinal information on other European countries.
The EU-SILC clone is integrated into the standard SOEP data release (in subdirectory eu-silc-clone).
Documentation on the 2005-2016 EU-SILC clone can be found here (PDF, 3.01 MB).
The new SOEP data release (v34) will be the first to contain data from the IAB-BAMF-SOEP Survey of Refugees in Germany as Sample M5, as well as the continuation of the PIAAC-L Survey, as Sample N.
2.1. IAB-BAMF-SOEP Survey of Refugees (M5)
The SOEP, in cooperation with the Institute for Employment Research (IAB) and the Federal Office for Migration and Refugees (BAMF), has succeeded in integrating a third sample of refugee households (M5) into the SOEP study. The survey was launched in 2017. The population of M5 covers adult refugees who have applied for asylum in Germany since January 1, 2013, and are currently living in Germany. M5 added another 1,519 households of refugees who have migrated to Germany since 2013 to the SOEP framework.
2.2. Integration of respondents from PIAAC-L as Subsample N
Sample N integrated 2,314 households of former participants of the Program for the International Assessment of Adult Competencies (PIAAC and PIAAC-L) in 2017. This is the most recent addition to the SOEP-Core samples. Fieldwork in sample N was conducted between mid-March and mid-August and thus slightly later than the majority of samples A–L1. More information on the PIAAC-L project can be found on the project homepage.
In the IAB-BAMF-SOEP Survey of Refugees (M3-M5), there were translation errors in some some of the questions on income components in translated versions of the household questionnaire. Answers for these variables are therefore not comparable with other answers. The corresponding variables were set to -3.
In the process of data preparation, three interviewers were identified who had not conducted interviews in line with the standards of the IAB-BAMF-SOEP group (more information here). The interviewers in question were responsible for 88 households in 2016 and 112 households in 2017. The households affected in the first wave of the survey (2016) were completely removed from the dataset. The households affected in 2017, who were supposed to be interviewed for the second time, were deleted for 2017 but left in the dataset for 2016. There are no indications that the first interviews (by a different interviewer) were not conducted in line with IAB-BAMF-SOEP standards. The interviews and cases deleted from the data release may be accessed upon request from a guest work station at the SOEP-RDC for survey methodological analysis. After these lines were deleted from all datasets, the following adjustments were made:
The extended variable naming convention is applied only to data sets from wave BH onwards and only applicable for the datasets $P, $H, $KIND. We added underscores between unit of analysis, question identifier, and item identifier to clearly separate the analysis unit, question, and item visually. In addition, a questionnaire identifier was introduced, which is also separated by an underscore from the item. This new version of naming variables is only used if the survey instrument differs from the “original” SOEP-Core instrument.
Due to our different samples in the SOEP, there are some respondents that receive sample-specific questions, such as the refugee sample that started in 2016. For that specific group, we created an extended individual questionnaire with some specific questions along with the standard SOEP questions that are asked every year. For the specific questions, you can use the instrument variable to see the source of the variables.
Examples and more detailed descriptions can be found in the chapter on this subject in the SOEP Companion.
6.1. Dataset PPATH / PPATHL (in raw: PPFAD)
6.1.1. SEXOR
6.1.2 PARINFO
6.1.3 Migration information
6.1.4. Asylum-Seekers and Refugees
6.2. Dataset PGEN
6.2.1 Partner pointer
6.2.2. Volunteer work and side jobs
6.2.3. Educational degrees
6.2.4. AUTONO
6.3 Dataset PEQUIV
6.4. Dataset BIOAGEL and BIOPUPIL
6.5. Dataset HGEN
A number of changes have taken place in recent years in questions on home rental. The first change took place in the hosehold questionnaire of wave BF (2014). The question asked about the costs of utilities in such detail that respondents were not able to provide correct answers. This led to underestimation of both base rent and utilities.
It emerged that this led to a slight break in the time series. Rent has increased continuously over the years since 1984. In 2014 and 2015, however, rental costs fell and have been increasing again sharply since 2016. This break can be explained by the change in the questionnaire.
Starting with wave BH, respondents are being asked about rent in the same way as in wave BG (2016) and in wave BD (2013) in order to maintain long-term comparability. In addition, with wave BH, the new migration sample M5 and the new refresher sample N are part of the SOEP. Since Sample M5 was not surveyed on utility costs in a comparable way and since many of these respondents probably live in group housing or receive subsidies to cover living costs, no rent variable was generated for them.
v33 - rent |
v34 - rent |
2010: 486.25 |
2010: 486.21 |
2011: 484.93 |
2011: 485.64 |
2012: 491.01 |
2012: 490.75 |
2013: 505.00 |
2013: 505.59 |
2014: 470.95 |
2014: 473.74 |
2015: 507.06 |
2015: 508.57 |
2016: 545.53 |
2016: 541.90 |
|
2017: 550.67 |
6.6. Dataset BIOIMMIG
6.7. Dataset HHRF/PHRF
6.7.1. Revisions and Bugfixes
1984-2017 (Wave BH)
Overview (May 2019):
Values for the variables plb0186_v2 and plb0186_h for the East sample in 1990 are too small by a factor of 10.
The names assigned to the raw variables bhh_37_01 “electricity included in rent” and bhh_37_02 “assessed burden of housing expenses (rent and additional expenses)” do not correspond to the standard SOEP concept for naming variables. Both variables will be renamed in the new version.
The previous version from the migspell dataset was delivered.
The new identifiers were not filled in and have to be filled in from the old identifiers.
Details:
1. Dataset: pl
Variables: plb0186_v2, plb0186_h
Values for the variables plb0186_v2 “Actual working time with overtime (1990-2017)” and plb0186_h “Actual working time with overtime (harmonized)” have the wrong values for the East sample in 1990.
The variable plb0186_h is made up of the variables plb0186_v1 (1984-1989) and plb0186_v2 (1990-2017). We included all of the values for plb0186_v1 as they were, and divided all of the valid values for plb0186_v2 by 10. The process of harmonization is necessary due to the fact that the two raw variables for 1990 were provided in different formats:
gpost: gp3601e (two-digit, no comma)
gp: gp39 (three-digit, no comma)
The raw variable gp3601e from gpost was assigned to the variable plb0186_v2 although it does not have to be divided by 10. As a result, all values for the East German population for the year 1990 were mistakenly divided by 10. The simplest way of solving this problem is to multiply the valid values for the East German population by 10.
cd "Datenpfad" |
Detailed information on the general process used to harmonize variables can be found here:
Versioning and harmonization of variables
Working with harmonized Variables
2. Dataset: bhh
Variables: bhh_37_01, bhh_37_02
The names assigned to the raw variables bhh_37_01 “electricity included in rent” and bhh_37_02 “assessed burden of housing expenses (rent and additional expenses)” do not correspond to the standard SOEP concept for naming variables. Both variables had to be renamed:
bhh_37_01 “Electricity included in rent” → bhh_33
bhh_37_02 “Assessed burden of housing expenses (rent and additional costs)” → bhh_37
To find out more about how raw variables are named in the SOEP, see the SOEPcompanion:
Naming conventions of Variables and Datasets
3. Dataset: migspell
Unfortunately the previous version of the migspell dataset was delivered. For the current version, please contact the SOEPhotline or write an email to soepmail.
4. Dataset: biobirth, bioimmig, biojob, bioparen, bioresid, biosib, biosoc, biotwin, pflege
Variables: pid, cid, hid
In the process of “merging” SOEP-Long and SOEP-Core, all of the SOEP-Long ID variables (pid, hid, cid) were also included in the raw datasets to make merging easier for users. In some datasets, only the ID variables were created but not filled in with the corresponding IDs.
Empty pid: biobirth, bioimmig, biojob, bioparen, bioresid, biosib, biosoc, biotwin, pflege
Empty hid: bioimmig, bioresid, biosoc
Empty cid: biobirth, bioimmig, biojob, bioparen, bioresid, biosib, biosoc, biotwin, pflege
With these datasets, please continue to use persnr, hhnrakt, hhnr, or copy the content into the corresponding new ID variable.
clonevar pid = persnr |
Further information on SOEP identifiers can be found here:
Dataset Identifier
Individual (PAPI) 2017: Field-de Field-en Var-de Var-en
Household (PAPI) 2017: Field-de Field-en Var-de Var-en
Biography (PAPI) 2017: Field-de Var-de Var-en
Catch-up Individual (PAPI) 2017: Field-de Var-de Var-en
Youth (16-17-year-olds, PAPI) 2017: Field-de Var-de Var-en
Early Youth (13-14-year-olds, PAPI) 2017: Field-de Var-de Var-en
Pre-teen (11-12-year-olds, PAPI) 2017: Field-de Var-de Var-en
Mother and Child (Newborns, PAPI) 2017: Field-de Var-de Var-en
Mother and Child (2-3-year-olds, PAPI) 2017: Field-de Var-de Var-en
Mother and Child (5-6-year-olds, PAPI) 2017: Field-de Var-de Var-en
Parents and Child (7-8-year-olds, PAPI) 2017: Field-de Var-de Var-en
Mother and Child (9-10-year-olds, PAPI) 2017: Field-de Var-de Var-en
Deceased Individual (PAPI) 2017: Field-de Var-de Var-en
Please find all sample specific questionnaires of this year and all questionnaires of previous years on this site
1) Supplementary of the IAB-BAMF-SOEP Survey of Refugees in Germany (M5) 2017
4) SOEP-Core v34 – PPATHL: Person-Related Meta-Dataset
5) SOEP-Core v34 – HPATHL: Household-Related Meta-Dataset
6) SOEP-Core v34 – PBRUTTO: Person-Related Gross File
7) SOEP-Core v34 – HBRUTTO: Household-Related Gross File
8) SOEP-Core v34 – PGEN: Person-Related Status and Generated Variables
9) SOEP-Core v34 – HGEN: Household-Related Status and Generated Variables
13) SOEP-Core v34 – BIOPAREN: Biography Information for the Parents of SOEP-Respondents
15) SOEP-Core v34 – BIOSIB: Information on siblings in the SOEP
17) SOEP-Core v34 – BIOAGE17: The Youth Questionnaire
18) SOEP-Core v34 – BIOSOC: Retrospective Data on Youth and Socialization
19) SOEP-Core v34 – BIOJOB: Detailed Information on First and Last Job
20) SOEP-Core v34 – BIOEDU: Data on educational participation and transitions
21) SOEP-Core v34 – BIORESID: Variables on Occupancy and Second Residence
22) SOEP-Core v34 – BIOBIRTH: A Data Set on the Birth Biography of Male and Female Respondents
23) SOEP-Core v34 – BIOTWIN: TWINS in the SOEP
24) SOEP-Core v34 – LIFESPELL: Information on the Pre- and Post-Survey History of SOEP-Respondents
25) SOEP-Core v34 – MIGSPELL and REFUGSPELL: The Migration-Biographies
26) SOEP-Core v34 – Activity Biography in the Files PBIOSPE and ARTKALEN
27) SOEP-Core v34: Codebook for the EU-SILC-Like Panel for Germany Based on the SOEP
1) Handgreifkraftmessung im Sozio-oekonomischen Panel (SOEP) 2006 und 2008
2) The new IAB-SOEP Migration Sample: an introduction into the methodology and the contents
3) The Request for Record Linkage in the IAB-SOEP Migration Sample
5) The Measurement of Labor Market Entries with SOEP Data: Introduction to the Variable EINSTIEG_ARTK
6) Job submission instructions for the SOEPremote System at DIW Berlin – Update 2014
7) SOEP 2015 – Informationen zu den SOEP-Geocodes in SOEP v32
9) Die Vercodung der offenen Angaben zu den Ausbildungsberufen im Sozio-Oekonomischen Panel
10) Das Studiendesign der IAB-BAMF-SOEP Befragung von Geflüchteten
11) Scales Manual IAB-BAMF-SOEP Survey of Refugees in Germany – revised version
12) SOEP 2010 – Preparation of data from the new SOEP consumption module: Editing, imputation, and smoothing
13) SOEP Scales Manual (updated for SOEP-Core v32.1)
17) Multi-Itemskalen im SOEP Jugendfragebogen
20) SOEP-CoV: Project and Data Documentation
22) SOEP 2013 – Documentation of Generated Person-Level Long-Term Care Variables in PFLEGE
23) SOEP-Core v34 – PFLEGE: Documentation of Generated Person-level Long-term Care Variables
26) SOEP-Core v36: Codebook for the EU-SILC-like panel for Germany based on the SOEP
All documentation for filtering can be found on this page