Direkt zum Inhalt

On the Use of Aggregate Survey Data for Estimating Regional Major Depressive Disorder Prevalence

Aufsätze referiert extern - Web of Science

Domingo Morales, Joscha Krause, Jan Pablo Burgard

In: Psychometrika (online first) (2021),


Major depression is a severe mental disorder that is associated with strongly increased mortality. The quantification of its prevalence on regional levels represents an important indicator for public health reporting. In addition to that, it marks a crucial basis for further explorative studies regarding environmental determinants of the condition. However, assessing the distribution of major depression in the population is challenging. The topic is highly sensitive, and national statistical institutions rarely have administrative records on this matter. Published prevalence figures as well as available auxiliary data are typically derived from survey estimates. These are often subject to high uncertainty due to large sampling variances and do not allow for sound regional analysis. We propose a new area-level Poisson mixed model that accounts for measurement errors in auxiliary data to close this gap. We derive the empirical best predictor under the model and present a parametric bootstrap estimator for the mean squared error. A method of moments algorithm for consistent model parameter estimation is developed. Simulation experiments are conducted to show the effectiveness of the approach. The methodology is applied to estimate the major depression prevalence in Germany on regional levels crossed by sex and age groups.

Keywords: empirical best prediction; generalized linear mixed model; method of moments; parametric bootstrap; small area estimation
Externer Link: